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Abstract. In this paper, we introduce the incomplete Horadam numbers Wn(k), and hyper-Horadam
numbers W(k)

n , which generalize the Horadam’s numbers defined by the recurrence Wn = pWn−1 + qWn−2,
with W0 = a and W1 = b. We give some combinatorial properties. As an application, we evaluate a lower
and upper bounds for the spectral norms of r-circulant matrices associated with these two generaliza-
tions. Moreover, we establish a new bounds for the spectral norms of r-circulant matrices associated with
Horadam’s numbers in terms of incomplete Horadam and hyper-Horadam numbers.

1. Introduction and Preliminaries

The Fibonacci numbers are defined by the recurrence relation Fn = Fn−1+Fn−2 for any n ≥ 2, with initials
F0 = 0, F1 = 1. Several generalizations of the Fibonacci sequence have been investigated. One well-know
generalization is the Horadam’s numbers Wn(a, b, p, q), denoted briefly Wn, and defined by the following
recurrence relation

Wn = pWn−1 + qWn−2, (1)

with the initials W0 = a and W1 = b, where a, b, p, q ∈ Z. An explicit formula for the sequence (Wn) is

Wn = A

p +
√

p2 + 4q
2

n

+ B

p −
√

p2 + 4q
2

n

, (2)

where

A =
b − aβ√
p2 + 4q

and B =
aα − b√
p2 + 4q

,

and α, β are the distinct roots of characteristic polynomial x2
− px − q = 0. The generating function is given

by ∑
n≥0

Wnxn =
a + (b − pa)x
1 − px − qx2 . (3)
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Some special cases of Horadam’s numbers Wn(a, b, p, q) are Fibonacci numbers Fn, Lucas numbers Ln,
Pell numbers Pn, Pell–Lucas numbers Qn, Jacobsthal numbers Jn, Jacobsthal–Lucas numbers jn, Bronze
Fibonacci numbers Bn, Signed Fibonacci numbers Fn, Signed Pell numbers Pn.

Wn(0, 1, 1, 1) = Fn; Wn(2, 1, 1, 1) = Ln;
Wn(0, 1, 2, 1) = Pn; Wn(2, 2, 2, 1) = Qn;

Wn(0, 1, 1, 2) = Jn; Wn(2, 1, 1, 2) = jn;
Wn(0, 1,−2, 1) = Pn; Wn(1, 1,−1, 1) = Fn.

Let (an) and (a(n)) be two real initial sequences. Bahşı̄ et al. [3], defined the symmetric infinite matrix
associated to these sequences by the following recursive formula,

a(0)
n = an, a(n)

0 = a(n), (n ≥ 0),

a(k)
n = va(k)

n−1 + ua(k−1)
n , (n ≥ 1, k ≥ 1),

where a(k)
n represents the k-th row and the n-th column entry; i.e.,

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . a(k−1)
n
↓u

. . .

. . . a(k)
n−1

v
→ a(k)

n . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .


.

The entry a(k)
n can be expressed in terms of the first row’s and the first column’s as follows, see [3],

a(k)
n =

k∑
i=1

vnuk−i
(
n + k − i − 1

n − 1

)
a(i)

0 +

n∑
j=1

vn− juk
(
n + k − j − 1

k − 1

)
a(0)

j . (4)

The Horadam’s numbers have numerous interesting properties and applications in various areas of
mathematics and science (see [13] for a survey). In recent years, many authors have studied the properties
of the circulant matrix and r-circulant matrix with Horadam’s numbers and the generalized Horadam
numbers. For example, Alptekin et al. [1] have established the spectral norms and eigenvalues of circulant
matrices with the Horadam’s numbers. Bozkurta and Tam gave explicit determinant and inverse of the
r-circulant matrices involving Horadam’s numbers in [6]. Yazlid and Taskara [18–20] have introduced
the generalized k-Horadam numbers and they established the determinant, lower and upper bounds for
the spectral norms of r-circulant matrices with these numbers. Further, the authors in [17] proposed a
construction of Horadam’s numbers in terms of determinant of tridiagonal matrices.

The paper is organized as follows: In section 2, we introduce the incomplete Horadam and hyper-
Horadam sequences and we give some properties. In section 3, we study some combinatorial identities
of these two generalizations and we establish that Horadam’s numbers can be expressed in terms of the
incomplete Horadam and hyper-Horadam numbers. In the last section, we give a lower and upper bounds
for the spectral norm of the r-circulant matrix with incomplete Horadam and hyper-Horadam numbers,
also we derive a new lower and upper bounds for the spectral norm of r-circulant matrix with Horadam’s
numbers. In the sequel, we give some bounds related to spectral norm of Hadamard product and Kronecker
product of these matrices.
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2. Definitions and properties

Let a, b, p and q be integers, define the incomplete Horadam numbers (Wn(k; a, b, p, q)), denoted briefly
(Wn(k)), by

Wn(k) =
k∑

j=0

(n − 2 j)b + apj
n − j

(
n − j

j

)
q jpn−2 j−1, 0 ≤ k ≤ bn/2c . (5)

The sequence (Wn(k)) satisfy the following recurrence relation,

Wn(k) = pWn−1(k) + qWn−2(k − 1). (6)

From recurrence relation (6), we can easily calculate the first few terms of the sequence (Wn(k)).

n/k 0 1 2 3
1 b
2 bp bp + aq
3 bp2 bp2 + pqa + bq
4 bp3 bp3 + p2qa + 2bpq bp3 + p2qa + 2bpq + q2a
5 bp4 bp4 + p3qa + 3bp2q bp4 + p3qa + 3bp2q + 2pq2a + bq2

6 bp5 p5b + p4qa + 4qp3b p5b + p4qa + 4qp3b + 3p2q2a + 3pq2b p5b + p4qa + 4qp3b + 3p2q2a
+3pq2b + q3a

Table 1: The first values of the incomplete Horadam sequence.

The connection between ordinary and incomplete Horadam numbers is

Wn(k) = 0 0 ≤ n ≤ 2k + 1, W2k+1(k) =W2k+1, W2k+2(k) =W2k+2.

Remark 2.1. Some specializations

• For Wn(k; 1, 1, 0, 1) = Fn(k), we get the incomplete Fibonacci numbers, [11].

• For Wn(k; 1, 1, 2, 1) = Ln(k), we have the incomplete Lucas numbers, [11].

• For Wn(k; 2, 1, 0, 1) = Pn(k), we obtained the incomplete Pell numbers.

• For Wn(k; 2, 1, 2, 2) = Qn(k), we obtained the incomplete Pell-Lucas numbers.

• For Wn(k; 1, 2, 0, 1) = Jn(k), we have the incomplete Jacobsthal numbers.

• For Wn(k; 1, 2, 2, 1) = jn(k), we have the incomplete Jacobsthal-Lucas numbers.

Relation (6) can be transformed into non homogenous recurrence relation as follows,

Proposition 2.2. For any n ≥ 2k + 3, we have

Wn(k) = pWn−1(k) + qWn−2(k) −
(n − 2k − 2)b + apk

n − 2k − 2

(
n − k − 3

k

)
qk+1pn−2k−3. (7)

Proof. It follows from Relations (5) and (6).

To establish the generating function of the incomplete Horadam numbers we need the following lemma,
see [15].
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Lemma 2.3. Let (sn) be a sequence of complex numbers satisfying the non-homogeneous second order recurrence
relation

sn = psn−1 + qsn−2 + rn, (n > 1),

where (rn) is a sequence of complex numbers. Then the generating function U(t) of (sn) is given by

U(t) =
G(t) + s0 + r0 + (s1 − ps0 − r1)

1 − pt − qt2 ,

where G(t) is the generating function of (rn).

Theorem 2.4. The generating function of the incomplete Horadam numbers Wn(k) is

∑
n≥0

Wn(k)tn =
a + (b − ap)t
1 − pt − qt2

1 −
(

qt2

1 − pt

)k+1 . (8)

Proof. Let k be a fixed positive integer, and

s0 =W2k+1(k), s1 =W2k+2(k), sn =W2k+n+1(k).

From the non homogenous recurrence relation (7), we have

sn = pWn+2k(k) + qWn+2k−1(k) −
(n − 1)b + apk

n − 1

(
n + k − 2

k

)
qk+1pn−2,

also

r0 = r1 = 0 and rn = −
(n − 1)b + apk

n − 1

(
n + k − 2

k

)
qk+1pn−2.

The generating function of (rn) is

G(t) =
−(a + (b − ap)t)(qt2)k+1

(1 − pt)k+1
.

Hence, from Lemma 2.3, we get the generating function of (sn).

Proposition 2.5. We have,∑
n,k≥0

Wn(k)xnyk =
a + (b − ap)x

(1 − py)(1 − px − qyx2)
. (9)

Now, we define the hyper-Horadam numbers of order k, (W(k)
n (p, q, a, b)), denoted briefly (W(k)

n ).

Definition 2.6. For any n ≥ 0 and k ≥ 1, the hyper-Horadam numbers W(k)
n are defined by the recurrence relation:

W(k)
n = pW(k)

n−1 + qW(k−1)
n , (10)

with initial conditions W(0)
n =Wn and W(k)

0 = aqk, where Wn is n-th Horadam’s numbers.
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The relation (10) can be written as follows :

W(k)
n =

n∑
j=0

qpn− jW(k−1)
j . (11)

Let a(0)
n =W(0)

n =Wn and a(n)
0 =W(n)

0 = aqn. Then the corresponding infinite symmetric matrix is given by


a b aq + bp bp2 + bq + pq · · ·

aq apq + bq ap2q + aq2 + 2bpq ap3q + 2apq2 + 3bp2q + bq2
· · ·

aq2 2apq2 + bq2 3ap2q2 + aq3 + 3bpq2 4ap3q2 + 3apq3 + 6bp2q2 + bq3
· · ·

aq3 3apq3 + bq3 6ap2q3 + aq4 + 4bpq3 10ap3q3 + 4apq4 + 10bp2q3 + bq4
· · ·

...
...

...
...

. . .


.

We have some classical identities when r = 1, 2 and 3.

W(1)
n = Wn+2 − bpn+1,

W(2)
n = Wn+4 − (n + 2)bqpn+1

− aqpn+2,

W(3)
n = Wn+6 −

((n + 2)b + 2ap)(n + 3)q2pn+1

2
.

In the next theorem we give an explicit formula for the hyper-Horadam numbers.

Theorem 2.7. For any n ≥ 0 and k ≥ 1, we have

W(k)
n =

bn/2c∑
j=0

(n − 2 j)b + ap(k + j)
n + k − j

(
n + k − j

j + k

)
q j+kpn−2 j−1. (12)

Proof. We will prove the theorem by double induction. For any m ≥ 0, let Sm := {W( j)
i |i + j = m}. The sum

(12) clearly holds for the elements of S0 and S1. Now, suppose that the result is true for any elements of
the set Sm with m < n + k + 1, we prove it for the elements of the set Sn+k+1. Without lost the generality let
i = n + 1 and j = k, then from recurrence relation (10), we have

W(k)
n+1 = pW(k)

n + qW(k−1)
n+1

=
∑
j≥0

(n − 2 j)b + ap(k + j)
n + k − j

(
n + k − j

j + k

)
q j+kpn−2 j +

∑
j≥0

(n + 1 − 2 j)b + ap(k + j − 1)
n + k − j

(
n + k − j
j + k − 1

)
q j+kpn−2 j

=
∑
j≥0

qk+ jpn−2 j

n + k − j

[
((n − 2 j)b + (k + j)ap)

(
n + k − j

k + j

)
+ ((n − 2 j + 1)b +(k + j − 1)ap)

(
n + k − j
k + j − 1

)]

=
∑
j≥0

qk+ jpn−2 j
[(

b +
(k + j)ap

n − 2 j

) (
n + k − j − 1

k + j

)
+

(
b +

(k + j − 1)ap
n − 2 j + 1

)
×

(
n + k − j − 1

k + j − 1

)]

=
∑
j≥0

qk+ jpn−2 j
[
b
((

n + k − j − 1
k + j

)
+

(
n + k − j − 1

k + j − 1

))
+ ap

(
k + j

n − 2 j
×

(
n + k − j − 1

k + j

)

+
k + j − 1

n − 2 j + 1

(
n + k − j − 1

k + j − 1

))]
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=
∑
j≥0

qk+ jpn−2 j
[
b
(
n + k − j

k + j

)
+ ap

((
n + k − j − 1

k + j − 1

)
+

(
n + k − j − 1

k + j − 2

))]

=
∑
j≥0

qk+ jpn−2 j
[
b
(
n + k − j

k + j

)
+ ap

(
n + k − j
k + j − 1

)]

=
∑
j≥0

qk+ jpn−2 j
[

(n − 2 j + 1)b
n + k − j + 1

(
n + k − j + 1

k + j

)
+

(k + j)ap
n + k − j + 1

(
n + k − j + 1

k + j

)]

=
∑
j≥0

(n − 2 j + 1)b + (k + j)ap
n + k − j + 1

(
n + k − j + 1

k + j

)
qk+ jpn−2 j.

Thus, we conclude the proof of Theorem 2.7.

From Relations (10) and (12), we obtain the following non homogenous recurrence relation,

W(k)
n = pW(k)

n−1 + qW(k)
n−2 +

nb + ap(k − 1)
n + k − 1

(
n + k − 1

k − 1

)
qkpn−1. (13)

Theorem 2.8. The generating function of the hyper-Horadam numbers is∑
n≥0

W(k)
n tn =

a + (b − ap)t
1 − pt − qt2

(
qt2

1 − pt

)k

. (14)

Proof. The result is obtained using Lemma 2.3 and recurrence relation (13).

3. Some combinatorial identities

In this section, we provide some combinatorial identities involving the incomplete Horadam and hyper-
Horadam numbers.

Proposition 3.1. We have

h∑
j=0

(
h
j

)
q jph− jWn+h− j(k + h − j) =Wn+2h(k + h), 0 ≤ k ≤

n − h
2

. (15)

Proof. We proceed by induction on h. It is clearly true for h = 0 and h = 1. Assuming the result holds for
any integer h ≥ 1, we show it for h + 1.

h+1∑
j=0

(
h + 1

j

)
q jph− j+1Wn+ j(k + j) =

h+1∑
j=0

(
h
j

)
q jph− j+1Wn+h− j+1(k + h − j + 1)

+

h+1∑
j=0

(
h

j − 1

)
q jph− j+1Wn+h− j+1(k + h − j + 1)

= p
h∑

j=0

(
h
j

)
q jph− jWn+h− j+1(k + h − j + 1)

+q
h∑

j=0

(
h
j

)
q jph− jWn+h− j(k + h − j)

= pWn+2h+1(k + h + 1) + qWn+2h(k + h)
= Wn+2h+2(k + h + 1),

which completes the proof.
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Proposition 3.2. For any h ≥ 2k + 2, we have

h−1∑
j=0

qph− j−1Wn+ j(k) =Wn+h+1(k + 1) − phWn+1(k + 1). (16)

Proof. We proceed by induction on h. It is clearly true for h = 1 and h = 2. Assuming the result holds for
any integer h ≥ 1, we show it for h + 1.

h∑
j=0

qph− jWn+ j(k) = p
h−1∑
j=0

qph− j−1Wn+ j(k) + qWn+h(k)

= p
(
Wn+h+1(k + 1) − phWn+1(k + 1)

)
+ qWn+h(k)

=
(
pWn+h+1(k + 1) + qWn+h(k)

)
− phWn+1(k + 1)

= Wn+h+2(k + 1) − ph+1Wn+1(k + 1).

Proposition 3.3. For any n ≥ 0, r ≥ 1 and k ≥ 0, we have

W(k+r)
n =

n∑
j=0

qrpn− j
(
n + r − j − 1

r − 1

)
W(k)

j (17)

Proof. Let a(0)
n =W(k)

n and a(n)
0 =W(k+n)

0 = aqk+n, then the corresponding infinite matrix is given by

W(k)
0 W(k)

1 W(k)
2 W(k)

3 · · ·

W(k+1)
0 W(k+1)

1 W(k+1)
2 W(k+1)

3 · · ·

W(k+2)
0 W(k+2)

1 W(k+2)
2 W(k+2)

3 · · ·

W(k+3)
0 W(k+3)

1 W(k+3)
2 W(k+3)

3 · · ·

...
...

...
...

. . .


. (18)

From Relation (4), we have

a(r)
n =

r∑
i=1

pnqr−i
(
n + r − i − 1

n − 1

)
aqk+i +

n∑
j=1

pn− jqr
(
n + r − j − 1

r − 1

)
W(k)

j

= apnqr+k
r−1∑
i=0

(
n + r − i − 2

n − 1

)
+ qr

n−1∑
j=0

pn− j−1

(
n + r − j − 2

r − 1

)
W(k)

j+1

= apnqr+k
r−1∑
i=0

(
n + i − 1

n − 1

)
+ qr

n−1∑
j=0

p j
(

j + r − 1
r − 1

)
W(k)

n− j

= apnqr+k
(
n + r − 1

r − 1

)
+ qr

n−1∑
j=0

p j
(

j + r − 1
r − 1

)
W(k)

n− j

= pnqr
(
n + r − 1

r − 1

)
W(k)

0 + qr
n−1∑
j=0

p j
(

j + r − 1
r − 1

)
W(k)

n− j

= qr
n∑

j=0

p j
(

j + r − 1
r − 1

)
W(k)

n− j.
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Hence, from the matrix (18), we obtain

a(r)
n =W(k+r)

n = qr
n∑

j=0

pn− j
(
n − j + r − 1

r − 1

)
W(k)

j ,

which gives the formula (17).

As consequence of Proposition 3.3, we have an expression for the hyper-Horadam numbers in terms of
Horadam numbers.

Corollary 3.4. For any n ≥ 0 and k ≥ 1, we have

W(k)
n =

n∑
j=0

qkpn− j
(
n + k − j − 1

k − 1

)
W j. (19)

The following corollary provides the connection between the incomplete Horadam, hyper-Horadam
and Horadam’s numbers.

Proposition 3.5. For any n ≥ 0 and k ≥ 1, we have

Wn+2k =Wn+2k(k − 1) +W(k)
n . (20)

4. Spectral norms of r-circulant matrices

In this section, we evaluate the spectral norms of r-circulant matrices with the incomplete Horadam and
the hyper-Horadam numbers, throughout this section we will assume that p, q, b > 0 and a ≥ 0.

A matrix Ar = [ai j] ∈Mn,n(C) is called r-circulant matrix if it is of the form

Ar =



a0 a1 a2 · · · an−2 an−1
ran−1 a0 a1 · · · an−3 an−2
ran−2 ran−1 a0 · · · an−4 an−3
...

...
...

. . .
...

...
ra2 ra3 ra4 · · · a0 a1
ra1 ra2 ra3 · · · ran−1 a0


.

The matrix Ar is determined by its first row elements a0, a1, . . . , an−1 and by the parameter r, we denote
Ar = circn (a0, a1, . . . , an−1). for r = 1, the matrix A is called a circulant matrix. The circulant matrix with
geometric progression G = circn

(
qpn−1, qpn−2, . . . , q

)
is the matrix of the form

G =


qpn−1 qpn−2

· · · qp q
q qpn−1

· · · qp2 qp
...

...
. . .

...
...

qpn−3 qpn−4
· · · qpn−1 qpn−2

qpn−2 qpn−3
· · · q qpn−1


.

For more information about the circulant matrix with geometric progression one can see [7]. Now, we
give some results which will be used in this section.

Let A =
[
ai j

]
be an m × n matrix, the Frobenius (or Euclidean) norm of matrix A is defined by

‖A‖F =

 m∑
i=1

n∑
j=1

∣∣∣ai j

∣∣∣2
1
2

,
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and it’s spectral norm is given by [8],

‖A‖2 =
√

max
1≤i≤n

|λi|,

where λi’s are the eigenvalues of matrix AHA and AH is conjugate transpose of matrix A.
The following inequalities hold [21],

1
√

n
‖A‖F ≤ ‖A‖2 ≤ ‖A‖F, (21)

and

‖A‖2 ≤ ‖A‖F ≤
√

n‖A‖2. (22)

Let A =
[
ai j

]
and B =

[
bi j

]
be m × n-matrices. The Hadamard product of A and B is

A ◦ B =
(
ai jbi j

)
.

Lemma 4.1. [14] Let A =
[
ai j

]
and B =

[
bi j

]
be m × n-matrices. Then

‖A ◦ B‖2 ≤ r1 (A) c1 (B) ,

where r1 (·) and c1 (·) are maximum row length norm and maximum column length norm, respectively

r1 (A) = max
1≤i≤n

√√√ n∑
j=1

∣∣∣ai j

∣∣∣2 and c1 (B) = max
1≤ j≤n

√√
n∑

i=1

∣∣∣bi j

∣∣∣2.
Lemma 4.2. [9] Let A =

[
ai j

]
and B =

[
bi j

]
be m × n-matrices. Then

‖A ◦ B‖2 ≤ ‖A‖2‖B‖2.

Lemma 4.3. [9] et A =
[
ai j

]
and B =

[
bi j

]
be m × n-matrices. Then

‖A ⊗ B‖2 = ‖A‖2 ‖B‖2 .

For any positive integers k and h (h ≥ 2k + 2), let

A(k,h)
r := circn (Wh(k),Wh+1(k), . . . ,Wh+n−1(k)) ;

H(k)
r := circn

(
W(k)

0 ,W
(k)
1 , . . . ,W

(k)
n−1

)
;

F(k)
r := circn (W2k,W2k+1, . . . ,W2k+n−1) ;

be a circulant matrices with incomplete Horadam, hyper-Horadam and Horadam’s numbers, respectively.
We define the matrices Ã(k,h)

r , H̃(k)
r and F̃(k)

r by

Ã(k,h)
r := A(k,h)

r ◦G;

H̃(k)
r := H(k)

r ◦G;

F̃(k)
r := F(k)

r ◦G;

respectively. The matrices Ã(k,h)
r , H̃(k)

r and F̃(k)
r correspond to Hadamard product of matrices A(k,h)

r , H(k)
r and

F(k)
r and circulant matrix with geometric progression G. The first theorem concerns the evaluation of the

spectral norm of the circulant matrix with the incomplete Horadam numbers.
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Theorem 4.4. For any h ≥ 2k + 2, let Ã(k,h)
1 be a circulant matrix. Then we have

‖Ã(k,h)
1 ‖2 =Wh+n+1(k + 1) − pn−1Wh+1(k + 1). (23)

Proof. Since the circulant matrix Ã(k,h)
1 is normal, the spectral norm of the matrix Ã(k,h)

1 is equal to its spectral
radius. Furthermore, Ã(k,h)

1 is irreducible and its entries are nonnegative, its spectral radius is the same as
its Perron root. Let u be a vector with all components 1. Then

Ã(k,h)
1 u =

n−1∑
j=0

qpn−1− jWh+ j(k)

 u.

As
∑n−1

j=0 qpn−1− jWh+ j(k) is an eigenvalue of Ã(k,h)
1 associated with u, which is necessarily the Perron root

of Ã(k,h)
1 . Hence from relation (16), we have

‖Ã(k,h)
1 ‖2 =Wh+n+1(k + 1) − pn−1Wh+1(k + 1).

From the relation (22) and Theorem 4.4 we deduce the upper and lower bounds for the sum of squares
of incomplete Horadam numbers.

Corollary 4.5. For any h ≥ 2k + 2, we have

1
√

n
(Wh+n+1(k + 1) − pn−1Wh+1(k + 1)) ≤

√√√n−1∑
j=0

(
qpn− j−1Wh+ j(k)

)2

≤Wh+n+1(k + 1) − pn−1Wh+1(k + 1). (24)

Theorem 4.6. For any n ≥ 1, the spectral norm of the circulant matrix H̃(k)
1 is

‖H̃(k)
1 ‖2 =W(k+1)

n−1 . (25)

Proof. The result is obtained in the same way to the Theorem 4.4.

From Theorem 4.6, we deduce the upper and lower bourns of sum of squares of hyper-Horadam numbers

1
√

n
W(k+1)

n−1 ≤

√√√n−1∑
j=0

pqn− j−1W(k)
j ≤

√
nW(k+1)

n−1 . (26)

Corollary 4.7. Let F̃(k)
1 be a circulant matrix, then we have the following equality

‖F̃(k)
1 ‖2 =W2k+n+1(k) − pn−1W2k+1 +W(k+1)

n−1 . (27)

Proof. The result is obtained from relations (20), (23) and (25).

Next, we give upper and lower bounds for the spectral norm of r-circulant matrix with the incomplete
Horadam numbers.

Theorem 4.8. For h ≥ 2k + 2, let Ã(k,h)
r be a r-circulant matrix.

(i) For |r| ≥ 1, we have

1
√

n
(Wh+n+1(k + 1) − pn−1Wh+1(k + 1)) ≤ ‖Ã(k,h)

r ‖2 ≤
√

(n − 1)|r|2 + 1
(
Wh+n+1(k + 1) − pn−1Wh+1(k + 1)

)
.
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(ii) For |r| < 1, we have

|r|
√

n

(
Wh+n+1(k + 1) − pn−1Wh+1(k + 1)

)
≤ ‖Ã(k,h)

r ‖2 ≤
√

n
(
Wh+n+1(k + 1) − pn−1Wh+1(k + 1)

)
.

Proof. From the definition of the matrix Ã(k,h)
r , we have

‖Ã(k,h)
r ‖F =

√√√n−1∑
j=0

(n + j(|r|2 − 1))
(
qpn− j−1Wh+ j(k)

)2
.

(i) Since |r| ≥ 1 and using the inequality (24), we have

‖Ã(k,h)
r ‖F ≥

√√√n−1∑
j=0

n
(
qpn− j−1Wh+ j(k)

)2
≥Wh+n+1(k + 1) − pn−1Wh+1(k + 1).

From (21), we obtain

1
√

n
(Wh+n+1(k + 1) − pn−1Wh+1(k + 1)) ≤ ‖Ã(k,h)

r ‖2.

Now, we define the matrices C and D as follows

C =


1 1 · · · 1 1
r 1 · · · 1 1
...

...
. . .

...
...

r r · · · 1 1
r r · · · r 1


,

D =


qpn−1Wh(k) qpn−2Wh+1(k) · · · qpWh+n−2(k) qWh+n−1(k)
qWh+n−1(k) qpn−1Wh(k) · · · qp2Wh+n−3(k) qpWh+n−2(k)

...
...

. . .
...

...
qpn−3Wh+2(k) qpn−4Wh+3(k) · · · qpn−1Wh(k) qpn−2Wh+1(k)
qpn−2Wh+1(k) qpn−3Wh+2(k) · · · qWh+n−1(k) qpn−1Wh(k)


.

such that Ã(k,h)
r = C ◦D, then we have

r1(C) = max
1≤i≤n

√√√ n∑
j=1

|ci j|
2 =

√√√ n∑
j=1

|cnj|
2 =

√
(n − 1)|r|2 + 1,

and

c1(D) = max
1≤i≤n

√√√ n∑
j=1

|di j|
2 =

√√√ n∑
j=1

|cnj|
2 =

√√√n−1∑
j=0

(
qpn− j−1Wh+ j(k)

)2
.

Using Lemma 4.1 and (24), we get

‖Ã(k,h)
r ‖2 ≤

√
(n − 1)|r|2 + 1

(
Wh+n+1(k + 1) − pn−1Wh+1(k + 1)

)
.
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(ii) Since |r| ≤ 1, we have

‖Ã(k,h)
r ‖F =

√√√n−1∑
j=0

(n + j(|r|2 − 1))
(
qpn− j−1Wh+ j(k)

)2

≥

√√√
n|r|2

n−1∑
j=0

(
qpn− j−1Wh+ j(k)

)2

≥ |r| (Wh+n+1(k + 1) −Wh+1(k + 1)) .
From Lemma 4.1 and (21), we obtain

‖Ã(k,h)
r ‖2 ≥

|r|
√

n

(
Wh+n+1(k + 1) − pn−1Wh+1(k + 1)

)
.

Now, we consider the matrices C and D,

C =


1 1 · · · 1 1
r 1 · · · 1 1
...

...
. . .

...
...

r r · · · 1 1
r r · · · r 1


,

D =


qpn−1Wh(k) qpn−2Wh+1(k) · · · qpWh+n−2(k) qWh+n−1(k)
qWh+n−1(k) qpn−1Wh(k) · · · qp2Wh+n−3(k) qpWh+n−2(k)

...
...

. . .
...

...
qpn−3Wh+2(k) qpn−4Wh+3(k) · · · qpn−1Wh(k) qpn−2Wh+1(k)
qpn−2Wh+1(k) qpn−3Wh+2(k) · · · qWh+n−1(k) qpn−1Wh(k)


.

Then,

r1(C) = max
1≤i≤n

√√√ n∑
j=1

|ci j|
2 =

√√√ n∑
j=1

|cnj|
2 =
√

n,

and

c1(D) = max
1≤i≤n

√√√ n∑
j=1

|di j|
2 =

√√√ n∑
j=1

|dnj|
2 =

√√√n−1∑
j=0

(qpn− j−1Wh+ j)2.

From Lemma 4.1 and (24), we have

‖Ã(k,h)
r ‖2 ≤

√
n
(
Wh+n+1(k + 1) − pn−1Wh+1(k + 1)

)
,

which completes the proof.

Theorem 4.9. For H̃(k)
r be a r-circulant matrix. Then

(i) For |r| ≥ 1, we have

1
√

n
W(k+1)

n−1 ≤ ‖H̃
(k)
r ‖2 ≤

√
(n − 1)|r|2 + 1W(k+1)

n−1 . (28)
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(ii) For |r| < 1, we have

|r|
√

n
W(k+1)

n−1 ≤ ‖H̃
(k)
r ‖2 ≤

√
nW(k+1)

n−1 . (29)

Proof. The Theorem is obtained by similar way.

In the following result we give a upper and lower bounds for the spectral norm of a r-circulant matrix
with Horadam’s numbers in terms of incomplete Horadam and hyper-Horadam numbers.

Theorem 4.10. For k ≥ 1, let F̃(k)
r =

(
qpn−1W2k, qpn−2W2k+1, . . . , qW2k+n−1

)
be a r-circulant matrix.

(i) For |r| ≥ 1, we have

1
√

n
(W(k+1)

n−1 +W2k+n+1(k) − pn−1W2k+1) ≤ ‖F̃(k)
r ‖2 ≤

√
(n − 1)|r|2 + 1

(
W(k+1)

n−1 +W2k+n+1(k) − pn−1W2k+1

)
.

(ii) For |r| < 1, we have

|r|
√

n

(
W(k+1)

n−1 +W2k+n+1(k) − pn−1W2k+1

)
≤ ‖F̃(k)

r ‖2 ≤
√

n
(
W(k+1)

n−1 + W2k+n+1(k) − pn−1W2k+1

)
.

Proof. The matrix F̃(k)
r is of the form

F̃(k)
r =


qpn−1W2k qpn−2W2k+1 · · · qpW2k+n−2 qW2k+n−1
rqW2k+n−1 qpn−1W2k · · · qp2W2k+n−3 qpW2k+n−2

...
...

. . .
...

...
rqpn−3W2k+2 rqpn−4W2k+3 · · · qpn−1W2k qpn−2W2k+1
rqpn−2W2k+1 rqpn−3W2k+2 · · · rqW2k+n−1 qpn−1W2k


.

Then, we have

‖F̃(k)
r ‖F =

√√√n−1∑
j=0

(n + j(|r|2 − 1))
(
qpn−1− jW2k+ j

)2
.

(i) Since |r| ≥ 1 and by (20), we have

‖F̃(k)
r ‖F ≥

√√√n−1∑
j=0

n
(
qpn−1− jW2k+ j

)2
=

√√√n−1∑
j=0

n
(
W(k)

j +W2k+ j(k − 1)
)2
,

from the inequalities (26) and (24),

‖F̃(k)
r ‖F ≥

√√√n−1∑
j=0

n
(
W(k)

j +W2k+ j(k − 1)
)2
≥W(k+1)

n−1 +W2k+n+1(k + 1) − pn−1W2k+1,

using (21), we obtain

1
√

n
(W(k+1)

n−1 +W2k+n+1(k + 1) − pn−1W2k+1) ≤ ‖F̃(k)
r ‖2.
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On the other hand, let the matrices C and D be defined by

C =


1 1 · · · 1 1
r 1 · · · 1 1
...

...
. . .

...
...

r r · · · 1 1
r r · · · r 1


,

D =


qpn−1W2k qpn−2W2k+1 · · · qpW2k+n−2 qW2k+n−1
qW2k+n−1 qpn−1W2k · · · qp2W2k+n−3 qpW2k+n−2

...
...

. . .
...

...
qpn−3W2k+2 qpn−4W2k+3 · · · qpn−1W2k qpn−2W2k+1
qpn−2W2k+1 qpn−3W2k+2 · · · qW2k+n−1 qpn−1W2k


.

such that F̃(k)
r = C ◦D. Thus, we obtain

r1(C) = max
1≤i≤n

√√√ n∑
j=1

|ci j|
2 =

√√√ n∑
j=1

|cnj|
2 =

√
(n − 1)|r|2 + 1,

and

c1(D) = max
1≤i≤n

√√√ n∑
j=1

|di j|
2 =

√√√ n∑
j=1

|cnj|
2 =

√√√n−1∑
j=0

(qpn−1− jW2k+ j)2,

using the inequalities (26) and (24), we have√√√n−1∑
j=0

(qpn−1− jW2k+ j)2 =

√√√n−1∑
j=0

(
W(k)

j +W2k+ j(k − 1)
)2
≤W(k+1)

n−1 +W2k+n+1(k) − pn−1W2k+1(k).

and from Lemma 4.1, we get

‖F̃(k)
r ‖2 ≤

√
(n − 1)|r|2 + 1

(
W(k+1)

n−1 +W2k+n+1(k) − pn−1W2k+1(k)
)
.

(ii) Since |r| ≤ 1, we have

‖F̃(k)
r ‖F =

√√√n−1∑
j=0

(n + j(|r|2 − 1))
(
qpn−1− jW2k+ j

)2

≥

√√√
n|r|2

n−1∑
j=0

(
qpn−1− jW2k+ j

)2

≥ |r|
(
W(k+1)

n−1 +W2k+n+1(k) − pn−1W2k+1(k)
)
.

From (21), we obtain

‖F̃(k)
r ‖2 ≥

|r|
√

n

(
W(k+1)

n−1 +W2k+n+1(k) − pn−1W2k+1(k)
)
.

On the other hand, we have
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r1(C) = max
1≤i≤n

√√√ n∑
j=1

|ci j|
2 =

√√√ n∑
j=1

|cnj|
2 =
√

n,

and

c1(D) = max
1≤i≤n

√√√ n∑
j=1

|di j|
2 =

√√√ n∑
j=1

|cnj|
2 =

√√√n−1∑
j=0

(qpn−1− jW2k+ j)2.

Using the inequality ‖F̃(k)
r ‖2 ≤ r1(C)c1(D), we obtain

‖F̃(k)
r ‖2 ≤

√
n
(
W(k+1)

n−1 +W2k+n+1(k) − pn−1W2k+1(k)
)
.

Thus, the proof is completed.

Corollary 4.11. For h ≥ 2k + 2, the spectral norm of the Hadamard product of Ã(k,h)
r and H̃(k)

r is given by
(i) For |r| ≥ 1, we have

‖Ã(k,h)
r ◦ H̃(k)

r ‖2 ≤ ((n − 1)|r|2 + 1)W(k+1)
n−1

(
Wh+n+1(k + 1) − pn−1Wh+1(k + 1)

)
.

(ii) For |r| < 1, we have

‖Ã(k,h)
r ◦ H̃(k)

r ‖2 ≤
√

n(n − 1)W(k+1)
n−1

(
Wh+n+1(k + 1) − pn−1Wh+1(k + 1)

)
.

Corollary 4.12. For h ≥ 2k + 2, the spectral norm of the Kronecker product of Ã(k,h)
r and H̃(k)

r is given by
(i) For |r| ≥ 1, we have

W(k+1)
n−1

n
(Wh+n+1(k + 1) − pn−1Wh+1(k + 1)) ≤ ‖Ã(k,h)

r ⊗ H̃(k)
r ‖2 ≤ ((n − 1)|r|2 + 1)W(k+1)

n−1

·

(
Wh+n+1(k + 1) − pn−1Wh+1(k + 1)

)
.

(ii) For |r| < 1, we have
|r|2W(k+1)

n−1

n

(
Wh+n+1(k + 1) − pn−1Wh+1(k + 1)

)
≤ ‖Ã(k,h)

r ⊗ H̃(k)
r ‖2 ≤

√
n(n − 1)W(k+1)

n−1

·

(
Wh+n+1(k + 1) − pn−1Wh+1(k + 1)

)
.
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