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Abstract. In this paper, we determine the bounds of the generalized relative operator entropy in general. In
particular, we identify the bounds of the parametric extension of the Shannon entropy and of the generalized
Tsallis relative operator entropy. Moreover, we improve the upper bound of the relative operator entropy
in some sense.

1. Introduction and Preliminaries

Let B(H) denote the C∗-algebra of all bounded linear operators on a complex Hilbert space H . An
operator A ∈ B(H) is called positive if 〈Ax, x〉 ≥ 0 for all x ∈ H . If A is a positive invertible operator, we call
it strictly positive operator. For self-adjoint operators A,B ∈ B(H) we say A ≤ B if B − A ≥ 0.

A relative operator entropy of strictly positive operators A and B was introduced in the noncommutative
information theory by Fujii and Kamei [9] by

S(A|B) = A
1
2 ln(A−

1
2 BA−

1
2 )A

1
2 .

Furuta [8] defined the operator Shannon entropy by

Sp(A|B) = A
1
2 (A−

1
2 BA−

1
2 )p ln(A−

1
2 BA−

1
2 )A

1
2 ,

where p ∈ [0, 1] and A, B are strictly positive operators on a Hilbert space H and proved parametric
extensions of the Shannon inequality and its reverse one in Hilbert space operators, see also [14]. Moreover,
the generalized Tsallis relative operator entropy was introduced and then several operator inequalities
were derived by Yanaghi et. al [18]. They generalized the definition of the Tsallis relative operator entropy.
For two strictly positive operator A and B, λ, µ ∈ R, λ , 0, k ∈ Z the generalized Tsallis relative operator
entropy was defined by

T̃µ,k,λ(A,B) :=
A#µ+kλB − A#µ+(k−1)λB

λ
,

where A#αB = A
1
2 (A−

1
2 BA−

1
2 )αA

1
2 is the operator α-geometric mean. In particular, for λ , 0 we have

T̃0,1,λ(A,B) =
A#λB − A#0B

λ
=

A#λB − A
λ

= Tλ(A,B),
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where Tλ(A,B) is the Tsallis relative operator entropy, cf. [10, 19].
Drogomir found in [2, 3] some bounds for the following differences

m ln m
M −m

(MA − B) +
M ln M
M −m

(B −mA) − S1(A|B) (1)

S(A|B) −
ln m

M −m
(MA − B) −

ln M
M −m

(B −mA), (2)

where A,B are two strictly positive operators such that mA ≤ B ≤ MA for some m,M > 0 with m < M. We
generalized Dragomir’s results in [16] and identified the upper and lower bounds for the difference

mq ln m
M −m

(MA − B) +
Mq ln M
M −m

(B −mA) − Sq(A|B), (3)

where A and B are two strictly positive operators such that mA ≤ B ≤ MA for some m,M ∈ [0, e
2q−1

q(1−q) ] with
m < M and 0 < q ≤ 1 and the difference

Tλ(A|B) −
mλ
− 1

λ(M −m)
(MA − B) −

Mλ
− 1

λ(M −m)
(B −mA), (4)

where A and B are two strictly positive operators such that mA ≤ B ≤ MA for some m,M > 0 with m < M
and 0 < λ ≤ 1. In particular, when q→ 1− in (3), we get (1) and when λ→ 0+ in (4), we get (2). Inspired by
this idea, we present the upper and lower bounds for the difference of the general form

S f
q (A|B) −

mq f (m)
M −m

(MA − B) −
Mq f (M)
M −m

(B −mA), (5)

where f : (0,∞)→ R is a twice differentiable function and A and B are two strictly positive operators such
that mA ≤ B ≤ MA for some m,M in the concave domain of the function tq f (t) with m < M and q ∈ R.
We emphasis a geometric framework revealing a close link behind this idea. The concavity of the function
tq f (t) means geometrically that the points of the graph of the restriction of tq f (t) on [m,M] are on the chord
joining the end points (m,mq f (m)) and (M,Mq f (M)), that is,

mq f (m) +
Mq f (M) −mq f (m)

M −m
(t −m) ≤ tq f (t) (6)

for all t ∈ [m,M]. By rewriting the left hand side of (6) we obtain

Mq f (M)
M −m

(t −m) +
mq f (m)
M −m

(M − t) ≤ tq f (t)

for all t ∈ [m,M] and taking the perspective in the sense of Corollary 2.2 we get the difference (5) is positive.
Indeed, the term mq f (m)

M−m (MA−B) +
Mq f (M)

M−m (B−mA) appeared in the difference (5) is the perspective of the line
joining the points (m,mq f (m)) and (M,Mq f (M)).

In this paper, we develop the notion of the relative operator entropy and determine the bounds of
the generalized relative operator entropy in a general form. In particular, we identify the bounds of the
parametric extension of the Shannon entropy, the generalized Tsallis relative operator entropy, and the
Tsallis relative operator entropy. We also derive the bounds of the perspective of a twice differentiable
function and as a consequence of this result we improve the upper bound of the relative operator entropy
in some sense.

2. Relative operator entropies in a general form

The notion of the operator perspective function was introduced in [7] by Effros for two commuting
operators. We considered a fully non-commutative perspective of the one variable function f in [6] by
setting

P f (A,B) = A1/2 f (A−1/2BA−1/2)A1/2
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and the generalized perspective of two variables (associated with f and h) by

P f∆h(A,B) = h(A)1/2 f (h(A)−1/2Bh(A)−1/2)h(A)1/2,

where A is a strictly positive operator and B is a self-adjoint operator on a Hilbert spaceH and the spectra of
the operators A−1/2BA−1/2 and h(A)−1/2Bh(A)−1/2 lie in the domain of the function f . The main results of [7] are
generalized in [6] for the non-commutative perspective and the necessary and sufficient conditions for joint
convexity (resp. concavity) of the perspective and generalized perspective functions are established. For
some recent results on this subject we refer the readers to see [12, 15, 17]. Kubo and Ando [11] discussed the
axiomatic theory for connections and established the existence of an affine order isomorphism between the
class of connections and the class of positive operator monotone functions. This affine order isomorphism
which has a perspective form was only considered for the class of positive operator monotone functions.

Example 2.1. The perspective of the functions tα, ln t, tp ln t, tλ−1
λ , tµ+kλ

−tµ+(k−1)λ

λ is the operator α-geometric mean,
the relative operator entropy, the operator Shannon entropy, the Tsallis relative operator entropy, and the generalized
Tsallis relative operator entropy, respectively.

Lemma 2.2. Let r, s, k be real valued and continuous functions on the closed interval I. If r(t) ≤ s(t) ≤ k(t) for t ∈ I,
then

Pr(A,B) ≤ Ps(A,B) ≤ Pk(A,B),

for every strictly positive operator A and every self-adjoint operator B such that the spectrum of the operator A−
1
2 BA−

1
2

lies in I.

Proof. By using the assumption one can ensure that

r(A−
1
2 BA−

1
2 ) ≤ s(A−

1
2 BA−

1
2 ) ≤ k(A−

1
2 BA−

1
2 )

for the strictly positive operator A and the self-adjoint operator B. By multiplying A
1
2 from both sides we

obtain the desired inequalities.

Definition 2.3. Let f : (0,∞)→ R be a twice differentiable function and q ∈ R. For two strictly positive operators
A and B, we consider the generalized f -relative operator entropy by setting

S f
q (A|B) := A

1
2 (A−

1
2 BA−

1
2 )q f (A−

1
2 BA−

1
2 )A

1
2 .

In particular, when we put q = 0, we reach S f
0(A|B) = P f (A,B) and when we consider f (t) = ln t, we have

S f
q (A|B) = Sq(A|B).

Define Λ(t) := tq f (t) for q ∈ R, where f : (0,∞)→ R is a twice differentiable function and consider

Hq := {t ≥ 0 : Λ′′(t) ≤ 0}.

Lemma 2.4. The function Λ(t) = tq f (t) is concave onHq for q ∈ R.

It is worth mentioning that PΛ(A,B) = S f
q (A|B). In particular, when we take f (t) = ln t, then a simple

calculation indicates that the concavity domain of the function Λ(t) = tq ln t isHq = [e
2q−1

q(1−q) ,∞) for 0 ≤ q < 1.
It should be noted that when q→ 0+ one can obtainH0+ = (0,∞). This fact confirms the concavity domain
of the function ln t is (0,∞). Moreover, if q → 1−, then H1− = ∅. This shows the concavity domain of the
function t ln t is empty.

For the sake of simplified writing throughout this paper, we define

r(u) := min
{ u −m
M −m

,
M − u
M −m

}
=

1
2
−

∣∣∣∣u − M+m
2

M −m

∣∣∣∣,
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R(u) := max
{ u −m
M −m

,
M − u
M −m

}
=

1
2

+
∣∣∣∣u − M+m

2

M −m

∣∣∣∣,
Q f

q (m,M) := (
M + m

2
)q f (

M + m
2

) −
mq f (m) + Mq f (M)

2
,

where 0 < m < M. The concavity of the function Λ(t) = tq f (t) onHq exemplifies that

Q f
q (m,M) ≥ 0 (7)

for m,M ∈ [α, β] ⊆Hq with 0 < m < M.
The following two Lemmas have been proved for a convex function. We state them for a concave

function as follows:

Lemma 2.5. [5, Lemma 1] Let 1 : [a, b] ⊂ R→ R be a concave function. Then,

0 ≤ 1((1 − c)x + cy) − ((1 − c)1(x) + c1(y)) (8)
≤ c(1 − c)(y − x)(1′+(x) − 1′−(y)) (9)

for all x, y ∈ (a, b) with x < y and c ∈ [0, 1].

Lemma 2.6. [4, Theorem 1] If 1 : [a, b] ⊂ R→ R is a concave function, then

2r
[
1(

x + y
2

) −
1(x) + 1(y)

2

]
≤ 1((1 − c)x + cy) − ((1 − c)1(x) + c1(y))

≤ 2R
[
1(

x + y
2

) −
1(x) + 1(y)

2

]
for any x, y ∈ (a, b) and c ∈ [0, 1], where r = min{c, 1 − c} and R = max{c, 1 − c}.

Lemma 2.7. [1, Lemma 2.2] Let 1 : [a, b] ⊂ R → R be a twice differentiable function. If there exist two constants
γ1, γ2 such that γ1 ≤ 1

′′(t) ≤ γ2 foe every t ∈ (a, b), then

1
2

c(1 − c)γ1(y − x)2
≤ (1 − c)1(x) + c1(y) − 1((1 − c)x + cy)

≤
1
2

c(1 − c)γ2(y − x)2, (10)

where c ∈ [0, 1], x, y ∈ (a, b) with x < y.

We now commence the main results of this section.

Theorem 2.8. Let A and B be two strictly positive operators such that mA ≤ B ≤MA for some m,M ∈ [α, β] ⊆Hq
with 0 < m < M. Then,

0 ≤ S f
q (A|B) −

mq f (m)
M −m

(MA − B) −
Mq f (M)
M −m

(B −mA)

≤
mq−1(m f ′(m) + q f (m)) −Mq−1(M f ′(M) + q f (M))

M −m
PΨ(A,B)

≤
1
4

(M −m)
(
mq−1(m f ′(m) + q f (m)) −Mq−1(M f ′(M) + q f (M))

)
A,

where Ψ(t) = (t −m)(M − t).
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Proof. We apply Lemma 2.5 for the function Λ(t) = tq f (t), t ∈Hq. Then,

0 ≤ Λ((1 − c)x + cy) − (1 − c)Λ(x) − cΛ(y)
≤ c(1 − c)(y − x)(Λ′+(x) −Λ′−(y)), (11)

where c ∈ [0, 1] and x, y ∈ [m,M] with x < y. Replacing x = m, y = M, and c = u−m
M−m in (11), we see that

0 ≤ Λ(u) −
mq f (m)
M −m

(M − u) −
Mq f (M)
M −m

(u −m)

≤
mq−1(m f ′(m) + q f (m)) −Mq−1(M f ′(M) + q f (M))

M −m
Ψ(u). (12)

A simple verification shows that the maximum value of the function Ψ(u) is 1
4 (M −m)2. So,

mq−1(m f ′(m) + q f (m)) −Mq−1(M f ′(M) + q f (M))
M −m

Ψ(u)

≤
1
4

(M −m)
(
mq−1(m f ′(m) + q f (m) −Mq−1(M f ′(M) + q f (M))

)
. (13)

Combining inequalities (12), (13) and regarding Lemma 2.2 and taking the perspective, we conclude the
result.

The following corollary gives the bounds of the perspective of a twice differentiable function on its
concavity domain. As a consequence of this corollary we obtain the bounds of relative operator entropy
proved in [3, Theorem 3].

Corollary 2.9. Let A and B be two strictly positive operators such that mA ≤ B ≤MA for some m,M ∈ [α, β] ⊆H0
with 0 < m < M. Then,

0 ≤ P f (A,B) −
f (m)

M −m
(MA − B) −

f (M)
M −m

(B −mA)

≤
f ′(m) − f ′(M)

M −m
PΨ(A,B)

≤
1
4

(M −m)
(

f ′(m) − f ′(M)
)
A,

where Ψ(t) = (t −m)(M − t).

Proof. It follows from Theorem 2.8 by setting q = 0 and noting that S f
0(A,B) = P f (A,B).

The following corollary is a straight forward consequence of Corollary 2.9:

Corollary 2.10. [3, Theorem 3] Let A and B be two strictly positive operators such that mA ≤ B ≤ MA for some
m,M > 0 with m < M. Then,

0 ≤ S(A|B) −
ln m

M −m
(MA − B) −

ln M
M −m

(B −mA)

≤
4

(M −m)2

(
K(

M
m

) − 1
)
(B −mA)A−1(MA − B)

≤

(
K(

M
m

) − 1
)
A,

where K(h) =
(h+1)2

4h , h > 0 is the Kantorovich’s constant.
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Proof. By applying Corollary 2.9 and setting f (t) = ln t one can note thatH0+ = (0,∞) and

(M −m)2

4mM
= K(

M
m

) − 1,

PΨ(A,B) = (B −mA)A−1(MA − B).

Theorem 2.11. Let A and B be two strictly positive operators such that mA ≤ B ≤MA for some m,M ∈ [α, β] ⊆Hq
with 0 < m < M. Then,

2Q f
q (m,M)Pr(A,B) ≤ S f

q (A|B) −
mq f (m)
M −m

(MA − B) −
Mq f (M)
M −m

(B −mA)

≤ 2Q f
q (m,M)PR(A,B).

Proof. Consider the concave function Λ(t) = tq f (t), t ∈Hq in Lemma 2.6 to get

2r
[
(
x + y

2
)q f (

x + y
2

) −
xq f (x) + yq f (y)

2

]
≤ ((1 − c)x + cy)q f ((1 − c)x + cy) − ((1 − c)xq f (x) + cyq f (y))

≤ 2R
[
(
x + y

2
)q f (

x + y
2

) −
xq f (x) + yq f (y)

2

]
(14)

for any x, y ∈ [α, β] and c ∈ [0, 1], where r = min{c, 1− c} and R = max{c, 1− c}. Replacing x = m, y = M, and
c = u−m

M−m with u ∈ [m,M] in (14), we deduce

2Q f
q (m,M)r(u) ≤ Λ(u) −mq f (m)

M − u
M −m

−Mq f (M)
u −m
M −m

≤ 2Qq(m,M)R(u). (15)

Making use of Lemma 2.2 and taking the perspective, we obtain the desired inequalities.

In the following corollary, we obtain the lower and upper bound of the perspective of a twice differen-
tiable function on its concavity domain.

Corollary 2.12. Let A and B be two strictly positive operators such that mA ≤ B ≤MA for some m,M ∈ [α, β] ⊆H0
with 0 < m < M. Then,

2Q f
0(m,M)Pr(A,B) ≤ P f (A,B) −

f (m)
M −m

(MA − B) −
f (M)

M −m
(B −mA)

≤ 2Q f
0(m,M)PR(A,B).

Proof. It follows from Theorem 2.11 by setting q = 0 and noting that S f
0(A,B) = P f (A,B).

Corollary 2.13. Let A and B be two strictly positive operators such that mA ≤ B ≤ MA for some m,M > 0 with
m < M. Then,

2 ln
m + M

2
√

mM
Pr(A,B) ≤ S(A|B) −

ln m
M −m

(MA − B) −
ln M

M −m
(B −mA)

≤ 2 ln
m + M

2
√

mM
PR(A,B).

Proof. It follows from Corollary 2.12 by putting f (t) = ln t and noting that Qln
0 (m,M) = ln m+M

2
√

mM
and

H0+ = (0,∞).
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Since 2 ln m+M
2
√

mM
≤ K( M

m ), combining Corollary 2.13 and [2, Theorem 2], we obtain a new and refined
upper bound for the relative operator entropy. Indeed, the upper bound announced in [2, Theorem 2] for
the relative operator entropy can be sharpen.

Corollary 2.14. Let A and B be two strictly positive operators such that mA ≤ B ≤ MA for some m,M > 0 with
m < M. Then, we have

K(
M
m

)Pr(A,B) ≤ S(A|B) −
ln m

M −m
(MA − B) −

ln M
M −m

(B −mA)

≤ 2 ln
m + M

2
√

mM
PR(A,B).

Theorem 2.15. Let A and B be two strictly positive operators such that mA ≤ B ≤MA for some m,M ∈ [α, β] ⊆Hq
with 0 < m < M. If there exist the constants γ1, γ2 such that γ1 ≤ Λ′′(t) ≤ γ2 for every t ∈ (α, β), then

1
2
γ1PΨ(A,B) ≤

mq f (m)
M −m

(MA − B) +
Mq f (M)
M −m

(B −mA) − S f
q (A|B)

≤
1
2
γ2PΨ(A,B) ≤ 0,

where Ψ(t) = (t −m)(M − t).

Proof. Applying Lemma 2.7 for the function Λ(t) = tq f (t), t ∈Hq, we get

1
2

c(1 − c)γ1(y − x)2
≤ (1 − c)Λ(x) + cΛ(y) −Λ((1 − c)x + cy)

≤
1
2

c(1 − c)γ2(y − x)2, (16)

where c ∈ [0, 1], x, y ∈ [α, β]. Replace x = m, y = M, and c = u−m
M−m , in (16), to get

1
2

(u −m)(M − u)γ1 ≤
M − u
M −m

mq f (m) +
u −m
M −m

Mq f (M) − uq f (u)

≤
1
2

(u −m)(M − u)γ2. (17)

Due to Lemma 2.2, we reach the desired inequalities.

By setting q = 0 in Theorem 2.15, we find the following result:

Corollary 2.16. Let A and B be two strictly positive operators such that mA ≤ B ≤MA for some m,M ∈ [α, β] ⊆H0
with 0 < m < M. If there exist the constants γ1, γ2 such that γ1 ≤ f ′′(t) ≤ γ2 for every t ∈ (α, β), then

1
2
γ1PΨ(A,B) ≤

f (m)
M −m

(MA − B) +
f (M)

M −m
(B −mA) − P f (A,B)

≤
1
2
γ2PΨ(A,B) ≤ 0,

where Ψ(t) = (t −m)(M − t).

As a simple consequence of Corollary 2.16, one can get [3, Theorem 4]. Indeed, if we let f (t) = ln t in
Corollary 2.16, then we deduce the following result.
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Corollary 2.17. [3, Theorem 4] Let A and B be two strictly positive operators such that mA ≤ B ≤ MA for some
m,M > 0 with m < M. Then,

0 ≤
1

2M2 PΨ(A,B)

≤ S(A|B) −
ln m

M −m
(MA − B) −

ln M
M −m

(B −mA)

≤
1

2m2 PΨ(A,B),

where Ψ(t) = (t −m)(M − t).

Our methods able us to identify the bounds of the parametric extension of the Shannon entropy and of
the generalized Tsallis relative operator entropy. To these facts consider f (t) = ln t or f (t) = tλ−1

λ , 0 < λ < 1
in Theorems 2.8, 2.11, 2.15 and conclude the following results.

Corollary 2.18. Let A and B be two strictly positive operators and 0 ≤ q < 1.

(i) If mA ≤ B ≤MA for some m,M ∈ [e
2q−1

q(1−q) ,∞) with m < M, then

0 ≤ Sq(A|B) −
mq ln m
M −m

(MA − B) −
Mq ln M
M −m

(B −mA)

≤
mq−1(1 + q ln m) −Mq−1(1 + q ln M)

M −m
PΨ(A,B)

≤
1
4

(M −m)
(
mq−1(1 + q ln m) −Mq−1(1 + q ln M)

)
A,

(ii) If mA ≤ B ≤MA for some m,M ∈ [e
2q−1

q(1−q) ,∞) with m < M, then

2Qln
q (m,M)Pr(A,B) ≤ Sq(A|B) −

mq ln m
M −m

(MA − B) −
Mq ln M
M −m

(B −mA)

≤ 2Qln
q (m,M)PR(A,B),

(iii) If mA ≤ B ≤MA for some m,M ∈ [e
2q−1

q(1−q) ,∞) with m < M, then

mq−2

2
(2q − 1 + q(q − 1) ln M)PΨ(A,B)

≤
mq f (m)
M −m

(MA − B) +
Mq f (M)
M −m

(B −mA) − Sq(A|B)

≤
Mq−2

2
(2q − 1 + q(q − 1) ln m)PΨ(A,B) ≤ 0.

Interested readers can check it whenever A and B are two strictly positive operators such that mA ≤ B ≤

MA for some m,M ∈ [0, e
2q−1

q(1−q) ] with m < M and q > 1 or q < 0 the inequalities in parts (i)-(iii) of Corollary
2.18 are fulfilled.

We may determine the bounds of the generalized Tsallis relative operator entropy as follows:

Corollary 2.19. Let A and B be two strictly positive operators such that mA ≤ B ≤ MA for some m,M ∈

[ λ

√
(µ+(k−1)λ)(µ+(k−1)λ−1)

(µ+kλ)(µ+kλ−1) ,∞) with m < M.
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(i) If 0 < λ < 1, k ∈ Z, 0 < µ + kλ < 1, then

0 ≤ T̃µ,k,λ(A,B) −
β(m)

λ(M −m)
(MA − B) −

β(M)
λ(M −m)

(B −mA)

≤
α(m) − α(M)
λ(M −m)

PΨ(A,B)

≤
M −m

4λ

(
α(m) − α(M)

)
A,

(ii) If 0 < λ < 1, k ∈ Z, 0 < µ + kλ < 1, then

0 ≤ 2Q
tλ−1
λ

µ+(k−1)λ(m,M)Pr(A,B)

≤ T̃µ,k,λ(A,B) −
β(m)

λ(M −m)
(MA − B) −

β(M)
λ(M −m)

(B −mA)

≤ 2Q
tλ−1
λ

µ+(k−1)λ(m,M)PR(A,B),

(iii) If 0 < λ < 1, k ∈ Z, and 0 < µ + kλ < 1, then

1
2

(µ + kλ)(µ + kλ − 1)MλPΨ(A,B)

≤
β(m)

λ(M −m)
(MA − B) +

β(M)
λ(M −m)

(B −mA) − T̃µ,k,λ(A,B)

≤
1
2

(µ + kλ)(µ + kλ − 1)mλPΨ(A,B) ≤ 0,

where α(t) = tµ+(k−1)λ−1((µ + kλ)tλ − µ − (k − 1)λ), β(t) = tµ+kλ
− tµ+(k−1)λ, and Ψ(t) = (t −m)(M − t).

Proof. Consider f (t) = tλ−1
λ and q = µ + (k − 1)λ in Theorems 2.8, 2.11, 2.15 respectively and deduce the

desired results.

In particular, when we put µ = 0, k = 1 in Corollary 2.19, we achieve the bounds of the Tsallis relative
operator entropy.

Corollary 2.20. Let A and B be two strictly positive operators such that mA ≤ B ≤ MA for some m,M with
0 < m < M.

(i) [16, Theorem 6] If 0 < λ < 1, then

0 ≤ Tλ(A,B) −
mλ
− 1

λ(M −m)
(MA − B) −

Mλ
− 1

λ(M −m)
(B −mA)

≤
mλ−1

−Mλ−1

M −m
PΨ(A,B) ≤

M −m
4

(mλ−1
−Mλ−1)A,

(ii) [16, Theorem 7] If 0 < λ < 1, then

0 ≤ 2Q
tλ−1
λ

0 (m,M)Pr(A,B)

≤ Tλ(A,B) −
mλ
− 1

λ(M −m)
(MA − B) −

Mλ
− 1

λ(M −m)
(B −mA)

≤ 2Q
tλ−1
λ

0 (m,M)PR(A,B),
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(iii) If 0 < λ < 1, then

1
2
λ(λ − 1)MλPΨ(A,B)

≤
mλ
− 1

λ(M −m)
(MA − B) +

Mλ
− 1

λ(M −m)
(B −mA) − Tλ(A,B)

≤
1
2
λ(λ − 1)mλPΨ(A,B) ≤ 0,

where Ψ(t) = (t −m)(M − t).
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