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Abstract. In this paper we studied stochastic optimal control problem based on partially observable sys-
tems (SOCPP) with a control factor on the diffusion term. A SOCPP has state and observation processes.
This kind of problem has also a minimum payoff function. The payoff function should be minimized
according to the partially observable systems consist of the state and observation processes. In this regard,
the filtering method is used to evaluat this kind of problem and express full consideration of it. Finally, pre-
sented estimation methods are used to simulate the solution of a partially observable system corresponding
to the control factor of this problem. These methods are numerically used to solve linear and nonlinear
cases.

1. Introduction

Optimal control was considered in the late 1950s. This science is used in many fields. For example,
physics, engineering, finance, chemistry and others [8, 14]. It plays an efficient role in these sciences and
has had a lot of developments over the time.

One of the important and efficient branch of this science is stochastic optimal control. This branch
is interesting, because everything has a random scheme. Stochastic optimal control (SOC) is studied in
various cases [4]. The HJB method is more popular than the others in solving this kind of problem [8].
Many studies have been done about this subject. For example, in [11] Kafash et al used this equation to
evaluate this kind of problem. One of the important and useful case of SOC problem is SOC with jumping
diffusion. It has been interested in identifying capital markets [17]. For example, in the classical Markovian
case with SOC problem of jumping diffusions, the equation is reduced to the classical HJB equation [18]. In
[19], numerical method is presented to estimate the HJB equation.

An optimal control problem (OCP) is solved by various methods. One of the most popular form of
these methods is the use of HJB equation [9]. Many authors have studied this equation. For example, in
[12] this equation is estimated by Chebyshev polynomials and in [13], Variational iteration method is used
to estimate the HJB equation. There are also many other investigations in this case.

One of the most important and popular branch of stochastic optimal control is the SOCPP. Many studies
have been done in this field. For example, in [26] the maximum principle for a SOCPP is used to obtain
the control factor. In [23], by finding the relation between the adjoint process and maximum principle,
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the control factor is obtained. Some studies are interested in the field of finance. For example, in [20]
by partially observing of stock market and using SOCPP principles, a model for portfolio optimization is
found.

In this paper we study linear and nonlinear cases of a SOCPP with a control factor on the diffusion part.
In fact, it is the second edition of [7] which focuses on SOCPP with a control factor on the diffusion part. We
extend the studies of [3, 25] to the control diffusion SOCPP and numerical estimation methods. At first, we
introduce the general form of this kind of problem. A SOCP problem has a minimum payoff function and
two SDEs named the state and observation processes. The control factor of this kind of problem should
be found. So, present the full description of finding optimal control. In this way, select a general form of
control factor as a feedback control. The existence and uniqueness of these feedback controls are evaluated
in this paper. Numerical methods are presented in a linear filtering mode to evaluate the corresponding
partially observable system. Finally, introduce numerical methods to estimat this kind of problem.

Optimal control problems based on partially observable information are always hard to study. One
difficulty of this problem is that the classical separation principle does not hold true generally. In 2008, a
backward separation method was proposed by Wang and used to overcome the difficulty [24]. For more
details, Wang, Wu and Xiong have studied this issue. They worked on forward and backward stochastic
differential equations and used a filtering method to find the optimal control [25]. In this study, the forward
and backward stochastic differential equations are very similar to the system in our work and the forms
of optimal control are the same. It is remarkable that, the backward separation method used in [25] is
available for the control problem studied in this paper.

The novel contribution of this paper modifies the Bensoussan’s study [3, 25] on the SOCPP with a
control factor on the diffusion term and solves nonlinear problems by presenting a method. Furthermore,
simulations show the efficiency of this presented method.

2. Preliminaries

In this section all the necessary concepts about a SOCPP with a control factor on the diffusion term are
introduced [1–3]. At first, consider (Ω,A,P) as a probability space in which all the events occur. Define the
state and observation processes as follows,

dx =
(
F(t)x + G(t)ν(t) + f (t)

)
dt +

∑d
i=1

(
Bi(t)x + Di(t)ν(t) + 1i(t)

)
dwi(t) + σ0dw(t),

x(0) = ζ,

dy =
[
H(t)x + h(t)

]
dt + σ1db(t),

y(0) = 0.

(1)

In 1, x is the ’state process’, the ’observation process’ is denoted by y and the initial value ζ is a vector of
random variable with Gaussian probability law ,mean x0 and noise covariance matrix P0. The processes
w(·) and b(·) are wiener processes with the noise covariance matrices Q(·) and R(·) respectively. The wiener
processes w1, . . . ,wd are scalar and standard. The noise covariance R(·) is a uniformly positive definite
matrix. It should be mentioned that, the variable ζ and the processes wi(·), w(·) and b(·) are mutually
independent for all i = 1, . . . , d. All vector functions F,G, f ,Bi,Di, 1i,H and h are bounded [3]. The vector
functions F, x,G, ν, f ,Bi,Di, 1i, y,H, h,wi(·),w(·), b(·), σ0 and σ1 are n×n,n× 1,n×n,n× 1,n× 1,n×n,n×n,n×
1, k × 1, k × n, k × 1, 1 × 1,m × 1, k × 1,n ×m and k × k dimensional respectively.

The corresponding noise covariance matrices Q(·) and R(·) are defined by Q = (σ0 × σ∗0)n×n and R =
(σ1 × σ∗1)k×k respectively [8, 16].

Now introduce the partially observable stochastic optimal control problem with a control factor on the
diffusion term of the state process as follows:

Suppose that, ν(·) ∈ L2(0,T;Rn), x(·) ∈ L2(0,T;Rn) and z(·) ∈ L2(0,T;Rk). This kind of problem has the
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state and observation processes 1 and a payoff function in the following form:

J(ν(·)) = E
{ ∫ T

0
(x∗Mx + ν∗Nν + 2mx + 2nν)dt + x∗(T)MTx(T) + 2mTx(T)

}
. (2)

where M(·) is symmetric non negative, N(·) is symmetric uniformly positive definite and all the time
functions M,N,m, and n are bounded.

2.1. Framework

To have necessary definitions for admissibility of control factor, define the ’without control’ and the
’difference processes’ from 1. These processes are the separation of 1 that help us to find control factors.
Consider the state and observation processes from the relation 1 and define the new processes which called
’without control processes’ as follows:

dα =
(
F(t)α + f (t)

)
dt +

∑d
i=1

(
Bi(t)α + 1i(t)

)
dwi(t) + σ0(t)dw(t),

α(0) = ζ,

dβ =
[
H(t)α + h(t)

]
dt + σ1(t)db(t),

β(0) = 0.

(3)

The processes α(·) and β(·) are according to the state and observation processes respectively [3, 6, 8].
Assume that ν(t) ∈ L2(0,T × Ω, dt ⊗ dP;Rk) is a square integrable process. Then define the ’difference

processes’ x1 and y1 as follows:
dx1 = d(x − α) = (Fx1 + Gν)dt +

∑d
i=1

(
Bi(t)x1 + Di(t)ν(t)

)
dwi(t),

x1(0) = 0,
dy1 = d(y − β) = Hx1dt,
y1(0) = 0.

(4)

The above relations are solvable for each sample path [25].

The state and observation processes x and y in separative mode which defined for any control ν are
satisfied in the following new relations:

x(t) = α(t) + x1(t). (5)

y(t) = β(t) + y1(t). (6)

First, consider the family of σ - algebras Zt
ν, consists of all the information (until time t ) from the

observation process y(·).

Zt
ν = σ(y(s), s ≤ t). (7)

The optimal control is selected in the space of admissible controls. The definitions of admissibility are as
follows:

Definition 2.1. (natural definition) Control ν(·) is admissible if and only if ν(t) is adapted to Zt
ν.

After that, the family of σ - algebras Ft, consists of all the information (until time t ) from without control
observation process β(·) is introduced.

Ft = σ(β(s), s ≤ t). (8)
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Corollary 2.2. If control ν(·) is admissible then Ft
⊂ Zt

ν.

Proof. (Please see the definition of adaptability and measurement in [8].)

First we define the σ - algebras Y t
ν = σ(y1(s), s ≤ t). We can conclude the relation Ft

⊂ (Zt
ν ∨ Y t

ν ) from the
relation 6 . If the definition 2.1 is established and according to the definition of adaptability, the control ν(·)
is Zt

ν - measurable and the relation Y t
ν ⊂ Zt

ν is satisfied. Therefore, Ft
⊂ Zt

ν.

Definition 2.3. (more restrictive definition) Control ν(·) is admissible if and only if ν(t) is adapted to Ft and to Zt
ν.

Corollary 2.4. If ν(·) is admissible, then Ft = Zt
ν.

It is one of the important conclusion of expression 6. This conclusion makes it easy to obtain the Kalman filter x̂
as follows:

x̂(t) = E[x(t)|Zt
ν] = E[x(t)|Ft]. (9)

Proof. (Please see the definition of adaptability and measurement in [8].)

According to the definition of adaptability, If the definition 2.3 is established then ν(t) is Zt
ν - measurable.

So, we can conclude the following statment:
∀ C ∈ Zt

ν, ∃ A ∈ B(Rm) s.t ν−1(A) = C.
Now based on this definition, the control ν(t) is also Ft - measurable. Hence, C = ν−1(A) is also in Ft.
Therefore, Zt

ν ⊂ Ft. According to the corollary 2.2 and Zt
ν ⊂ Ft, it can be concluded that Ft = Zt

ν. So, the
relation 9 is established.

Define the ’innovation process’ I(·) as follows to make a control on the filtering processes [3].

I(t) = β(t) −
∫ T

0
(Hα̂ + h)ds = y(t) −

∫ T

0
(Hx̂ + h)ds. (10)

The equality 10 is according to the second relation of 3 and 1 as follows:

β(t) − β(0)︸︷︷︸
0

=

∫ t

0
[H(t)α + h(t)]dt +

∫ t

0
σ1db

9
−→ I(t) =

∫ t

0
σ1db = β(t) −

∫ t

0
[H(t)α̂ + h(t)]dt.

Z(t) − Z(0)︸︷︷︸
0

=

∫ t

0
[H(t)x + h(t)]dt +

∫ t

0
σ1db

9
−→ I(t) =

∫ t

0
σ1db = Z(t) −

∫ t

0
[H(t)x̂ + h(t)]dt.

The ’innovation process’ I(t) is a Ft wiener process with covariance matrix R(·). The control factor is
defined by two parameters Λ and λ in the linear feedback form as follows:

ν(t) = Λ(t)x + λ(t). (11)
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Now impose 11 on the state process of system 1.

dx =
([

F(t) + G(t)Λ(t)
]
x + G(t)λ(t) + f (t)

)
dt +

∑d
i=1

([
Bi(t) + Di(t)Λ(t)

]
x + Di(t)λ(t) + 1i(t)

)
dwi(t) + σ0dw(t).

(12)

The following theorem is about the admissibility of control in the sense of definition 2.3. It is one of
the innovative cases of this article. The differential equation of this theorem can be obtained by using the
methods of [9].

Theorem 2.5. (Admissible control) If ν(·) is admissible in the sense of definition 2.3, then the Kalman filter x̂(t) is
the solution of the following differential equation,{

dx̂ =
(
F(t)x̂ + G(t)ν(t) + f (t)

)
dt +

∑d
i=1

(
Bi(t)x̂ + Di(t)ν(t) + 1i(t)

)
dwi(t) + PH∗R−1

(
dz − (Hx̂ + h)dt

)
,

x̂(0) = x0,
(13)

where P is the solution of bellow ordinary differential equation.
dP
dt + F∗P + PF +

∑d
i=1 B∗i PBi + Q −

(
PG +

∑d
i=1 B∗i PDi

)(
R +

∑d
i=1 D∗i PDi

)−1(
G∗P +

∑d
i=1 D∗i PBi

)
= 0,

P(0) = E
[(

x0 − E(x0)
)(

(x0 − E(x0)
)∗]
.

(14)

Proof. From 5 we have the following relation:

x̂(t) = x1(t) + E[α(t)|Ft] = x1(t) + α̂(t). (15)

The process α̂ is the Kalman filter of process α in the system 3. This Kalman filter is defined as follows [21],{
dα̂ =

(
F(t)α̂ + G(t)ν(t) + f (t)

)
dt +

∑d
i=1

(
Bi(t)α̂ + Di(t)ν(t) + 1i(t)

)
dwi(t) + PH∗R−1

(
dz − (Hα̂ + h)dt

)
,

α̂(0) = x0,
(16)

where P is the solution of 12. By using the relation 15 deduce the following differential equation:

dx̂ =
(
F(t)x̂ + G(t)ν(t) + f (t)

)
dt +

∑d
i=1

(
Bi(t)x̂ + Di(t)ν(t) + 1i(t)

)
dwi(t) + PH∗R−1

(
dz − (Hα̂ + h)dt

)
. (17)

But from relations 5 and 6, find the following equalities:

dβ − (Hα̂ + h)dt = dz −Hx1dt − (Hα̂ + h)dt = dz − (Hx̂ + h)dt. (18)

Hence, the relation 13 is obtained by substituting 18 in 17.

The above theorem is according to the ideas of corresponding theorem in [3].
After finding the admissible controls we should choose the optimal one among them. The following theo-
rem is about the optimality of the control on a SOCPP.

Theorem 2.6. (Optimality of control on a SOCPP with a control factor on the diffusion term) For a SOCPP with a
payoff 2 and processes 1, there is an optimal and unique feedback control in the form of 11 with the following control
parameters:

Λ = −

(
N +

d∑
i=1

D∗i ΠDi

)−1(
G∗Π +

d∑
i=1

D∗i ΠBi

)
, (19)
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λ = −

(
N +

d∑
i=1

D∗i ΠDi

)−1(
n∗ + G∗r +

d∑
i=1

D∗i Π1i

)
, (20)

This feedback control is among the set of admissible controls in the sense of definition 2.3. Variables Π and r are the
solutions of the following differential equations respectively.

dΠ
dt + F∗Π + ΠF +

∑d
i=1 B∗i ΠBi + M −

(
ΠG +

∑d
i=1 B∗i ΠDi

)(
N +

∑d
i=1 D∗i ΠDi

)−1(
G∗Π +

∑d
i=1 D∗i ΠBi

)
= 0.

Π(T) = MT.

(21)



dr
dt +

[
F∗ −

(
ΠG +

∑d
i=1 B∗i ΠDi

)(
N +

∑d
i=1 D∗i ΠDi

)−1

G∗
]
r + m∗ + Π f +

∑d
i−1 B∗i Π1i

−

(
ΠG +

∑d
i=1 B∗i ΠDi

)(
N +

∑d
i=1 D∗i ΠDi

)−1(
n∗ +

∑d
i=1 D∗i Π1i

)
= 0.

r(T) = m∗T.

(22)

Proof. Let 11 be the control factor. Now assume that the control parameters Λ and λ are unspecified in this
form. Denote the control factor 11 by u(·) instead of ν(·). The corresponding state and observation processes
are denoted by k(·) and ξ(·) respectively.

dk =
(
F(t)k + G(t)ν(t) + f (t)

)
dt +

∑d
i=1

(
Bi(t)k + Di(t)ν(t) + 1i(t)

)
dwi(t) + σ0dw(t),

k(0) = ζ,

dξ =
[
H(t)ξ + h(t)

]
dt + σ1db(t),

ξ(0) = 0.

(23)

The Kalman filter of the state process corresponding to the observation process ξ(·) and control factor
u(t) = Λ(t)k̂ + λ(t) is as follows [15].

dk̂ =
([

F(t) + G(t)Λ(t)
]
k̂ + G(t)λ(t) + f (t)

)
dt +

∑d
i=1

([
Bi(t) + Di(t)Λ(t)

]
k̂ + Di(t)λ(t) + 1i(t)

)
dwi(t)

+ PH∗R−1
(
dξ − (Hk̂ + h)dt

)
,

k̂(0) = x0.

(24)

To prove the optimality of this case, make ’change of control function’ ν(·). Suppose that process µ(·) is
adapted to Ft. Now if the process η(·) is adapted to Ft and has the bellow differential equation then make
sure that the ’change of control function’ ν(·) is also adapted to Ft.

dη =
([

F(t) + G(t)Λ(t)
]
η + G(t)λ(t) + f (t)

)
dt +

∑d
i=1

([
Bi(t) + Di(t)Λ(t)

]
η + Di(t)λ(t) + 1i(t)

)
dwi(t)

+ PH∗R−1
(
dξ − (Hη + h)dt

)
,

η(0) = x0.

(25)

where the ’innovation process’ is as follows,

dI = dy − (Hη + h)dt, (26)

and the change of control function is,

ν(t) = Λ(t)η(t) + λ(t) + µ(t). (27)

In fact the state and observation processes are corresponding to the control factor ν(t) and η(t) is the Kalman
filter of process x as expressed in the expression 9 [2, 25]. Furthermore η(t) is adapted to Ft. Impose the
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additional condition that process µ(t) is adapted to Zt
ν, then it can be understood from the ’innovation

process’ 20 and equation 19 that η(t) is also adapted to Zt
ν. So the process η(t) is adapted to the both families

of σ - algebras Ft and Zt
ν [3]. Therefore, ν(·) is admissible in the sense of definition 2.3.

Consider the state (x) and observation (y) processes which are in the system 1. The Kalman filter of
the state process x is defined according to the control ν(·) as follows [1, 16]:

dx̂ =
([

F(t) + G(t)Λ(t)
]
x̂ + G(t)λ(t) + G(t)µ + f (t)

)
dt

+
∑d

i=1

([
Bi(t) + Di(t)Λ(t)

]
x̂ + Di(t)λ(t) + Di(t)µ + 1i(t)

)
dwi(t)

+ PH∗R−1
(
dξ − (Hx̂ + h)dt

)
,

x̂(0) = x0.

(28)

By comparing two Kalman filters 28 and 24, find the following useful comments,

dy − (Hk̂ + h)dt = dξ − (Hŷ + h)dt = dβ − (Hα̂ + h)dt· (29)

Now define the process x̃(t) by subtracting these two Kalman filters.

dx̃ =
([

F(t) + G(t)Λ(t) + G(t)µ
]
x̃
)
dt +

∑d
i=1

([
Bi(t) + Di(t)Λ(t) + Di(t)µ

]
x̃
)
dwi(t), x̃(0) = 0. (30)

Where,

x̃(t) = x̂(t) − k̂(t). (31)

Now, by using Kalman filter rule 14 for the separation processes 5 and 6, find the following two new
relations for x̂ and k̂ [10, 16].{

x̂(t) = α̂(t) + x1(t),
k̂(t) = α̂(t) + k1(t).

(32)

Now, due to the expressions 5 and 6 and the above relations find the following equations,

 d(x1 − k1) =
([

F(t) + G(t)Λ(t) + G(t)µ
](

x1 − k1

))
dt +

∑d
i=1

([
Bi(t) + Di(t)Λ(t) + Di(t)µ

](
x1 − k1

))
dwi(t),

x1(0) − k1(0) = 0.
(33)

From the above equation conclude that,

x̂(t) − k̂(t) = x1(t) − k1(t) = x(t) − k(t) = x̃(t). (34)

To compute the value of cost functions, substitute x̂(t) = x̃(t) + ŷ(t) as a result of expression 25 in the cost
functional J(ν(·)) and simplify it as follows:

J(ν(·)) = K(µ(·)) = E
{ ∫ T

0

[(
y(t) + x̃(t)

)∗
M

(
y(t) + x̃(t)

)
+

(
Λŷ + λ + Λx̂ + µ

)∗
N

(
Λŷ + λ + Λx̂ + µ

)
+ 2m

(
y + x̃

)
+ 2n

(
Λŷ + λ + Λx̂ + µ

)]
dt +

(
y(T) + x̃(T)

)∗
MT

(
y(T) + x̃(T)

)
+ 2mT

(
y(T) + x̃(T)

)}
By simplifying the above relation the corresponding payoff function is:

J(ν(·)) = J(u(·)) + E
{ ∫ T

0

[
x̃∗Mx̃ + (Λx̃ + µ)∗N(Λx̃ + µ)

]
dt + x̃(T)∗MTx̃(T)

}
+ 2X,

where,
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X = E
{ ∫ [

x̃∗(t)My(t) + (Λx̃ + µ)∗N(Λŷ + λ) + mx̃ + n(Λx̃ + µ)
]
dt + x̃∗(T)MT y(T) + mTx̃(T)

}
.

From equality 34 and the above relations find the following relation [3]:

Ex̃∗(t)Mk(t) = E{x̃∗(t)ME[k(t)|FT]} = Ex̃∗(t)Mk̂(t). (35)

Define,

p(t) = Π(t)k(t) + r(t), (36)

and use it for expression X,

X =

∫ T

0

(
x̃∗My + (Λx̃ + µ)∗N(Λy + λ) + mx̃ + n(Λx̃ + µ)

)
dt + x̃∗(T)p(T). (37)

Then the differential form of x̃(t)p(t) is produced as follows:

d
dt x̃
∗p =

[
x̃∗(F∗ + Λ∗G∗)p + µ∗G∗px̃∗

+
[

dΠ
dt k + Π(F + GΛ)k + Π( f + Gλ) + dr

dt

]]
dt

+
∑d

i=1

[
x̃∗(B∗i + Λ∗D∗i )p + µ∗D∗i p + x̃∗Π

[
(Bi + DiΛ)k + Diλ + 1i

]]
dwi

+
∑d

i=1

[
x̃∗(B∗i + Λ∗D∗i ) + µ∗D∗i

]
Π

[
(Bi + DiΛ)k + Diλ + 1i

]
+ x̃∗Πdw.

(38)

By substituting the above relation in 37 find the below expression:

X = E
∫ T

0

{
x̃∗Mk + (Λx̃ + µ)∗N(Λk + λ) + mx̃ + n(Λx̃ + µ)

+ x̃∗(F∗ + Λ∗G∗)(Πk + r) + µ∗G∗(Πk + r) + x̃∗
(

dΠ
dt k + dr

dt

)
+ x̃∗Π(F + GΛ)k + x̃∗Π( f + Gλ)
+

∑d
i=1

[
x̃∗(B∗i + Λ∗D∗i ) + µ∗D∗i

]
Π

[
(Bi + DiΛ)k + Diλ + 1i

]}
dt.

(39)

Set the coefficients of x̃∗ and µ∗, zero. This yields the bellow relations [3]:

{
Mk + Λ∗N(Λk + λ) + m∗ + Λ∗n∗ + (F∗ + Λ∗G∗)(Πk + r) + dΠ

dt k + dr
dt + Π(F + GΛ)k + ( f + Gλ)

+
∑d

i=1 (B∗i + Λ∗D∗i )Π
[
(Bi + DiΛ)k + Diλ + 1i

]
= 0,

(40)

N(Λk + λ) + n∗ + G∗(Πk + r) +

d∑
i=1

D∗i Π
[
(Bi + DiΛ)k + Diλ + 1i

]
= 0. (41)

By matching the coefficients of y and constant terms of equalities 40 and 41, get the following relations:

M + Λ∗NΛ + (F∗ + Λ∗G∗)Π + dΠ
dt + Π(F + GΛ) +

∑d
i=1 (B∗i + Λ∗D∗i )Π(Bi + DiΛ) = 0, (42)

Λ∗Nλ + m∗ + (F∗ + Gλ)r +
dr
dt

+ Π( f + Gλ) +

d∑
i=1

(B∗i + Λ∗D∗i )Π(Diλ + 1i) = 0, (43)
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NΛ + G∗Π +

d∑
i=1

D∗i Π(Bi + DiΛ) = 0, (44)

Nλ + n∗ + G∗r +

d∑
i=1

D∗i Π(Diλ + 1i) = 0. (45)

The following results are achieved by solving the equations 37 and 38 respect to the parameters Λ and λ,

Λ = −
(
N +

d∑
i=1

D∗i ΠDi

)−1(
G∗Π +

d∑
i=1

D∗i ΠBi

)
, (46)

λ = −
(
N +

d∑
i=1

D∗i ΠDi

)−1(
n∗ + G∗r +

d∑
i=1

D∗i Π1i

)
. (47)

By substituting the above relations in 42 and 43 the formulas 21 and 22 are obtained. Now by solving the
equations 21 and 22, find the parameters of relations 40 and 41 for optimal feedback control 9. Therefore,
conclude that X = 0. It is clear that the optimal process µ(·) is zero for minimizing the cost functional J(ν(·)).
Therefore, it is possible to know that the change of control function is equal to the feedback control. It
means that, the control feedback is optimal and unique.

After finding the optimal feedback control, it should be substituted in the state process. Now there are two
dynamic systems so that the second is according to the first. In the next section we introduce a method to
simulate this partially observation process.

2.2. Partially observation systems
At first, consider the dynamic systems 1 and convert it into the discrete time mode as follows [5]:


xk+1 = Fkxk + fk +

∑d
i=1 (Bi,kxk + 1i,k)wi,k + σ0,kwk, k = 0, · · · ,N − 1,

x0 = ζ,
yk = Hkxk + hk + σ1,kbk, k = 0, · · · ,N − 1.

(48)

The details of this system, has already expressed in the description of system 1. Let us consider the
sequence of σ − al1ebras,

yk = σ(y0, . . . , yk−1), k = 1, . . . ,N. (49)

The best solution of the partially observable system 48 is to compute the following relation [8]:

x̂N = E[xN |yN].

In fact the solution of the discrete system 48 is according to the observation process until time N. In this
way, use the linear filters. A best linear filter is defined as follows [3]:

Fs = x̄N +

N−1∑
k=0

Sk(yk − ȳk), (50)
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where {S0, . . . ,SN−1} is a set of matrices which characterized by S in the text. The processes x̄N and ȳk
represent the means of xN and yk respectively. The sequences x̄k and ȳk are defined as follows:

{
x̄k+1 = Fkx̄k + fk, k = 0, . . . ,N − 1,
ȳk = Hkx̄k + hk, k = 0, . . . ,N − 1.

(51)

The best linear filter is obtained by choosing S in order to minimize the bellow functional:

L(S) = E(xN − Fs)∗(xN − Fs). (52)

Let Λkl be the correlation matrix of the process xk , which it is in L(Rn;Rn).

Λkl = E(xk − x̄k)(xl − x̄l)∗. (53)

It should be expressed that, Λ∗kl = Λlk and if M ∈ L(Rn;Rn), the following relation is held:

E(xk − x̄k)∗M(xl − x̄l) = trΛlkM. (54)

Then by using the expression 52, 53 and 54 deduce that,

L(S) = E
(
(xN − x̄N)(xN − x̄N)∗ +

(∑N−1
k=0 Sk(yk − ȳk)

)2

− 2
(∑N−1

k=0 Sk(yk − ȳk)
)
(xN − x̄N)∗

)
,

where,

E
(∑N−1

k=0 Sk(yk − ȳk)
)2

= E
(∑N−1

k,l=0 Sl(yl − ȳl)S∗k(yk − ȳk)∗
)

=
∑N−1

k,l=0 trΛlkH∗kS∗kSlHl +
∑N−1

k=0 trRkS∗kSk,

and,

E
((∑N−1

k=0 Sk(yk − ȳk)
)
(xN − x̄N)∗

)
=

∑N−1
k=0 E

(
Sk(yk − ȳk)(xN − x̄N)∗

)
=

∑N−1
k=0 trΛkNSkHk.

Therefore,

L(S) = trΛNN +

N−1∑
k=0

trRkS∗kSk +

N−1∑
k,l=0

trΛlkH∗kS∗kSlHl − 2
N−1∑
k=0

trΛkNSkHk. (55)

But this method is usable when S is obtained uniquely.

Theorem 2.7. There exists a unique S to minimize the functional L(S).

Proof. See in [3].

Now the unique linear filter 50 is existed, but the set S should be found as follows:

d
dSi

L(S0,S1, . . . ,SN−1) = 0, ∀i = 0, 1, . . . ,N − 1. (56)

The above expression is a convenient rule in multiple cases to obtain the minimum or maximum of a
function [22]. It is clear that, L(S) is quadratic and positive, so make sure that by using the relation 56 the
minimum of L(S) is obtained.
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3. Estimation methods

Three methods have been studied in this section to evaluate the problem of the stochastic optimal control
with a control factor on the diffusion term. Consider the following optimization problem:

minν∈U
{

J(ν(·)) = E
[ ∫ T

0 (x∗Mx + ν∗Nν + 2mx + 2nν)dt + x∗(T)MTx(T) + 2mTx(T)
]}
.

dx =
(
F(t)x + G(t)ν(t) + f (t)

)
dt +

∑d
i=1

(
Bi(t)x + Di(t)ν(t) + 1i(t)

)
dwi(t) + σ0dw(t),

x(0) = ζ,

dy =
[
H(t)x + h(t)

]
dt + σ1db(t),

y(0) = 0.

Where, U is the space of admissible controls. The feedback control is obtained by solving differential
equation 21 and 22 and substituting them in the control parameters 19 and 20. Now the feedback control
can be achieved. Substitute the feedback control in the state process and obtain the following dynamic
system:



dx =
[
F(t)x + G(t)[−N−1G∗Πx −N−1n∗ −N−1G∗r] + f (t)

]
+ σ0dw(t)

+
∑d

i=1

[
Bi(t)x + Di(t)[−N−1G∗Πx −N−1n∗ −N−1G∗r] + 1i(t)

]
dwi(t),

x(0) = ζ,

dy =
[
H(t)x + h(t)

]
dt + σ1db(t),

y(0) = 0.

(57)

To estimate this kind of problems, we should use only one step methods. Due to this issue, we have just a
terminal or initial values of the processes.

3.1. Linear filtering method
This method is to make the discrete system 57 and substitute the solution of 21 and 22 point wise in it.

This system is reforming as follows:


xk+1 = Fkxk + Gk[−N−1

k G∗kΠ(tk)xk −N−1
k n∗k −N−1

k G∗kr(tk)] + fk + σ0,kwk

+
∑d

i=1

[
Bi,kxk + Di,k[−N−1

k G∗kΠ(tk)xk −N−1
k n∗k −N−1

k G∗kr(tk)] + 1i,k

]
wi,k,

x0 = ζ,
yk = Hkxk + hk + σ1,k,

(58)

Now, by using the relation 50 and section 2.2 simulat the above system.
In the following subsections we use the simplest numerical methods to evaluate problems, because

estimating the stochastic problems are just by the reason of future prediction. It should be mentioned that,
using a more accurate method just increases the computational processes.

3.2. Adams-Moulton method
This method is used when the solutions of 21 and 22 do not exist or the state process is non-linear. The

Adams method for y′ = f (x, y) is yn+1 − yn = h
2 ( fn+1 + fn). Now, construct 21 and 22 as follows:


dΠ
dt = −F∗Π −ΠF −

∑d
i=1 B∗i ΠBi + M +

(
ΠG +

d∑
i=1

B∗i ΠDi

)(
N +

d∑
i=1

D∗i ΠDi

)−1(
G∗Π +

d∑
i=1

D∗i ΠBi

)
︸                                                                     ︷︷                                                                     ︸

A1

,

Π(T) = MT.

(59)
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dr
dt = −

[
F∗ −

(
ΠG +

∑d
i=1 B∗i ΠDi

)(
N +

∑d
i=1 D∗i ΠDi

)−1

G∗
]
r −m∗ −Π f −

∑d
i=1 B∗i Π1i

+
(
ΠG +

d∑
i=1

B∗i ΠDi

)(
N +

d∑
i=1

D∗i ΠDi

)−1(
n∗ +

d∑
i=1

D∗i Π1i

)
︸                                                                 ︷︷                                                                 ︸

A2

,

r(T) = m∗T.

(60)

By applying the Adams method on the above equations (equations 59 and 60), two solutions for the
equation 59 and four solutions for the equation 60 are found. These solutions are due to the existence
of A1 and A2. To simulate partially observable system 57, we need unique solutions of the equations 59
and 60 which faster converges to the real solution. So ,using this method (choosing the best answer) is
time consuming for this kind of partially observable problem. Therefor, we should use another method
to simulate this kind of problem. It should be noted that this method can be used with any solutions of
equations 59 and 60. But we are looking for a simpler method that takes less time to simulate. Euler method
which is expressed in the bellow is beter than the Adams-Moulton method.

3.3. Euler Method
This method is also used when the solutions 21 and 22 do not exist or the state process is non-linear.

As you can see in the previous sections, the dynamics of Π and r do not have an initial value. These
dynamics have terminal points Π(T) and r(T). So the backward Euler method is used to evaluate the
partially observable system. The backward Euler method for y′ = f (x, y) is as follows:

yn = yn+1 − h f (xn, yn+1). (61)

By applying 61 in the equations 59 and 60 the following results for k = 1, . . . ,N − 1 are achieved:
Πk = Πk+1 − h

{
− F∗kΠk+1 −Πk+1Fk −

∑d
i=1 B∗i,kΠk+1Bi,k + Mk

+
(
Πk+1Gk +

∑d
i=1 B∗i,kΠk+1Di,k

)(
Nk +

∑d
i=1 D∗i,kΠk+1Di,k

)−1 (
G∗kΠk+1 +

∑d
i=1 D∗i,kΠk+1Bi,k

)}
.

ΠN = MT.

(62)


rk = rk+1 − h

{
−

[
F∗k −

(
ΠkGk +

∑d
i=1 B∗i,kΠkDi,k

) (
Nk +

∑d
i=1 D∗i,kΠkDi,k

)−1

G∗k

]
rk+1 −m∗k −Πk fk

−
∑d

i=1 B∗i,kΠk1i,k +
(
ΠkGk +

∑d
i=1 B∗i,kΠkDi,k

)(
Nk +

∑d
i=1 D∗i,kΠkDi,k

)−1(
n∗k +

∑d
i=1 D∗i,kΠk1i,k

)}
.

rN = m∗T.

(63)

Now the solutions of rk and Πk for k = 1, . . . ,N − 1 are available. By substituting them in the discrete
form of system 57, the following expressions are achieved:


xk+1 = Fkxk + Gk[−N−1

k G∗kΠkxk −N−1
k n∗k −N−1

k G∗krk] + fk + σ0,kwk

+
∑d

i=1

[
Bi,kxk + Di,k[−N−1

k G∗kΠkxk −N−1
k n∗k −N−1

k G∗krk] + 1i,k

]
wi,k,

x0 = ζ,
yk = Hkxk + hk + σ1,k.

(64)

So, by using the relation 50 and section 2.2, simulate the above system.
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4. Numerical Example

In this section, two examples are provided. These examples are in linear and nonlinear cases respectively.
Example 4.1 is linear and is solved by the ’linear filter’ method and Euler method. But example 4.2 is
nonlinear and is just solved by Euler method.

Example 4.1. Consider the following stochastic optimal control with the partial observation system,

minu∈U

{
E
[ ∫ 1

0
(u2
− 2u)dt + x2(1)

]}
, (65)

dx = (x + 1)dt + (u + 1)dwi + dw, x0 = 0.5. (66)

dy = (x + 1)dt + db, y0 = 0. (67)

This linear example is solved by the ’linear filter’ method and Euler method. The control factor of this example is
as follows:

u(t) =
1

1 + exp(−2t + 2)
.

In figure (1), it has prepared a simulation of the corresponding partial observation system by Linear filter method.

Figure 1: Five paths of linear filtering method

Once again we simulate the current example by using Backward Euler method; the results are presented in figure
(2).

Figure 2: Five paths by Euler method

Finally we compare the two previous results according to the numerical aspects in figure 3.
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Figure 3: Comparison of Two Methods

Example 4.2. Consider the following nonlinear problem,

minu∈U

{
E
[ ∫ 1

0
(u2 + 2u)dt + x2(1)

]}
, (68)

dx =
(
sin(

πt
2

)x + 1
)
dt + (u + 1)dwi + dw, x0 = 0.5. (69)

dy = (x + 1)dt + db, y0 = 0. (70)

The state process in this example is not linear and the equations 21 and 22 are not solvable for this problem. So,
we should use the Euler method for estimation.

In this example the control factor is as follows:

u(t) = −1.

We simulate the current example by using Backward Euler method and the results are presented in figure 4.

Figure 4: Five paths by Euler method

5. Conclusion

This paper studies SOCPPs with the ’control factor’ on the diffusion term. First it introduces the linear
filtering method to estimat this kind of problem. But this method can be used when the dynamics of control
parameters have analytical solutions. The second and third methods are used when these solutions do
not exist. But, the solution of the second method is not unique. So, it is time consuming to be used in
calculations. Instead, the third method, the weak solution of the problem, can be used. According to the
example 4.1, the first and the third methods are numerically the same .
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