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Available at: http://www.pmf.ni.ac.rs/filomat

A Note on Dieudonne Complete Spaces

Asylbek A. Chekeeva,b, Tumar J. Kasymovaa

aMathematics and Informatics Faculty, Kyrgyz National University, 720033 Bishkek;
bFaculty of Science, Kyrgyz-Turkish Manas University, 720038 Bishkek, Kyrgyz Republic

Abstract. In this paper, it is established a characterization ofτ-normal coverings by means of approximation
of the Čech complete paracompacta, which are the perfect preimages of complete metric spaces of weight ≤
τ. In particular, this characterization generalizes to an arbitrary cardinal the result of A. Garsia-Maynez [15].

1. Introduction and Preliminaries

All spaces are assumed to be Tychonoff. C(X) is the set of all real-valued continuous functions on X.
The set Z( f ) = {x ∈ X : f (x) = 0} is called zero-set of a function f ∈ C(X). A familyZ(X) = {Z( f ) : f ∈ C(X)} is
the set of all zero-sets on X. A family CZ(X) = {X \ Z( f ) : f ∈ C(X)} is the set of all cozero-sets on X. For any
function f ∈ C(X) we will assume coz f = X \Z( f ). A familyZ(X) (CZ(X)) forms a base of closed (open) sets
of a space X [12]. A familyZ(X) is a separating nest-generated intersection ring (s.n.-g.i.r.) [21] or a strong delta
normal base [1], hence it is a normal base [10] and the Wallman compactification ω(X,Z(X)) coincides with
the Stone–Čech compactification βX [1, 12]. The Hewitt–Nachbin–Shirota completion υX [13, 17, 20] is the
Wallman realcompactification υ(X,Z(X)) [21]. A space βX consists of all z-ultrafilters (≡maximal centered
systems on Z(X)) with the Wallman normal base {Z̄ : Z ∈ Z(X)}, where Z̄ = {p ∈ βX : Z ∈ p} [1, 12, 21].
The realcompactification υX is a subspace of βX and it consists of all countably centered (CC) z-ultrafilters
(≡maximal countably centered systems onZ(X)) with a base {Z̄∩ υX : Z ∈ Z(X)}, where Z̄∩ υX = {p ∈ υX :
Z ∈ p} [1, 12, 21]. Hence Z̄ = [Z]βX and Z̄ ∩ υX = [Z]υX for all Z ∈ Z(X).

It is known from [7] that points of βX corresponding to the Dieudonne completion δX (by Curzer-Hager)
was described as co-locally finitely additive (co-LFA) z-ultrafilters.

Below the important properties of co-LFA z-ultrafilters are established by Propositions 2.1, 2.3 and
Theorem 2.6. Further, it is established a characterization of τ-normal coverings (Theorem 2.10), which
implies some results of G. Vidossich [22] and A.Di Concilio [8]. Theorems 2.12 and 2.14 generalize to an
arbitrary cardinal the result of A.Garsia-Maynez [15]. By using Theorem 2.10, we prove Theorems 2.18, 2.19,
2.20, where the known characterizations of Hewitt-Nachbin-Shirota completions and realcompact spaces
are clarified.

Denote byN the set of all natural numbers, and byR the real line with the ordinary topology. The union
and the intersection of a family α = {Us}s∈S of sets are denoted by ∪s∈SUs and ∩s∈SUs respectively; in the case
of a sequence {Un}n∈N of sets we use the symbols ∪n∈NUn and ∩n∈NUn, and in the case of a non-indexed
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family α = {U}U∈α of sets we write ∪α and ∩α. If
⋃
α = X, then the family α is a covering of X. A covering

β is a refinement of a covering α if for every B ∈ β there exists A ∈ α such that B ⊂ A. For a covering α of
X the star of a set D ⊂ X with respect to α is the set St(D, α) = {A ∈ α : A ∩ D , ∅} and α(D) = ∪St(D, α).
A covering β is a strongly star refinement of a covering α if covering {β(B) : B ∈ β} is a refinement of α. If
α = {Us}s∈S and γ = {Vt}t∈T are two coverings of X, then α screens γ in case S = T and Us ⊂ Vs for all s ∈ S.

Let Y be a subspace of a space X, then f |Y is a restriction of a mapping f : X→ Z on Y, and the set [Y]X
is the closure of Y in X. Let [Y]X = X and U be open in Y. Then ExXU = X \ [Y \ U]X is the largest open
subset of X whose intersection with Y is equal U. If U,V are open in Y, then ExX(U ∩ V) = ExXU ∩ ExXV,
U ⊂ V if and only if ExXU ⊂ ExXV [9]. If α = {Us}s∈S is a covering of Y, then ExXα = {ExXUs}s∈S and⋃

ExXα =
⋃

s∈S ExXUs. For a covering α of a space X inner intersection is the set α ∧ Y = {A ∩ Y : A ∈ α}.
A filter F is said to be countably centered (CC) if ∩n∈NFn , ∅ for any sequence {Fn}n∈N of F . A filter F

is a Cauchy filter in a uniform space uX if for any uniform covering α ∈ u there exist U ∈ α and F ∈ F such
that F ⊂ U.

If {Zs}s∈S is a zero-sets family of Z(X) such that {X \ Zs}s∈S is locally finite, then ∩s∈SZs is a zero-set. It
follows from important Pasynkov Lemma [18].

Lemma 1.1. ([18]) Let fs : X → Rs be a system of continuous functions from a space X into real lines Rs = R
(s ∈ S) with marked zero 0s = 0 such that the system α = {coz fs = f−1

s (Rs \ {0s})}s∈S is locally finite in X. Then the
diagonal mapping f = 4s∈S fs : X→ Hτ, (where Hτ =M

∏
s∈S(Rs, 0s) is the Hilbert space of weight τ = |S| obtained

as the metric product of Rs with marked points 0s = 0 [18]) is defined and continuous.

Everywhere we will follow the denotation µX of [16] for the Dieudonne completion of a space X.
Standard references for topological spaces are in the books [9], and for uniform spaces are in the

books [3, 14]. Information on the normal bases is in [1, 10, 21].

2. Main Results

Remind that z-ultrafilter p is co-locally finitely additive whenever the family co(p) = {X \Z : Z ∈ p} is locally
finitely additive, i.e. ∪F ∈ co(p), whenever F ⊂ co(p) and F is locally finite [7].

Proposition 2.1. For a z-ultrafilter p the following are equivalent:

(1) The family co(p) is locally finitely additive;
(2) ∩s∈SZs , ∅ for any locally finite subfamily {X \ Zs}s∈S of co(p).

Proof. (1) ⇒ (2). Let {X \ Zs}s∈S be a locally finite subfamily of co(p). Then ∪s∈SX \ Zs = X \ ∩s∈SZs ∈ co(p).
Hence, ∩s∈SZs , ∅ (by Lemma 1.1, ∩s∈SZs ∈ Z(X)).

(2) ⇒ (1). Let ∩s∈SZs , ∅, where {X \ Zs}s∈S is a locally finite subfamily of co(p). By Lemma 1.1,
Z = ∩s∈SZs is a zero-set. Suppose, that Z < p. Then there exists Z′ ∈ p such that Z ∩ Z′ = ∅. But the family
{X \ Zs}s∈S

⋃
{X \ Z} is locally finite, hence

⋃
s∈S X \ Zs ∪ {X \ Z} = X \ (∩s∈SZs ∩ Z′) ∈ co(p), i.e. Z ∩ Z′ , ∅.

Contradiction.

Further, a co-locally finitely additive z-ultrafilter we will denoted by co-LFA z-ultrafilter.
A family {Zs}s∈S of subsets of space X is called co-locally finite (co-LF) if the family {X\Zs}s∈S is locally

finite in X.

Corollary 2.2. Every co-LFA z-ultrafilter p is closed with respect to the intersections of co-LF subfamilies, i.e.
∩s∈SZs ∈ p for every co-LF subfamily {Zs}s∈S of p.

Proof. Let {Zs}s∈S be a co-LF subfamily of the z-ultrafilter p, and Z ∈ p be an arbitrary element. Then
∩s∈SZs , ∅ and the family {Zs}s∈S ∪ {Z} is co-LF. Hence ∩s∈SZs ∩ Z , ∅. Let q be a z-ultrafilter such that
p ∪ {∩s∈SZs} ⊂ q. Then p = q and ∩s∈SZs ∈ p.

Proposition 2.3. Every co-LFA z-ultrafilter p is countably centered, i.e. ∩n∈NZn , ∅ for any sequence {Zn}n∈N of p.
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Proof. Suppose that there is a sequence {Zn}n∈N in p such that ∩n∈NZn = ∅. Then the family {X\Zn}n∈N is a
countable cozero covering of the space X. There exists a countable locally finite cozero covering {X\Z( fn)}n∈N
that screens {X\Zn}n∈N, i.e. X\Z( fn) ⊂ X\Zn for any n ∈ N [1, Theorem 11.1]. Then Zn ⊂ Z( fn) and the
family {X\Z( fn)}n∈N is a co-LF subfamily of p. But ∩n∈NZ( fn) = ∅. Contradiction.

Corollary 2.4. Every co-LFA z-ultrafilter p is closed with respect to the intersections of countable subfamilies, i.e.
∩n∈NZn ∈ p for every sequence {Zn}n∈N in p.

Proof. It immediately follows from Proposition 2.3, and the proof is similar to the proof of Corollary 2.2.

Corollary 2.5. Let µX be a set of all co-LFA z-ultrafilters on X. Then µX ⊂ υX ⊂ βX.

Proof. It immediately follows from Corollary 2.4, and construction of the Hewitt–Nachbin completion υX
and construction of the Stone–Čech compactification βX [12].

Theorem 2.6. Let p be a z-ultrafilter on a space X. Then the following are equivalent:

(1) p is a co-LFA z-ultrafilter on X;
(2) p is a Cauchy filter with respect to the fine uniformity u f of X.

Proof. (1) ⇒ (2). Let p be an arbitrary co-LFA z-ultrafilter. A fine uniformity u f has a base B consisting of
all locally finite cozero coverings [9, 14]. Let α = {X\Z( fs)}s∈S be locally finite. Then ∩s∈SZ( fs) = ∅. Since
the family {Z( fs)}s∈S is co-LF, it is not contained into z-ultrafilter p. Hence there exists index s0 ∈ S such that
Z( fs0 ) < p. Therefore, there exists Zn0 ∈ p such that Z( fs0 ) ∩ Zn0 = ∅. Thus, Zn0 ⊂ X\Z( fs0 ) ∈ α and p is a
Cauchy filter with respect to the fine uniformity u f .

(2) ⇒ (1). Let a z-ultrafilter p be a Cauchy filter with respect to the fine uniformity u f . Suppose that
there is a subfamily {Zs}s∈S of p such that it is co-LF and ∩s∈SZs = ∅. Then the family α = {X\Zs}s∈S is a
locally finite cozero covering of X. Hence α ∈ B. Therefore, there exist an index s0 ∈ S and Z0 ∈ p such that
Z0 ⊂ X\Zs0 ∈ α. Since Z0 ∩ Zs0 = ∅, we have a contradiction.

Corollary 2.7. X is Dieudonne complete if and only if every co-LFA z-ultrafilter converges.

Proof. It follows immediately from Theorem 2.6.

Corollary 2.8. µX with topology induced by the Stone–Čech compactification βX is the Dieudonne completion of X
and points of µX are co-LFA z-ultrafilters.

From [8, 22] all uniform coverings of cardinality ≤ τ of the fine uniformity u f form the compatible
uniformity. The natural problem arises: describe open coverings which are refinements of cozero coverings
of cardinality ≤ τ.

Definition 2.9. An open covering α of a space X is said to be τ-normal if it has a cozero refinement β of
cardinality |β| ≤ τ.

Theorem 2.10. Let α be an open covering of a space X and τ ≥ ℵ0 be an arbitrary cardinal. The following are
equivalent:

(1) α is τ-normal;
(2) There exists Yα such that X ⊂ Yα ⊂

⋃
ExβXα ⊂ βX and Yα is a perfect preimage of some complete metric space

of weight ≤ τ.

Proof. (1) ⇒ (2). Let a locally finite cozero covering β be a refinement of α and |β| ≤ τ. Then β = {coz fs}s∈S,
where coz fs = f−1

s (R \ {0}), fs ∈ C(X) and |S| ≤ τ. By Lemma 1.1, the mapping f = 4s∈S fs continuously maps
X into the Hilbert space Hτ. For any s ∈ S we have fs = πs ◦ f , where πs = ps| f (X) is the restriction of the
natural projection ps : Hτ

→ Rs, s ∈ S. We note that coz fs = f−1(cozπs). Let M = [ f (X)]Hτ . Then M is a
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complete metric subspace of Hτ. Let F : βX→ βM be the extension of f on the Stone-Čech compactifications
βX and βM, Yα = F−1(M). Assume ϕ = F|Yα . Then ϕ : Yα → M is a perfect mapping and ϕ−1(M) = Yα.
Assume ExMcozπs = M \ [ f (X) \ cozπs]M. Then

⋃
s∈S f−1(ExMcozπs) = Yα and f−1(ExMcozπs) ∩ X = coz fs for

all s ∈ S. Hence, f−1(ExMcozπs) ⊂ ExβXcoz fs. Then X ⊂ Yα ⊂
⋃

ExβXβ ⊂
⋃

ExβXα ⊂ βX.
(2) ⇒ (1). Suppose that an open covering α satisfies conditions from (2). Then the inner intersection

ExβXα ∧ Yα is an open covering of paracompactum Yα. Since Yα is perfectly mapped onto a complete
metric space of weight ≤ τ, then there exists a locally finite cozero covering γ of cardinality |γ| ≤ τ that is a
refinement of ExβXα ∧ Yα [2, Chapter VI, 42].

Applying the fact that every open covering of a paracompactum has a cozero strongly star refinement,
we obtain

Corollary 2.11. ([8, 22]) The collection (u f )τ of all τ-normal coverings of a space X is a compatible uniformity on X.

The next theorem characterizes a completion µτX of a space X with respect to the uniformity (u f )τ.

Theorem 2.12. The completion µτX of X with respect to the uniformity (u f )τ may be viewed as a subspace of βX
containing X, namely, as the intersection of all paracompact Gδ-subspaces of βX containing X, which are perfect
preimages of complete metric spaces of weight ≤ τ.

Proof. The Stone-Čech precompact uniformity uβ [9, 8.5.8] is containing in (u f )τ, hence the Samuel com-
pactification of X with respect to the uniformity (u f )τ is the Stone-Čech compactification of βX. Then
for any τ-normal covering α we have X ⊂ Yα ⊂

⋃
ExβXα ⊂ βX, where Yα is a paracompact Gδ-subspace

of βX as a perfect preimage of some complete metric space of weight ≤ τ (by Theorem 2.10). Hence,
µτX =

⋂
{Yα : α ∈ (u f )τ} as µτX =

⋂
{
⋃

ExβXα : α ∈ (u f )τ} [19].

Remark 2.13. Theorem 2.12 is an extension of a result [15] to an arbitrary cardinal

The next result clarifies some result of [11].

Theorem 2.14. Let µX ⊂ Y ⊂ βX. Then the following are equivalent:

(1) µX = Y;
(2) For any point x ∈ βX \ Y there exist a cardinal τ ≥ ℵ0, a cozero covering α of X of cardinality |α| ≤ τ and Yx

such that X ⊂ Y ⊂ Yx ⊂
⋃

ExβXα ⊂ βX \ {x} and Yx is the perfect preimage of some complete metric space of
weight ≤ τ.

Proof. (1) ⇒ (2). Let µX = Y and x ∈ βX \ Y be an arbitrary point. Then there exists a unique z-ultrafilter
px on X such that {x} =

⋂
{[Z]βX : Z ∈ px} [12] and px is not co-LFA. Hence there exists a co-LF subfamily

{Zs}s∈S of px such that |S| ≤ τ and
⋂

s∈S Zs = ∅. By Lemma 1.1, the mapping f = 4s∈S fs maps X into
the Hilbert space Hτ, where Zs = Z( fs). As in the proof of implication (1) ⇒ (2) from Theorem 2.10,
we have fs = πs ◦ f and coz fs = f−1(cozπs). The closure M of f (X) in Hτ is a complete metric space
of weight ≤ τ. Let F : βX → βM be an extension of f to the Stone-Čech compactifications βX and
βM, Yα = f−1(M) and ϕ = F|Yα . Then ϕ : Yα → M is a perfect mapping and ϕ−1(M) = Yα. Suppose
ExMcozπs = M \ [ f (X) \ cozπs]M. Then

⋃
s∈S f−1(ExMcozπs) = Yα and f−1(ExMcozπs) ∩ X = coz fs for all s ∈ S.

Hence f−1(ExMcozπs) ⊂ ExβXcoz fs. Then µX = Y ⊂ Yα ⊂
⋃

Exα. It is clear, x < ExβXcoz fs = βX \ [X \ coz fs]βX
for all s ∈ S. So, X ⊂ Y ⊂ Yα ⊂

⋃
ExβXα ⊂ βX \ {x}.

(2)⇒ (1). It is clear, µX =
⋂
{Yx : x ∈ βX \ Y} = Y.

The following statement clarifies the result of [11].

Corollary 2.15. The following are equivalent:

(1) X is Dieudonne complete;
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(2) For any point x ∈ βX \ X there exists a cardinal τ ≥ ℵ0, a cozero covering α of X of cardinality |α| ≤ τ and
Yx such that X ⊂ Yx ⊂

⋃
ExβXα ⊂ βX \ {x} and Yx is the perfect preimage of some complete metric space of

weight ≤ τ.

Proof. It follows immediately from Theorem 2.14, as X = µX.

All countable coverings of the fine uniformity u f of a space X form the uniformity uω [14]. By Shirota [20]
it was proved that the completion of the space X with respect to the uniformity uω is the realcompactification
υX and X is realcompact if and only if X = υX. The family Bω of all countable cozero coverings forms a
base of the uniformity uω [20].

Theorem 2.16. Let p be a z-ultrafilter on a space X. The following are equivalent:

(1) p is a CC z-ultrafilter on X;
(2) p is a Cauchy filter with respect to the uniformity uω of X.

Proof. (1) ⇒ (2). Let p be an arbitrary CC z-ultrafilter. The uniformity uω has a base Bω of all countable
cozero coverings [20]. For any α = {X\Z( fn)}n∈N of Bω we have ∩n∈NZ( fn) = ∅. Then the family {Z( fn)}n∈N
is not contained in z-ultrafilter p. Hence there exists index n0 ∈ N such that Z( fn0 ) < p. Therefore, there
exists Zn0 ∈ p such that Zn0 ∩Z( fn0 ) = ∅. Thus, Zn0 ⊂ X\Z( fn0 ) ∈ α and p is a Cauchy filter with respect to the
uniformity uω.

(2) ⇒ (1). Let p be a Cauchy filter with respect to the uniformity uω. Suppose that there is a sequence
{Zn}n∈N of p such that ∩n∈NZn = ∅. Then the family α = {X\Zn}n∈N is a countable cozero covering of the
space X. Hence α ∈ uω. Therefore there exist index n0 ∈ N and Z0 ∈ p such that Z0 ⊂ X\Zn0 ∈ α. Since
Z0 ∩ Zn0 = ∅, we have a contradiction.

The next corollary is well known [9].

Corollary 2.17. X is realcompact if and only if every CC z-ultrafilter converges.

Proof. It follows from Theorem 2.16.

From Theorem 2.10 in the case τ = ℵ0 we obtain the next

Theorem 2.18. Let α be an open covering of a space X. The following are equivalent:

(1) α is a uniform covering with respect to uω;
(2) There exists Yα such that X ⊂ Yα ⊂

⋃
ExβXα ⊂ βX and Yα is the perfect preimage of some complete metric

space of countable weight.

Proof. It is similar to the proof of Theorem 2.10, assuming τ = ℵ0.

The next theorem characterizes the completion υX of a space X with respect to the uniformity uω.

Theorem 2.19. The completion υX of X with respect to the uniformity uω may be viewed as a subspace of βX
containing X, namely, as the intersection of all Lindelöf Gδ-subspaces of βX containing X, which are perfect preimages
of complete metric spaces of countable weight.

Proof. The Stone-Čech precompact uniformity uβ [9, 8.5.8] is contained in uω, hence the Samuel compact-
ification of X with respect to the uniformity uω is the Stone-Čech compactification of βX. Then for any
countable normal covering α we have X ⊂ Yα ⊂

⋃
ExβXα ⊂ βX, where Yα is a Lindelöf Gδ-subspace of

βX as the perfect preimage of some complete metric space of countable weight (Theorem 2.10). Hence,
υX =

⋂
{Yα : α ∈ uω} as υX =

⋂
{
⋃

ExβXα : α ∈ uω} [19].

Theorem 2.20. Let υX ⊂ Y ⊂ βX. Then the following are equivalent:

(1) υX = Y;
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(2) For any point x ∈ βX \ Y there exist countable cozero covering α of X and Yx such that X ⊂ Y ⊂ Yx ⊂⋃
ExβXα ⊂ βX \ {x} and Yx is the perfect preimage of some complete metric space of countable weight.

Proof. It is similar to the proof of Theorem 2.14, assuming τ = ℵ0.

Corollary 2.21. The following are equivalent:

(1) X is realcompact;
(2) For any x ∈ βX \ X there exist a countable cozero covering α and a Lindelöf Gδ-subspace Yx of βX such that

X ⊂ Yx ⊂
⋃

ExβXα ⊂ βX \ X.

For every space X with a uniformity u the set Zu of all zero-sets of uniformly continuous real-valued
functions of a uniform space uX form s.n.-g.i.r. [21] and the characterizations of the Wallman β-like com-
pactification ω(X,Zu) = βuX and realcompactification υ(X,Zu) = υuX are given in [4–6]. A characterization
of the Wallman-Dieudonne completion µuX is given in [6]. Thus, the next problem arises:

Problem 2.22. LetZ ⊂ Z(X) be an arbitrary s.n.-g.i.r. on a space X and µ(X,Z) be the set of all co-LFA-ultrafilters
onZ. It is clear that µ(X,Z) ⊂ ω(X,Z). Is the following true:

(1) µ(X,Z) ⊂ υ(X,Z), where υ(X,Z) is the Wallman realcompactification ?
(2) µ(X,Z) is Dieudonne complete in the induced topology from the compactification ω(X,Z)?
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