The objective of this paper is to extend Ulam-Hyers stability and Ulam-Hyers-Rassias stability theory to differential equations with delay and in the frame of a certain class of a generalized Caputo fractional derivative with dependence on a kernel function. We discuss the conditions such delay generalized Caputo fractional differential equations should satisfy to be stable in the sense of Ulam-Hyers and Ulam-Hyers-Rassias. To demonstrate our results two examples are presented.