Filomat 32:14 (2018), 5131–5136 https://doi.org/10.2298/FIL1814131C

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A Note on Dieudonne Complete Spaces

Asylbek A. Chekeev^{a,b}, Tumar J. Kasymova^a

^aMathematics and Informatics Faculty, Kyrgyz National University, 720033 Bishkek; ^bFaculty of Science, Kyrgyz-Turkish Manas University, 720038 Bishkek, Kyrgyz Republic

Abstract. In this paper, it is established a characterization of τ -normal coverings by means of approximation of the Čech complete paracompacta, which are the perfect preimages of complete metric spaces of weight $\leq \tau$. In particular, this characterization generalizes to an arbitrary cardinal the result of A. Garsia-Maynez [15].

1. Introduction and Preliminaries

All spaces are assumed to be Tychonoff. C(X) is the set of all real-valued continuous functions on X. The set $Z(f) = \{x \in X : f(x) = 0\}$ is called *zero-set* of a function $f \in C(X)$. A family $\mathcal{Z}(X) = \{Z(f) : f \in C(X)\}$ is the set of all zero-sets on X. A family $C\mathcal{Z}(X) = \{X \setminus Z(f) : f \in C(X)\}$ is the set of all *cozero-sets* on X. For any function $f \in C(X)$ we will assume $cozf = X \setminus Z(f)$. A family $\mathcal{Z}(X)$ ($C\mathcal{Z}(X)$) forms a base of closed (open) sets of a space X [12]. A family $\mathcal{Z}(X)$ is a *separating nest-generated intersection ring* (s.n.-g.i.r.) [21] or a *strong delta normal base* [1], hence it is a *normal base* [10] and the Wallman compactification $\omega(X, \mathcal{Z}(X))$ coincides with the Stone–Čech compactification βX [1, 12]. The Hewitt–Nachbin–Shirota completion vX [13, 17, 20] is the Wallman realcompactification $v(X, \mathcal{Z}(X))$ [21]. A space βX consists of all *z*-ultrafilters (\equiv maximal centered systems on $\mathcal{Z}(X)$) with the Wallman normal base { $\overline{Z} : Z \in \mathcal{Z}(X)$ }, where $\overline{Z} = \{p \in \beta X : Z \in p\}$ [1, 12, 21]. The realcompactification vX is a subspace of βX and it consists of all countably centered (CC) *z*-ultrafilters (\equiv maximal countably centered systems on $\mathcal{Z}(X)$) with a base { $\overline{Z} \cap vX : Z \in \mathcal{Z}(X)$ }, where $\overline{Z} \cap vX = \{p \in vX : Z \in p\}$ [1, 12, 21]. Hence $\overline{Z} = [Z]_{\beta X}$ and $\overline{Z} \cap vX = [Z]_{vX}$ for all $Z \in \mathcal{Z}(X)$.

It is known from [7] that points of βX corresponding to the Dieudonne completion δX (by Curzer-Hager) was described as *co-locally finitely additive* (*co-LFA*) *z*-ultrafilters.

Below the important properties of co-LFA *z*-ultrafilters are established by Propositions 2.1, 2.3 and Theorem 2.6. Further, it is established a characterization of τ -normal coverings (Theorem 2.10), which implies some results of G. Vidossich [22] and A.Di Concilio [8]. Theorems 2.12 and 2.14 generalize to an arbitrary cardinal the result of A.Garsia-Maynez [15]. By using Theorem 2.10, we prove Theorems 2.18, 2.19, 2.20, where the known characterizations of Hewitt-Nachbin-Shirota completions and realcompact spaces are clarified.

Denote by \mathbb{N} the set of all natural numbers, and by \mathbb{R} the real line with the ordinary topology. The union and the intersection of a family $\alpha = \{U_s\}_{s\in S}$ of sets are denoted by $\bigcup_{s\in S} U_s$ and $\bigcap_{s\in S} U_s$ respectively; in the case of a sequence $\{U_n\}_{n\in\mathbb{N}}$ of sets we use the symbols $\bigcup_{n\in\mathbb{N}} U_n$ and $\bigcap_{n\in\mathbb{N}} U_n$, and in the case of a non-indexed

²⁰¹⁰ Mathematics Subject Classification. Primary 54D35; Secondary 54D70, 54D80, 54E15

Keywords. zero- (cozero-)sets, locally finite cozero covering, z-ultrafilter, normal base, uniformity, completion

Received: 13 June 2017; Revised: 22 December 2018; Accepted: 28 December 2018

Communicated by Ljubiiša D.R. Kočinac

Email addresses: asyl.ch.top@mail.ru (Asylbek A. Chekeev), tumar2000@mail.ru (Tumar J. Kasymova)

family $\alpha = \{U\}_{U \in \alpha}$ of sets we write $\cup \alpha$ and $\cap \alpha$. If $\bigcup \alpha = X$, then the family α is a *covering* of X. A covering β is a refinement of a covering α if for every $B \in \beta$ there exists $A \in \alpha$ such that $B \subset A$. For a covering α of X the *star* of a set $D \subset X$ with respect to α is the set $St(D, \alpha) = \{A \in \alpha : A \cap D \neq \emptyset\}$ and $\alpha(D) = \bigcup St(D, \alpha)$. A covering β is a *strongly star refinement* of a covering α if covering $\{\beta(B) : B \in \beta\}$ is a refinement of α . If $\alpha = \{U_s\}_{s \in S}$ and $\gamma = \{V_t\}_{t \in T}$ are two coverings of X, then α *screens* γ in case S = T and $U_s \subset V_s$ for all $s \in S$.

Let *Y* be a subspace of a space *X*, then $f|_Y$ is a restriction of a mapping $f : X \to Z$ on *Y*, and the set $[Y]_X$ is the closure of *Y* in *X*. Let $[Y]_X = X$ and *U* be open in *Y*. Then $Ex_XU = X \setminus [Y \setminus U]_X$ is the largest open subset of *X* whose intersection with *Y* is equal *U*. If *U*, *V* are open in *Y*, then $Ex_X(U \cap V) = Ex_XU \cap Ex_XV$, $U \subset V$ if and only if $Ex_XU \subset Ex_XV$ [9]. If $\alpha = \{U_s\}_{s \in S}$ is a covering of *Y*, then $Ex_X\alpha = \{Ex_XU_s\}_{s \in S}$ and $\bigcup Ex_X\alpha = \bigcup_{s \in S} Ex_XU_s$. For a covering α of a space *X inner intersection* is the set $\alpha \land Y = \{A \cap Y : A \in \alpha\}$.

A filter \mathcal{F} is said to be *countably centered* (CC) if $\bigcap_{n \in \mathbb{N}} F_n \neq \emptyset$ for any sequence $\{F_n\}_{n \in \mathbb{N}}$ of \mathcal{F} . A filter \mathcal{F} is a *Cauchy filter* in a uniform space uX if for any uniform covering $\alpha \in u$ there exist $U \in \alpha$ and $F \in \mathcal{F}$ such that $F \subset U$.

If $\{Z_s\}_{s\in S}$ is a zero-sets family of $\mathcal{Z}(X)$ such that $\{X \setminus Z_s\}_{s\in S}$ is locally finite, then $\bigcap_{s\in S}Z_s$ is a zero-set. It follows from important Pasynkov Lemma [18].

Lemma 1.1. ([18]) Let $f_s : X \to \mathbb{R}_s$ be a system of continuous functions from a space X into real lines $\mathbb{R}_s = \mathbb{R}$ ($s \in S$) with marked zero $0_s = 0$ such that the system $\alpha = \{cozf_s = f_s^{-1}(\mathbb{R}_s \setminus \{0_s\})\}_{s \in S}$ is locally finite in X. Then the diagonal mapping $f = \triangle_{s \in S} f_s : X \to H^{\tau}$, (where $H^{\tau} = \mathcal{M} \prod_{s \in S} (\mathbb{R}_s, 0_s)$ is the Hilbert space of weight $\tau = |S|$ obtained as the metric product of \mathbb{R}_s with marked points $0_s = 0$ [18]) is defined and continuous.

Everywhere we will follow the denotation μX of [16] for the Dieudonne completion of a space X.

Standard references for topological spaces are in the books [9], and for uniform spaces are in the books [3, 14]. Information on the normal bases is in [1, 10, 21].

2. Main Results

Remind that *z*-ultrafilter *p* is *co-locally finitely additive* whenever the family $co(p) = \{X \setminus Z : Z \in p\}$ is *locally finitely additive*, i.e. $\cup \mathcal{F} \in co(p)$, whenever $\mathcal{F} \subset co(p)$ and \mathcal{F} is locally finite [7].

Proposition 2.1. *For a z-ultrafilter p the following are equivalent:*

- (1) *The family co(p) is locally finitely additive;*
- (2) $\bigcap_{s \in S} Z_s \neq \emptyset$ for any locally finite subfamily $\{X \setminus Z_s\}_{s \in S}$ of co(p).

Proof. (1) \Rightarrow (2). Let $\{X \setminus Z_s\}_{s \in S}$ be a locally finite subfamily of co(p). Then $\bigcup_{s \in S} X \setminus Z_s = X \setminus \bigcap_{s \in S} Z_s \in co(p)$. Hence, $\bigcap_{s \in S} Z_s \neq \emptyset$ (by Lemma 1.1, $\bigcap_{s \in S} Z_s \in \mathcal{Z}(X)$).

(2) \Rightarrow (1). Let $\bigcap_{s \in S} Z_s \neq \emptyset$, where $\{X \setminus Z_s\}_{s \in S}$ is a locally finite subfamily of co(p). By Lemma 1.1, $Z = \bigcap_{s \in S} Z_s$ is a zero-set. Suppose, that $Z \notin p$. Then there exists $Z' \in p$ such that $Z \cap Z' = \emptyset$. But the family $\{X \setminus Z_s\}_{s \in S} \bigcup \{X \setminus Z\}$ is locally finite, hence $\bigcup_{s \in S} X \setminus Z_s \cup \{X \setminus Z\} = X \setminus (\bigcap_{s \in S} Z_s \cap Z') \in co(p)$, i.e. $Z \cap Z' \neq \emptyset$. Contradiction. \Box

Further, a co-locally finitely additive *z*-ultrafilter we will denoted by *co-LFA z-ultrafilter*.

A family $\{Z_s\}_{s\in S}$ of subsets of space X is called *co-locally finite* (*co-LF*) if the family $\{X\setminus Z_s\}_{s\in S}$ is locally finite in X.

Corollary 2.2. Every co-LFA z-ultrafilter p is closed with respect to the intersections of co-LF subfamilies, i.e. $\bigcap_{s \in S} Z_s \in p$ for every co-LF subfamily $\{Z_s\}_{s \in S}$ of p.

Proof. Let $\{Z_s\}_{s\in S}$ be a co-LF subfamily of the *z*-ultrafilter *p*, and $Z \in p$ be an arbitrary element. Then $\bigcap_{s\in S}Z_s \neq \emptyset$ and the family $\{Z_s\}_{s\in S} \cup \{Z\}$ is co-LF. Hence $\bigcap_{s\in S}Z_s \cap Z \neq \emptyset$. Let *q* be a *z*-ultrafilter such that $p \cup \{\bigcap_{s\in S}Z_s\} \subset q$. Then p = q and $\bigcap_{s\in S}Z_s \in p$. \Box

Proposition 2.3. Every co-LFA z-ultrafilter p is countably centered, i.e. $\bigcap_{n \in \mathbb{N}} Z_n \neq \emptyset$ for any sequence $\{Z_n\}_{n \in \mathbb{N}}$ of p.

Proof. Suppose that there is a sequence $\{Z_n\}_{n \in \mathbb{N}}$ in p such that $\bigcap_{n \in \mathbb{N}} Z_n = \emptyset$. Then the family $\{X \setminus Z_n\}_{n \in \mathbb{N}}$ is a countable cozero covering of the space X. There exists a countable locally finite cozero covering $\{X \setminus Z(f_n)\}_{n \in \mathbb{N}}$ that screens $\{X \setminus Z_n\}_{n \in \mathbb{N}}$, i.e. $X \setminus Z(f_n) \subset X \setminus Z_n$ for any $n \in \mathbb{N}$ [1, Theorem 11.1]. Then $Z_n \subset Z(f_n)$ and the family $\{X \setminus Z(f_n)\}_{n \in \mathbb{N}}$ is a co-LF subfamily of p. But $\bigcap_{n \in \mathbb{N}} Z(f_n) = \emptyset$. Contradiction. \Box

Corollary 2.4. Every co-LFA z-ultrafilter p is closed with respect to the intersections of countable subfamilies, i.e. $\bigcap_{n \in \mathbb{N}} Z_n \in p$ for every sequence $\{Z_n\}_{n \in \mathbb{N}}$ in p.

Proof. It immediately follows from Proposition 2.3, and the proof is similar to the proof of Corollary 2.2.

Corollary 2.5. Let μX be a set of all co-LFA *z*-ultrafilters on *X*. Then $\mu X \subset v X \subset \beta X$.

Proof. It immediately follows from Corollary 2.4, and construction of the Hewitt–Nachbin completion vX and construction of the Stone–Čech compactification βX [12]. \Box

Theorem 2.6. Let *p* be a *z*-ultrafilter on a space X. Then the following are equivalent:

- (1) *p* is a co-LFA *z*-ultrafilter on X;
- (2) *p* is a Cauchy filter with respect to the fine uniformity u_f of X.

Proof. (1) \Rightarrow (2). Let p be an arbitrary co-LFA z-ultrafilter. A fine uniformity u_f has a base \mathcal{B} consisting of all locally finite cozero coverings [9, 14]. Let $\alpha = \{X \setminus Z(f_s)\}_{s \in S}$ be locally finite. Then $\bigcap_{s \in S} Z(f_s) = \emptyset$. Since the family $\{Z(f_s)\}_{s \in S}$ is co-LF, it is not contained into z-ultrafilter p. Hence there exists index $s_0 \in S$ such that $Z(f_{s_0}) \notin p$. Therefore, there exists $Z_{n_0} \in p$ such that $Z(f_{s_0}) \cap Z_{n_0} = \emptyset$. Thus, $Z_{n_0} \subset X \setminus Z(f_{s_0}) \in \alpha$ and p is a Cauchy filter with respect to the fine uniformity u_f .

(2) \Rightarrow (1). Let a *z*-ultrafilter *p* be a Cauchy filter with respect to the fine uniformity u_f . Suppose that there is a subfamily $\{Z_s\}_{s\in S}$ of *p* such that it is co-LF and $\bigcap_{s\in S}Z_s = \emptyset$. Then the family $\alpha = \{X \setminus Z_s\}_{s\in S}$ is a locally finite cozero covering of *X*. Hence $\alpha \in \mathcal{B}$. Therefore, there exist an index $s_0 \in S$ and $Z_0 \in p$ such that $Z_0 \subset X \setminus Z_{s_0} \in \alpha$. Since $Z_0 \cap Z_{s_0} = \emptyset$, we have a contradiction. \Box

Corollary 2.7. X is Dieudonne complete if and only if every co-LFA z-ultrafilter converges.

Proof. It follows immediately from Theorem 2.6. \Box

Corollary 2.8. μX with topology induced by the Stone–Čech compactification βX is the Dieudonne completion of X and points of μX are co-LFA z-ultrafilters.

From [8, 22] all uniform coverings of cardinality $\leq \tau$ of the fine uniformity u_f form the compatible uniformity. The natural problem arises: describe open coverings which are refinements of cozero coverings of cardinality $\leq \tau$.

Definition 2.9. An open covering α of a space *X* is said to be τ -normal if it has a cozero refinement β of cardinality $|\beta| \leq \tau$.

Theorem 2.10. Let α be an open covering of a space X and $\tau \geq \aleph_0$ be an arbitrary cardinal. The following are equivalent:

- (1) α is τ -normal;
- (2) There exists Y_{α} such that $X \subset Y_{\alpha} \subset \bigcup Ex_{\beta X} \alpha \subset \beta X$ and Y_{α} is a perfect preimage of some complete metric space of weight $\leq \tau$.

Proof. (1) \Rightarrow (2). Let a locally finite cozero covering β be a refinement of α and $|\beta| \leq \tau$. Then $\beta = \{cozf_s\}_{s\in S}$, where $cozf_s = f_s^{-1}(\mathbb{R} \setminus \{0\}), f_s \in C(X)$ and $|S| \leq \tau$. By Lemma 1.1, the mapping $f = \Delta_{s\in S}f_s$ continuously maps X into the Hilbert space H^{τ} . For any $s \in S$ we have $f_s = \pi_s \circ f$, where $\pi_s = p_s|_{f(X)}$ is the restriction of the natural projection $p_s : H^{\tau} \to \mathbb{R}_s, s \in S$. We note that $cozf_s = f^{-1}(coz\pi_s)$. Let $M = [f(X)]_{H^{\tau}}$. Then M is a

complete metric subspace of H^{τ} . Let $F : \beta X \to \beta M$ be the extension of f on the Stone-Čech compactifications βX and βM , $Y_{\alpha} = F^{-1}(M)$. Assume $\varphi = F|_{Y_{\alpha}}$. Then $\varphi : Y_{\alpha} \to M$ is a perfect mapping and $\varphi^{-1}(M) = Y_{\alpha}$. Assume $Ex_M coz \pi_s = M \setminus [f(X) \setminus coz \pi_s]_M$. Then $\bigcup_{s \in S} f^{-1}(Ex_M coz \pi_s) = Y_{\alpha}$ and $f^{-1}(Ex_M coz \pi_s) \cap X = coz f_s$ for all $s \in S$. Hence, $f^{-1}(Ex_M coz \pi_s) \subset Ex_{\beta X} coz f_s$. Then $X \subset Y_{\alpha} \subset \bigcup Ex_{\beta X} \beta \subset \bigcup Ex_{\beta X} \alpha \subset \beta X$.

(2) \Rightarrow (1). Suppose that an open covering α satisfies conditions from (2). Then the inner intersection $Ex_{\beta X}\alpha \wedge Y_{\alpha}$ is an open covering of paracompactum Y_{α} . Since Y_{α} is perfectly mapped onto a complete metric space of weight $\leq \tau$, then there exists a locally finite cozero covering γ of cardinality $|\gamma| \leq \tau$ that is a refinement of $Ex_{\beta X}\alpha \wedge Y_{\alpha}$ [2, Chapter VI, 42]. \Box

Applying the fact that every open covering of a paracompactum has a cozero strongly star refinement, we obtain

Corollary 2.11. ([8, 22]) The collection $(u_f)_{\tau}$ of all τ -normal coverings of a space X is a compatible uniformity on X.

The next theorem characterizes a completion $\mu_{\tau} X$ of a space X with respect to the uniformity $(u_f)_{\tau}$.

Theorem 2.12. The completion $\mu_{\tau}X$ of X with respect to the uniformity $(u_f)_{\tau}$ may be viewed as a subspace of βX containing X, namely, as the intersection of all paracompact G_{δ} -subspaces of βX containing X, which are perfect preimages of complete metric spaces of weight $\leq \tau$.

Proof. The Stone-Čech precompact uniformity u_{β} [9, 8.5.8] is containing in $(u_f)_{\tau}$, hence the Samuel compactification of X with respect to the uniformity $(u_f)_{\tau}$ is the Stone-Čech compactification of βX . Then for any τ -normal covering α we have $X \subset Y_{\alpha} \subset \bigcup Ex_{\beta X} \alpha \subset \beta X$, where Y_{α} is a paracompact G_{δ} -subspace of βX as a perfect preimage of some complete metric space of weight $\leq \tau$ (by Theorem 2.10). Hence, $\mu_{\tau}X = \bigcap\{Y_{\alpha} : \alpha \in (u_f)_{\tau}\}$ as $\mu_{\tau}X = \bigcap\{\bigcup Ex_{\beta X} \alpha : \alpha \in (u_f)_{\tau}\}$ [19]. \Box

Remark 2.13. Theorem 2.12 is an extension of a result [15] to an arbitrary cardinal

The next result clarifies some result of [11].

Theorem 2.14. Let $\mu X \subset Y \subset \beta X$. Then the following are equivalent:

- (1) $\mu X = Y;$
- (2) For any point $x \in \beta X \setminus Y$ there exist a cardinal $\tau \ge \aleph_0$, a cozero covering α of X of cardinality $|\alpha| \le \tau$ and Y_x such that $X \subset Y \subset Y_x \subset \bigcup Ex_{\beta X} \alpha \subset \beta X \setminus \{x\}$ and Y_x is the perfect preimage of some complete metric space of weight $\le \tau$.

Proof. (1) \Rightarrow (2). Let $\mu X = Y$ and $x \in \beta X \setminus Y$ be an arbitrary point. Then there exists a unique *z*-ultrafilter p_x on *X* such that $\{x\} = \bigcap\{[Z]_{\beta X} : Z \in p_x\}$ [12] and p_x is not co-LFA. Hence there exists a co-LF subfamily $\{Z_s\}_{s \in S}$ of p_x such that $|S| \leq \tau$ and $\bigcap_{s \in S} Z_s = \emptyset$. By Lemma 1.1, the mapping $f = \Delta_{s \in S} f_s$ maps *X* into the Hilbert space H^τ , where $Z_s = Z(f_s)$. As in the proof of implication (1) \Rightarrow (2) from Theorem 2.10, we have $f_s = \pi_s \circ f$ and $coz f_s = f^{-1}(coz\pi_s)$. The closure *M* of f(X) in H^τ is a complete metric space of weight $\leq \tau$. Let $F : \beta X \rightarrow \beta M$ be an extension of *f* to the Stone-Čech compactifications βX and βM , $Y_\alpha = f^{-1}(M)$ and $\varphi = F|_{Y_\alpha}$. Then $\varphi : Y_\alpha \rightarrow M$ is a perfect mapping and $\varphi^{-1}(M) = Y_\alpha$. Suppose $Ex_M coz \pi_s = M \setminus [f(X) \setminus coz \pi_s]_M$. Then $\bigcup_{s \in S} f^{-1}(Ex_M coz \pi_s) = Y_\alpha$ and $f^{-1}(Ex_M coz \pi_s) \cap X = coz f_s$ for all $s \in S$. Hence $f^{-1}(Ex_M coz \pi_s) \subset Ex_\beta x coz f_s$. Then $\mu X = Y \subset Y_\alpha \subset \bigcup Ex\alpha$. It is clear, $x \notin Ex_\beta x coz f_s = \beta X \setminus [X \setminus coz f_s]_{\beta X}$ for all $s \in S$. So, $X \subset Y \subset Y_\alpha \subset \bigcup Ex_{\beta X} \alpha \subset \beta X \setminus \{x\}$.

(2) \Rightarrow (1). It is clear, $\mu X = \bigcap \{Y_x : x \in \beta X \setminus Y\} = Y$. \Box

The following statement clarifies the result of [11].

Corollary 2.15. *The following are equivalent:*

(1) X is Dieudonne complete;

(2) For any point $x \in \beta X \setminus X$ there exists a cardinal $\tau \ge \aleph_0$, a cozero covering α of X of cardinality $|\alpha| \le \tau$ and Y_x such that $X \subset Y_x \subset \bigcup Ex_{\beta X} \alpha \subset \beta X \setminus \{x\}$ and Y_x is the perfect preimage of some complete metric space of weight $\le \tau$.

Proof. It follows immediately from Theorem 2.14, as $X = \mu X$.

All countable coverings of the fine uniformity u_f of a space X form the uniformity u_{ω} [14]. By Shirota [20] it was proved that the completion of the space X with respect to the uniformity u_{ω} is the realcompactification vX and X is realcompact if and only if X = vX. The family \mathcal{B}_{ω} of all countable cozero coverings forms a base of the uniformity u_{ω} [20].

Theorem 2.16. *Let p be a z-ultrafilter on a space X. The following are equivalent:*

(1) *p* is a CC *z*-ultrafilter on X;

(2) *p* is a Cauchy filter with respect to the uniformity u_{ω} of X.

Proof. (1) \Rightarrow (2). Let p be an arbitrary CC z-ultrafilter. The uniformity u_{ω} has a base \mathcal{B}_{ω} of all countable cozero coverings [20]. For any $\alpha = \{X \setminus Z(f_n)\}_{n \in \mathbb{N}}$ of \mathcal{B}_{ω} we have $\cap_{n \in \mathbb{N}} Z(f_n) = \emptyset$. Then the family $\{Z(f_n)\}_{n \in \mathbb{N}}$ is not contained in z-ultrafilter p. Hence there exists index $n_0 \in \mathbb{N}$ such that $Z(f_{n_0}) \notin p$. Therefore, there exists $Z_{n_0} \in p$ such that $Z_{n_0} \cap Z(f_{n_0}) = \emptyset$. Thus, $Z_{n_0} \subset X \setminus Z(f_{n_0}) \in \alpha$ and p is a Cauchy filter with respect to the uniformity u_{ω} .

(2) \Rightarrow (1). Let *p* be a Cauchy filter with respect to the uniformity u_{ω} . Suppose that there is a sequence $\{Z_n\}_{n\in\mathbb{N}}$ of *p* such that $\bigcap_{n\in\mathbb{N}}Z_n = \emptyset$. Then the family $\alpha = \{X\setminus Z_n\}_{n\in\mathbb{N}}$ is a countable cozero covering of the space *X*. Hence $\alpha \in u_{\omega}$. Therefore there exist index $n_0 \in \mathbb{N}$ and $Z_0 \in p$ such that $Z_0 \subset X \setminus Z_{n_0} \in \alpha$. Since $Z_0 \cap Z_{n_0} = \emptyset$, we have a contradiction. \Box

The next corollary is well known [9].

Corollary 2.17. X is realcompact if and only if every CC z-ultrafilter converges.

Proof. It follows from Theorem 2.16. \Box

From Theorem 2.10 in the case $\tau = \aleph_0$ we obtain the next

Theorem 2.18. Let α be an open covering of a space X. The following are equivalent:

- (1) α is a uniform covering with respect to u_{ω} ;
- (2) There exists Y_{α} such that $X \subset Y_{\alpha} \subset \bigcup Ex_{\beta X} \alpha \subset \beta X$ and Y_{α} is the perfect preimage of some complete metric space of countable weight.

Proof. It is similar to the proof of Theorem 2.10, assuming $\tau = \aleph_0$.

The next theorem characterizes the completion vX of a space X with respect to the uniformity u_{ω} .

Theorem 2.19. The completion vX of X with respect to the uniformity u_{ω} may be viewed as a subspace of βX containing X, namely, as the intersection of all Lindelöf G_{δ} -subspaces of βX containing X, which are perfect preimages of complete metric spaces of countable weight.

Proof. The Stone-Čech precompact uniformity u_{β} [9, 8.5.8] is contained in u_{ω} , hence the Samuel compactification of *X* with respect to the uniformity u_{ω} is the Stone-Čech compactification of βX . Then for any countable normal covering α we have $X \subset Y_{\alpha} \subset \bigcup Ex_{\beta X} \alpha \subset \beta X$, where Y_{α} is a Lindelöf G_{δ} -subspace of βX as the perfect preimage of some complete metric space of countable weight (Theorem 2.10). Hence, $vX = \bigcap \{Y_{\alpha} : \alpha \in u_{\omega}\}$ as $vX = \bigcap \{\bigcup Ex_{\beta X} \alpha : \alpha \in u_{\omega}\}$ [19]. \Box

Theorem 2.20. Let $vX \subset Y \subset \beta X$. Then the following are equivalent:

(1) vX = Y;

(2) For any point $x \in \beta X \setminus Y$ there exist countable cozero covering α of X and Y_x such that $X \subset Y \subset Y_x \subset \bigcup Ex_{\beta X}\alpha \subset \beta X \setminus \{x\}$ and Y_x is the perfect preimage of some complete metric space of countable weight.

Proof. It is similar to the proof of Theorem 2.14, assuming $\tau = \aleph_0$.

Corollary 2.21. The following are equivalent:

- (1) *X* is realcompact;
- (2) For any $x \in \beta X \setminus X$ there exist a countable cozero covering α and a Lindelöf G_{δ} -subspace Y_x of βX such that $X \subset Y_x \subset \bigcup Ex_{\beta X} \alpha \subset \beta X \setminus X$.

For every space *X* with a uniformity *u* the set Z_u of all zero-sets of uniformly continuous real-valued functions of a uniform space *uX* form s.n.-g.i.r. [21] and the characterizations of the Wallman β -like compactification $\omega(X, Z_u) = \beta_u X$ and realcompactification $v(X, Z_u) = v_u X$ are given in [4–6]. A characterization of the Wallman-Dieudonne completion $\mu_u X$ is given in [6]. Thus, the next problem arises:

Problem 2.22. Let $Z \subset Z(X)$ be an arbitrary s.n.-g.i.r. on a space X and $\mu(X, Z)$ be the set of all co-LFA-ultrafilters on Z. It is clear that $\mu(X, Z) \subset \omega(X, Z)$. Is the following true:

- (1) $\mu(X, Z) \subset v(X, Z)$, where v(X, Z) is the Wallman realcompactification ?
- (2) $\mu(X, Z)$ is Dieudonne complete in the induced topology from the compactification $\omega(X, Z)$?

Acknowledgement

The authors wish to thank the referees for corrections of the original draft of the paper and for many helpful remarks.

References

- [1] A.R. Alo, H.L. Shapiro, Normal Topological Spaces, Cambridge University Press, 1974, 306 p.
- [2] A.V. Arhangelskii, V.I. Ponomarev, Fundamentals of General Topology in Problems and Exercises, Nauka, Moscow, 1974. 424 p. (in Russian).
- [3] A.A. Borubaev, A.A. Chekeev, Uniform Spaces, Bishkek, 2003, 245 p. (in Russian).
- [4] A.A. Chekeev, Uniformities for Wallman compactifications and realcompactifications, Topol. Appl. 201 (2016) 145–156.
 [5] A.A. Chekeev, B.Z. Rakhmankulov, A.I. Chanbaeva, On C^{*}_u- and C_u-embedded uniform spaces, TWMS J. Pure Appl. Math. 9
- [5] A.A. Chekeev, B.Z. Kakimankulov, A.I. Chanbaeva, Of C_u^- and C_u^- embedded uniform spaces, Twins J. 1 the Appl. Math. (2018) 173–189
- [6] A.A. Chekeev, T.J. Kasymova, Ultrafilter-completeness on zero-sets of uniformly continuous functions, Topol. Appl. 252 (2019) 27–41.
- [7] H. Curzer, A.W. Hager, On the topological completion, Proc. Amer. Math. Soc., 56(4),(1976), 365–370.
- [8] A. Di Concilio, Uniform properties and hyperspace topologies for ℵ-uniformities, Topol. Appl. 44 (1992) 115–123.
- [9] R. Engelking, General Topology, Heldermann, Berlin, 1989, 626 p.
- [10] O. Frink, Compactifications and seminormal spaces, Amer. J. Math. 86 (1964) 602-607.
- [11] Z. Frolik, On approximation and uniform approximation of spaces, Proc. Japan. Acad. 37 (1961) 530-532.
- [12] L. Gillman, M. Jerison, Rings of Continuous Functions, Princeton, 1960, 303 p.
- [13] E. Hewitt, Rings of real-valued continuous functions, I, Trans. Amer. Math. Soc. 64 (1948) 45–99.
- [14] J.R. Isbell, Uniform Spaces: Mathematical Survey, Providence, 1964, 175 p.
- [15] A. Garsia-Mainez, Uniform Spaces, II, Encyclopedia of General Topology, Elsevier, North-Holland (2004) 264–265.
- [16] K. Morita, Topological completions and M-spaces, Sci. Rept. Kyoiku Daigaku (A) 10 (1970) 271–288.
- [17] L. Nachbin, On the continuity of positive linear transformations, Proc. Internat. Congress Math., Cambridge, Mass. 1950, vol. I, Providence 1952, 464–465.
- [18] B.A. Pasynkov, Factorization theorems in dimension theory, Uspehi Mat. Nauk 36:3 (1981) 147–176 (in Russian).
- [19] Yu. Smirnov, On completeness of proximity spaces, Trudy Mosk. Math. Soc. 3 (1954) 271–306. (in Russian)
- [20] T. Shirota, A class of topological spaces, Osaka Math. J. 4 (1952) 23-40.
- [21] A.K. Steiner, E.F. Steiner, Nest generated intersection rings in Tychonoff spaces, Trans. Amer. Math. Soc. 148 (1970) 589-601.
- [22] G. Vidossich, A note on cardinal reflections in the category of uniform spaces, Proc. Amer. Math. Soc. 23 (1969) 55–58.