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Abstract. The notion of Lp-geominimal surface area was originally introduced by Lutwak in 1996. Recently,
Feng and Wang introduced the concept of Lp-dual mixed geominimal surface area based on Lp-dual mixed
quermassintegrals. In this paper, based on dual Orlicz mixed quermassintegrals, we define the concept of
dual Orlicz mixed geominimal surface area and establish some related inequalities for this new notion.

1. Introduction

LetKn denote the set of convex bodies (compact, convex subsets with non-empty interiors) in Euclidean
space Rn. For the class of convex bodies containing the origin in their interiors, origin-symmetric convex
bodies and whose centroid lie at the origin, we writeKn

o ,Kn
os andKn

c , respectively. Denote Sn
o by the set of

star bodies (about the origin). By Sn−1 we mean the unit sphere in Rn. For the volume of the standard unit
ball B, we write ωn = V(B).

The notions of mixed volumes, dual mixed volumes, affine surface areas and geominimal surface
areas are core contents in the classical Brunn-Minkowski theory. The classical Brunn-Minkowski theory
is extended to the Lp-Brunn-Minkowski theory by Lutwak (see [19, 20]). In [19], Lutwak presented the
Lp-mixed volumes. In [20], Lutwak showed the Lp-dual mixed volumes, Lp-affine surface areas and Lp-
geominimal surface areas. In particular, Lutwak’s Lp-geominimal surface areas can be stated as follows:
For K ∈ Kn

o , p ≥ 1, the Lp-geominimal surface area, Gp(K), of K is defined by

ω
p
n
n Gp(K) = inf{nVp(K,Q)V(Q∗)

p
n : Q ∈ Kn

o }. (1)

Here, Vp(L,M) denotes the Lp-mixed volume of L,M ∈ Kn
o (see [20]). If p = 1 in (1), then Gp(K) is just Petty’s

geominimal surface area G(K) (see [24]).
Corresponding to Lutwak’s Lp-geominimal surface areas, Wang and Qi ([28]) gave the notion of Lp-dual

geominimal surface areas. For K ∈ Sn
o , p ≥ 1, the Lp-dual geominimal surface area, G̃−p(K), of K is defined

by

ω
−

p
n

n G̃−p(K) = inf{nṼ−p(K,Q)V(Q∗)−
p
n : Q ∈ Kn

os}.
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Here, Ṽ−p(L,M) denotes the Lp-dual mixed volume of L,M ∈ Sn
o (see (15)).

In 2005, Wang and Leng ([26]) extended Lutwak’s Lp-dual mixed volumes to the Lp-dual mixed quer-
massintegrals. Combining with the Lp-dual mixed quermassintegrals, Feng and Wang ([8]) defined the
Lp-dual mixed geominimal surface areas as follows: For K ∈ Sn

o , p ≥ 1 and real i satisfies 0 ≤ i < n, the
Lp-dual mixed geominimal surface area, G̃−p,i(K), of K is given by

ω
−

p
n−i

n G̃−p,i(K) = inf{nW̃−p,i(K,Q)W̃i(Q∗)−
p

n−i : Q ∈ Kn
c }. (2)

Here, W̃i(K) denotes the dual quermassintegrals of K ∈ Sn
o and W̃−p,i(M,N) denotes the Lp-dual mixed

quermassintegrals of M,N ∈ Sn
o .

A further extension of the classical Brunn-Minkowski theory is the new Orlicz-Brunn-Minkowski theory.
This new theory was launched originally by Lutwak, Yang and Zhang in their two farreaching articles (see
[21, 22]). Whereafter, Xi, Jin and Leng (see [30]), Gardner, Hug and Weil (see [10]) respectively constructed a
general framework for Orlicz-Brunn-Minkowski theory, which includes Orlicz addition and mixed volume,
established the Orlicz-Brunn-Minkowski inequality and the Orlicz-Minkowski inequality. Meanwhile, a
step towards the dual Orlicz-Brunn-Minkowski theory for star bodies has already been made by Zhu, Zhou
and Xu (see [35], also see [11]). In a certain sense, the dual Orlicz-Brunn-Minkowski theory for star bodies
is more subtle and thought-provoking than the Orlicz-Brunn-Minkowski theory for convex bodies.

Compared to the classical part and the Lp-Brunn-Minkowski theory, the Orlicz-Brunn-Minkowski theory
(include its dual theory) has more general and abstract framework, just because of this, this theory received
considerable attention and also motivated large numbers of researchers’ interest, for example, see [1–
6, 13, 14, 16, 17, 23, 27, 29, 31–34, 36–39].

In this paper, we extend the Lp-dual mixed geominimal surface area (2) to the Orlicz version. Let Φ
denote the set of convex functions φ : (0,∞)→ R which satisfies φ(1) = 1, we define the dual Orlicz mixed
geominimal surface areas as follows:
Definition 1.1. For K ∈ Sn

o , φ ∈ Φ and 0 ≤ i < n, the dual Orlicz mixed geominimal surface area, G̃φ,i(K), of K is
given by

G̃φ,i(K) = inf{nW̃φ,i(K,Q) : Q ∈ Kn
c and W̃i(Q∗) = ωn}. (3)

Here, W̃φ,i(K,Q) denotes the dual Orlicz mixed quermassintegrals of K,Q ∈ Sn
o .

Obviously, let φ(t) = tp with p ≥ 1 in Definition 1.1, then (3) reduces to (2).
Remark 1.2. If i = 0 in Definition 1.1, then (3) gives the dual Orlicz geominimal surface area G̃φ(K) of K ∈ Sn

o
which was defined by Ma and Wang (see [23]), but it should be noted that φ in (3) is different from φ in [23].

For the dual Orlicz mixed geominimal surface areas, we first obtain the infimum in the above definition
(3) as follows.
Proposition 1.3. If K ∈ Sn

o , φ ∈ Φ, then there exists a body L ∈ Kn
c , such that for any 0 ≤ i < n,

G̃φ,i(K) = nW̃φ,i(K,L) and W̃i(L∗) = ωn. (4)

From Proposition 1.3, and together with the definition of dual Orlicz mixed quermassintegrals (see
Section 2, (13)), we obtain the integral representation of dual Orlicz mixed geominimal surface area as
follows: For K ∈ Sn

o , 0 ≤ i < n and φ ∈ Φ, there exists L ∈ Kn
c and W̃i(L∗) = ωn, such that

G̃φ,i(K) = nW̃φ,i(K,L) =

∫
Sn−1

φ
(ρK(u)
ρL(u)

)
ρK(u)n−idS(u). (5)

As an application of Proposition 1.3, we give a lower bound of G̃φ,i(K).
Theorem 1.4. If K ∈ Kn

c , φ ∈ Φ and 0 ≤ i < n, then

G̃φ,i(K) ≥ nW̃i(K)φ
((W̃i(K)

ωn

) 1
n−i

)
, (6)
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with equality for i = 0 if and only if K is an ellipsoid centered at the origin, for 0 < i < n if and only if K is a ball
centered at the origin.

In addition, by definition (3) we also get a supper bound for the dual Orlicz mixed geominimal surface
area G̃φ,i(K).
Theorem 1.5. If K ∈ Kn

c , φ ∈ Φ and 0 < i < n, then

G̃φ,i(K) ≤
nω2

n

W̃i(K∗)
φ
((

ωn

W̃i(K∗)

) 1
n−i

)
, (7)

with equality when K is a ball centered at the origin.
Obviously, taking φ(t) = tp with p ≥ 1 in Theorems 1.4-1.5, then inequalities (6) and (7) reduce to the

results for the Lp-dual mixed geominimal surface areas which were established respectively by Feng and
Wang (see [8]).

If Q = K in (3), then W̃i(K∗) = ωn. This together (7) with φ(1) = 1 yields that
Corollary 1.6. If K ∈ Kn

c , φ ∈ Φ and 0 < i < n, then

G̃φ,i(K) ≤ nωn,

with equality when K is a ball centered at the origin.
From Corollary 1.6, we immediately get the Blaschke-Santaló type inequality for the dual Orlicz mixed

geominimal surface areas as follows.
Corollary 1.7. If K ∈ Kn

c , φ ∈ Φ and 0 < i < n, then

G̃φ,i(K)G̃φ,i(K∗) ≤ (nωn)2,

with equality when K is a ball centered at the origin.
Further, using the integral representation of dual Orlicz mixed geominimal surface area (5), we obtain

the following cyclic type inequality.
Theorem 1.8. If K ∈ Sn

o , φ ∈ Φ, i, j, k ∈ R, and 0 < i < j < k < n, then

G̃φ,i(K)k− jG̃φ,k(K) j−i
≥ G̃φ, j(K)k−i, (8)

with equality if and only if K is a ball centered at the origin.
Finally, the following monotonic inequality for the dual Orlicz mixed geominimal surface areas is

obtained.
Theorem 1.9. Let φ1, φ2 ∈ Φ both are strictly increasing on (0,∞), φ1 ≤ φ2 and 0 < i < n. If K ∈ Sn

o , then

φ−1
2

( (nW̃i(K))n−i

G̃φ2,i(K)n−iφ2(W̃i(K)−1)

)
≤ φ−1

1

( (nW̃i(K))n−i

G̃φ1,i(K)n−iφ1(W̃i(K)−1)

)
. (9)

Let φ1(t) = tp, φ2(t) = tq with 1 < p < q < ∞ in Theorem 1.9, then inequality (9) yields the monotonic
inequality for the Lp-dual mixed geominimal surface areas can be found in [8].

2. Background Materials

2.1 Support function, radial function and polar of convex bodies.
If K ∈ Kn, then its support function, hK=h(K, ·): Rn

→ (−∞,+∞), is defined by (see [9, 25])

h(K, x) = max{x · y : y ∈ K}, x ∈ Rn,

where x · y denotes the standard inner product of x and y.
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Define the radial function, ρK = ρ(K, ·) : Rn
\{0} → [0,+∞), of a compact star-shaped (about the origin)

K ∈ Rn by (see [9])

ρ(K, x) = max{λ ≥ 0 : λx ∈ K}, x ∈ Rn
\{0}.

If ρK is positive and continuous, K will be called a star body (about the origin). Two star bodies K and L
will be dilates (of one another)if ρK(u)/ρL(u) is independent of u ∈ Sn−1.

If M ∈ Kn
o , the polar body, M∗, of M is defined by (see [9, 25])

M∗ = {x ∈ Rn : x · y ≤ 1, y ∈M}. (10)

Clearly, by definition (10), it follows that if M ∈ Kn
o , then (M∗)∗ = M and

ρM∗ =
1

hM
. (11)

2.2 Dual quermassintegrals and dual Orlicz mixed quermassintegrals.
For K ∈ Sn

o and any real i, define the dual quermassintegrals, W̃i(K), of K by (see [18])

W̃i(K) =
1
n

∫
Sn−1

ρ(K,u)n−idS(u).

For the dual quermassintegrals, Ghandehari ([12]) established the following Blaschke-Santaló inequality:
Theorem 2.1 ([12]). If K ∈ Kn

c , real i satisfies 0 ≤ i < n, then

W̃i(K)W̃i(K∗) ≤ ω2
n, (12)

with equality for i = 0 if and only if K is an ellipsoid centered at the origin, for 0 < i < n if and only if K is a ball
centered at the origin.

Wang, Shi and Ye ([29]) introduced the notion of dual Orlicz mixed quermassintegrals. For K,L ∈ Sn
o ,

real i , n, φ : (0,∞)→ R, define the dual Orlicz mixed quermassintegrals, W̃φ,i(K,L), of K and L by

W̃φ,i(K,L) =
1
n

∫
Sn−1

φ
(ρK(u)
ρL(u)

)
ρK(u)n−idS(u). (13)

Taking φ(t) = tp with p ≥ 1 in (13), then the integral formula of Lp-dual mixed quermassintegrals can be
obtained (see [26]):

W̃−p,i(K,L) =
1
n

∫
Sn−1

ρK(u)n+p−iρL(u)−pdS(u). (14)

If i = 0, then (14) gives Lutwak’s Lp-dual mixed volume by

Ṽ−p(K,L) = W̃−p,0(K,L) =
1
n

∫
Sn−1

ρK(u)n+pρL(u)−pdS(u). (15)

Further, a dual Orlicz-Minkowski inequality for the dual Orlicz mixed quermassintegrals was estab-
lished by them (see [29]) as well.
Theorem 2.2 ([29]). Let K,L ∈ Sn

o , real i , n, φ : (0,∞)→ R, and F(t) = φ(t−
1

n−i ), t > 0. If F is convex, then

W̃φ,i(K,L) ≥ W̃i(K)φ
((W̃i(K)

W̃i(L)

) 1
n−i

)
. (16)

When F is strictly convex, equality holds if and only if K and L are dilates.
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The following proposition shows that the sequence of dual Orlicz mixed quermassintegrals is continu-
ous.
Lemma 2.3 ([23]). Suppose fi, f are strictly positive and continuous functions on Sn−1; φ j, φ ∈ Φ; µk, µ are Borel
probability measures on Sn−1; i, j, k ∈ N. If fi → f pointwise, φ j → φ uniformly, and µk → µ weakly, then as
i, j, k→∞,∫

Sn−1
φ j( fi)dµk →

∫
Sn−1

φ( f )dµ.

By Lemma 2.3, it can conclude that
Lemma 2.4. Suppose K,Ki,L,L j ∈ S

n
o , and φ,φk ∈ Φ (i, j, k ∈ N). If Ki → K, L j → L and φk → φ, then for real

l , n,

lim
i, j,k→∞

W̃φk,l(Ki,L j) = W̃φ,l(K,L).

Combining with the definition (3) of dual Orlicz mixed geominimal surface area, the following propo-
sition can be viewed as an immediate consequence of Lemma 2.4.
Lemma 2.5. If φ ∈ Φ, then the functional G̃φ,i : Sn

o → (0,∞) is continuous.

3. Proofs of Results

In this section, we will complete the proofs of our main Theorems. First, by the next Lemmas, we will
show that the infimum in the definition (3) of dual Orlicz mixed geominimal surface area G̃φ,i(K) can be
attained.
Lemma 3.1. Let Cn denote the set of compact convex subsets of n-dimensional Euclidean space Rn, and suppose
Ki ∈ K

n
o (i ∈N) such that Ki → L ∈ Cn. If the sequence W̃ j(K∗i ) ( j ∈ R) is bounded, then L ∈ Kn

o .
Proof. Since the sequence W̃ j(K∗i ) is bounded, so choose λ0 > 0, such that W̃ j(K∗i ) ≤ λ0 for all i ∈ N. For a
compact set L, there exists a real r0 > 0, such that L ⊂ r0B, where B is a unit ball centered at the origin. Note
that Ki → L, the real r0 can be chosen so that Ki ⊂ r0B for all i ∈N.

Now, we introduce the real ri, which may be denoted by

ri = r(Ki) = min
u∈Sn−1

h(Ki,u) = h(Ki,ui),

where ui ∈ Sn−1. By (11), ρ(K∗i ,ui) = h(Ki,ui)−1 = 1
ri

, it is easy checked that K∗i contains the point 1
ri

ui.
Moreover, Ki ⊂ r0B, one gets ρ(K∗i , ·) = h(Ki, ·)−1

≥
1
r0

. Thus( 1
r0

)n− j−1

ωn
1
ri
≤ W̃ j(K∗i ) ≤ λ0,

therefore, we have

ri ≥ ωnr1−n+ j
0 λ−1

0 .

Thus, the ball, centered at the origin, of radius ωnr1−n+ j
0 λ−1

0 is contained in each Ki, it infers that this ball is
contained in L as well. This and L ∈ Cn yield L ∈ Kn

o . �
Lemma 3.1 ensures Ki ∈ K

n
c and Ki → L, we have L ∈ Kn

c .
The following Lemma is the well-known Jensen’s inequality (see [15]), which can be stated as follows.

Lemma 3.2 ([15]). If µ is a probability measure on a space X and h : X→ I ⊂ R is a µ-integrable function, here I is
a possibly infinite interval. If φ : I→ R is a convex function, then∫

X
φ(h(x))dµ(x) ≥ φ

( ∫
X

h(x)dµ(x)
)
. (17)



W. Shi et al. / Filomat 32:14 (2018), 5053–5061 5058

If φ is strictly convex, equality holds if and only if h(x) is a constant for µ-almost all x ∈ X.
Proof of Proposition 1.3. By the definition (3) of G̃φ,i(K), there is a sequence Q j ∈ K

n
c ( j ∈N), which satisfies

W̃i(Q∗j) = ωn and W̃φ,i(K,B) ≥ W̃φ,i(K,Q j) for any 0 ≤ i < n and j ∈N, thus nW̃φ,i(K,Q j)→ G̃φ,i(K).
To see that Q j ∈ K

n
c ( j ∈N) are uniformly bounded, let

R j = R(Q j) = ρ(Q j,u j) = max{ρ(Q j,u) : u ∈ Sn−1
},

where u j is any of the points in Sn−1 at which the maximum is attained.
Let r(K) = max{λ > 0 : λB ⊂ K}, then r(K)B ⊂ K. Hence

W̃i(r(K)B) = r(K)n−iωn ≤ W̃i(K). (18)

But by the Jensen’s inequality (17), we get

W̃φ,i(K,B) ≥ W̃φ,i(K,Q j)

=
1
n

∫
Sn−1

φ
( ρK(u)
ρQ j (u)

)
ρK(u)n−idS(u)

= W̃i(K) ·
1

nW̃i(K)

∫
Sn−1

φ
( ρK(u)
ρQ j (u)

)
ρK(u)n−idS(u)

≥ W̃i(K) · φ
( 1

nW̃i(K)

∫
Sn−1

ρK(u)n−i+1ρQ j (u)−1dS(u)
)

≥ W̃i(K) · φ
( r(K)

nW̃i(K)R j

∫
Sn−1

ρK(u)n−idS(u)
)

≥ W̃i(K) · φ
( r(K)

R j

)
.

This and (18) yield

r(K)n−iωnφ
( r(K)

R j

)
≤ W̃i(K) · φ

( r(K)
R j

)
≤ W̃φ,i(K,Q j) ≤ W̃φ,i(K,B) < +∞.

According to the uniform boundness of Q j ∈ K
n
c ( j ∈ N), the Blaschke’s selection theorem ensures the

sequence Q j has a subsequence, for convenience, which will also be denoted by Q j. Note that the compact
convex set L ∈ Cn such that Q j → L. Since W̃i(Q∗j) = ωn, by Lemma 3.1, we conclude that L ∈ Kn

c . From

Q j → L and W̃i(Q∗j) = ωn, it can infer that Q∗j → L∗ and W̃i(L∗) = ωn. By Lemma 2.4, we see that L will serve
as the desired body. �

Proof of Theorem 1.4. Since φ is convex, thus for 0 ≤ i < n, F(t) = φ(t−
1

n−i ) is convex. From this, by
Proposition 1.3 we know that for K ∈ Kn

c , there exists for L ∈ Kn
c , such that

G̃φ,i(K) = nW̃φ,i(K,L) and W̃i(L∗) = ωn.

This together dual Orlicz-Minkowski inequality (16) with Blaschke-Santaló inequality (12) gives

G̃φ,i(K) ≥ nW̃i(K)φ
((W̃i(K)

W̃i(L)

) 1
n−i

)
and W̃i(L∗) = ωn

≥ nW̃i(K)φ
((W̃i(K)

ωn

) 1
n−i

)
.

This gives inequality (6).
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According to the equality conditions of (16) and (12), it follows that equality holds in (6) with equality
for i = 0 if and only if K is an ellipsoid centered at the origin, for 0 < i < n if and only if K is a ball centered
at the origin. �

Proof of Theorem 1.5. By definition (3) of G̃φ,i(K), and together with the Blaschke-Santaló inequality (12),
we obtain

G̃φ,i(K) = inf
{
nW̃φ,i(K,Q) : Q ∈ Kn

c and W̃i(Q∗) = ωn

}
≤ nW̃φ,i(K,Q) and W̃i(Q∗) = ωn.

(19)

Since K ∈ Kn
c , let Q = λK in (19), thus by (13) and inequality (12) we have

G̃φ,i(K) ≤ nW̃φ,i(K, λK) = nW̃i(K)φ
( 1
λ

)
≤

nω2
n

W̃i(K∗)
φ
( 1
λ

)
.

But W̃i(Q∗) = ωn and Q = λK, then λ =
(

W̃i(K∗)
ωn

) 1
n−i

. Therefore,

G̃φ,i(K) ≤
nω2

n

W̃i(K∗)
φ
((

ωn

W̃i(K∗)

) 1
n−i

)
.

This gives (7).
If K is a ball, it can infer that equality holds in (7). Thus, equality holds in (7) when K is a ball centered

at the origin. �
In the end, we proved the cyclic and monotonic type inequalities of dual Orlicz mixed geominimal

surface areas.
Proof of Theorem 1.8. For the sake of convenience, in integral formula (5) let

fφ,i(K,L) = φ
(ρK(u)
ρL(u)

)
ρK(u)n−i.

Then by (5) and Hölder’s integral inequality (see [7]), we get for 0 < i < j < k < n,

G̃φ,i(K)
k− j
k−i G̃φ,k(K)

j−i
k−i =

[ ∫
Sn−1

fφ,i(K,L)dS(u)
] k− j

k−i
[ ∫

Sn−1
fφ,k(K,L)dS(u)

] j−i
k−i

=
{∫

Sn−1

{[
fφ,i(K,L)

] k− j
k−i

} k−i
k− j

dS(u)
} k− j

k−i

×

{∫
Sn−1

{[
fφ,k(K,L)

] j−i
k−i

} k−i
j−i

dS(u)
} j−i

k−i

≥

∫
Sn−1

[
fφ,i(K,L)

] k− j
k−i

[
fφ,k(K,L)

] j−i
k−i

dS(u)

=

∫
Sn−1

fφ, j(K,L)dS(u) = G̃φ, j(K).

Thus, we obtain

G̃φ,i(K)k− jG̃φ,k(K) j−i
≥ G̃φ, j(K)k−i.

This yields inequality (8).
According to the equality condition of Hölder’s integral inequality, the equality in (8) holds if and only

if K is a ball centered at the origin. �

Proof of Theorem 1.9. By the definition (3) of G̃φ,i(K), and note that φ1 ≤ φ2 ∈ Φ, then

φ1

( (nW̃i(K))n−i

G̃φ2,i(K)n−iφ2(W̃i(K)−1)

)
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= φ1

( (nW̃i(K))n−iφ2(W̃i(K)−1)−1

inf{nn−iW̃φ2,i(K,Q)n−i : Q ∈ Kn
c and W̃i(Q∗) = ωn}

)
≤ φ1

( (nW̃i(K))n−iφ1(W̃i(K)−1)−1

inf{nn−iW̃φ1,i(K,Q)n−i : Q ∈ Kn
c and W̃i(Q∗) = ωn}

)
≤ φ2

( (nW̃i(K))n−iφ1(W̃i(K)−1)−1

inf{nn−iW̃φ1,i(K,Q)n−i : Q ∈ Kn
c and W̃i(Q∗) = ωn}

)
= φ2

( (nW̃i(K))n−i

G̃φ1,i(K)n−iφ1(W̃i(K)−1)

)
.

Notice that φ1 ≤ φ2 ∈ Φ are strictly increasing on (0,∞), there are inverse functions φ−1
1 , φ−1

2 and
φ−1

1 ≥ φ
−1
2 are strictly increasing on (0,∞) as well. Then, we have

φ−1
2

( (nW̃i(K))n−i

G̃φ2,i(K)n−iφ2(W̃i(K)−1)

)
≤ φ−1

1

( (nW̃i(K))n−i

G̃φ1,i(K)n−iφ1(W̃i(K)−1)

)
.

This gives inequality (9). �
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