# Arens Regularity and Weakly Compact Operators 

Janko Bračičǎ ${ }^{\text {a }}$<br>${ }^{a}$ University of Ljubljana


#### Abstract

We explore the relation between Arens regularity of a bilinear operator and the weak compactness of the related linear operators. Since every bilinear operator has natural factorization through the projective tensor product a special attention is given to Arens regularity of the tensor operator. We consider topological centers of a bilinear operator and we present a few results related to bilinear operators which can be approximated by linear operators.


## 1. Introduction

There are two natural ways how to extend a bilinear operator $m: X \times Y \rightarrow Z$, where $X, Y, Z$ are complex Banach spaces, to a bilinear operator from $X^{* *} \times Y^{* *}$ to $Z^{* *}$. However, in general, those natural extensions are not equal. Arens [1] was the first who considered this phenomena. He characterized those bilinear operators, called (Arens) regular, which have a unique natural extension to second duals (see [1, Theorems $2.3,3.3]$ ). Arens regularity is intimately connected with weakly compact linear operators. For instance, Hennefeld [5, Theorem 2.1] proved that multiplication in a Banach algebra $\mathcal{A}$ is Arens regular if and only if every operator $L_{\xi}: \mathcal{A} \rightarrow \mathcal{A}^{*}\left(\xi \in \mathcal{A}^{*}\right)$, which is defined by $L_{\xi} a=\xi \cdot a(a \in \mathcal{A})$, is weakly compact. Here $\xi \cdot a \in \mathcal{A}^{*}$ is defined by $\langle\xi \cdot a, b\rangle=\langle\xi, a b\rangle(b \in \mathcal{A})$. Recently, see [12], Arens ideas have been extended to locally convex algebras.

Arens proved that a bilinear operator $m: X \times Y \rightarrow Z$ is Arens regular if and only if, for every $\zeta \in Z^{*}$, the bilinear form $\zeta \circ m: X \times Y \rightarrow \mathbb{C}$ is Arens regular. By [11, Theorem 2.2], $\zeta \circ m$ is Arens regular if and only if it is represented by a weakly compact operator from $X$ to $Y^{*}$. If $m$ is not Arens regular, then those $\zeta \in Z^{*}$ for which $\zeta \circ m$ is Arens regular form a proper weakly closed subspace of $Z^{*}$, which we call Arens space of $m$ and denote it by $\operatorname{Ar}(m)$. In Section 3 we consider Arens spaces of bilinear operators which are compositions of $m$ with linear operators. Since every bilinear operator $m: X \times Y \rightarrow Z$ has canonical factorization $m=M \circ \tau$, where $M$ is a linear operator from $\widehat{X \otimes} Y$ to $Z$ and $\tau: X \times Y \rightarrow X \widehat{\otimes} Y$ is the tensor operator, it turns out that $m$ is Arens regular if and only if $M^{*}\left(Z^{*}\right) \subseteq \operatorname{Ar}(\tau)$. Section 4 is devoted to the Arens space of the tensor operator. It is proven that $\zeta \in(\widehat{X \otimes} Y)^{*}$ is in $\operatorname{Ar}(\tau)$ if and only if the operator from $X$ to $Y^{*}$ which naturally represents $\zeta$ is weakly compact. It follows that $\tau$ is Arens regular if and only if every operator from $X$ to $Y^{*}$ is weakly compact. In Section 5 we consider topological centers of a bilinear operator and in the last section we prove a few results for a special class of bilinear operators which can be approximated by linear operators.

[^0]
## 2. Preliminaries

Let $X$ be a complex Banach space. We denote by $X^{*}, X^{* *}$ and $X^{* * *}$ its topological first, second and third dual, respectively. The pairing between a Banach space and its dual is denoted by $\langle\cdot, \cdot\rangle$. The canonical embedding of $X$ into $X^{* *}$ is denoted by $\iota_{X}$. Usually we write $\widehat{x}$ instead of $\iota_{X}(x)$ and $\widehat{X}$ denotes the image of $\iota_{X}$ in $X^{* *}$. By $B(X)$ we denote the Banach algebra of all bounded linear operators on $X$ and by $I$, or by $I_{X}$, we denote the identity operator. If $Y$ is another complex Banach space, then $B(X, Y)$ denotes the Banach space of all bounded linear operators from $X$ to $Y$.

Let $X, Y$ and $Z$ be complex Banach spaces. By $\operatorname{Bil}(X \times Y, Z)$ we denote the Banach space of all bounded bilinear mappings from $X \times Y$ to $Z$. Now on, we will call elements of $\operatorname{Bil}(X \times Y, Z)$ bilinear operators and elements of $\operatorname{Bil}(X \times Y, \mathbb{C})$ bilinear forms.

Let $m \in \operatorname{Bil}(X \times Y, Z)$. Then $m^{*} \in \operatorname{Bil}\left(Z^{*} \times X, Y^{*}\right)$ is defined by $\left\langle m^{*}(\zeta, x), y\right\rangle=\langle\zeta, m(x, y)\rangle$, where $x \in$ $X, y \in Y, \zeta \in Z^{*}$ are arbitrary. It is obvious that $\left\|m^{*}\right\|=\|m\|$. Similarly one defines $m^{* *} \in \operatorname{Bil}\left(Y^{* *} \times Z^{*}, X^{*}\right)$ and $m^{* * *} \in \operatorname{Bil}\left(X^{* *} \times Y^{* *}, Z^{* *}\right)$ by $\left\langle m^{* *}(\Gamma, \zeta), x\right\rangle=\left\langle\Gamma, m^{*}(\zeta, x)\right\rangle$ and $\left\langle m^{* * *}(\Phi, \Gamma), \zeta\right\rangle=\left\langle\Phi, m^{* *}(\Gamma, \zeta)\right\rangle$, where $x \in$ $X, \Phi \in X^{* *}, \Gamma \in Y^{* *}$, and $\zeta \in Z^{*}$ are arbitrary (see [1]). It is easily seen that $m^{* * *}$ is an extension of $m$, that is, $m^{* * *}(\widehat{x}, y)=\widehat{m(x, y)}$ for all $x \in X, y \in Y$. However this extension is not necessary unique. Namely, let $m^{t}: Y \times X \rightarrow Z$ be the transpose of $m$, given by $m^{t}(y, x)=m(x, y)$ for all $x \in X, y \in Y$. It is easily seen that $m^{t * * t}(\widehat{x}, \widehat{y})=\widehat{m(x, y)}$ for all $x \in X, y \in Y$. In general, $m^{* * *}$ and $m^{t * * t}$ do not coincide on the whole space $X^{* *} \times Y^{* *}$. If they do coincide, then $m$ is said to be Arens regular.

If $m \in \operatorname{Bil}(X \times Y, Z)$, then for every $x \in X$ one has a bounded linear operator $m(x, \cdot): Y \rightarrow Z$ which maps $y \in Y$ to $m(x, y) \in Z$. Let $\rho: \operatorname{Bil}(X \times Y, Z) \rightarrow B(X, B(Y, Z))$ be given by $\rho(m) x=m(x, \cdot)$, for all $x \in X$. It is not hard to see that $\rho$ is an isometric isomorphism. Similarly, mapping $\lambda$, which is given by $\lambda(m) y=m(\cdot, y)$ for $m \in \operatorname{Bil}(X \times Y, Z)$ and $y \in Y$, is an isometric isomorphism from $\operatorname{Bil}(X \times Y, Z)$ to $B(Y, B(X, Z))$. We point out the particular case when $Z=\mathbb{C}$. Since $B(X, \mathbb{C})=X^{*}$ and $B(Y, \mathbb{C})=Y^{*}$ we see that the Banach space $\operatorname{Bil}(X \times Y, \mathbb{C})$ of bilinear forms can be identified with Banach spaces of bounded operators $B\left(X, Y^{*}\right)$, respectively $B\left(Y, X^{*}\right)$, through the isometric isomorphisms $\rho$, respectively $\lambda$. More precisely, for a bilinear form $\omega \in \operatorname{Bil}(X \times Y, \mathbb{C})$, operators $\rho(\omega) \in B\left(X, Y^{*}\right)$ and $\lambda(\omega) \in B\left(Y, X^{*}\right)$ are given by $\langle\rho(\omega) x, y\rangle=\omega(x, y)=\langle\lambda(\omega) y, x\rangle(x \in X, y \in Y)$.

We will use another representation of bilinear forms. Let $\widehat{X \otimes} Y$ be the projective tensor product of Banach spaces $X$ and $Y$ (see [10]). The dual space $(X \widehat{\otimes} Y)^{*}$ can be identified with $\operatorname{Bil}(X \times Y, \mathbb{C})$ through isometric isomorphism $\mu$, which is defined as follows. For every $\zeta \in(X \widehat{\otimes} Y)^{*}$, the bilinear form $\mu(\zeta)$ is given by $\mu(\zeta)(x, y)=\langle\zeta, x \otimes y\rangle$, where $x \in X, y \in Y$ are arbitrary (see [10, §2.2] for details). Hence, there are isometric isomorphisms between Banach spaces $\operatorname{Bil}(X \times Y, \mathbb{C}),(X \widehat{\otimes} Y)^{*}, B\left(X, Y^{*}\right)$ and $B\left(Y, X^{*}\right)$. We will denote by $\varphi=\rho \circ \mu$ the isometric isomorphism between $(\widehat{X \otimes} Y)^{*}$ and $B\left(X, Y^{*}\right)$, similarly, $\psi=\lambda \circ \mu$ denotes the isometric isomorphism between $(\widehat{X \otimes} Y)^{*}$ and $B\left(Y, X^{*}\right)$. Hence, if $\zeta \in(X \widehat{\otimes} Y)^{*}$, then $\varphi(\zeta) \in B\left(X, Y^{*}\right)$ and $\psi(\zeta) \in B\left(Y, X^{*}\right)$ are operators such that

$$
\begin{equation*}
\langle\varphi(\zeta) x, y\rangle=\langle\zeta, x \otimes y\rangle=\langle\psi(\zeta) y, x\rangle \quad \text { for all } x \in X, y \in Y \tag{1}
\end{equation*}
$$

Consider $\mathbb{C}$ as a one-dimensional Banach space spanned by 1 . Let $1^{*}: \mathbb{C} \rightarrow \mathbb{C}$ be the identity map. Then $\mathbb{C}^{*}=\mathbb{C} 1^{*}$ and for arbitrary $\alpha, \beta \in \mathbb{C}$ one has $\left\langle\alpha 1^{*}, \beta\right\rangle=\alpha \beta$. The second dual of $\mathbb{C}$ is $\mathbb{C}^{* *}=\mathbb{C} 1^{* *}$, where $1^{* *}: \mathbb{C}^{*} \rightarrow \mathbb{C}$ is a linear map determined by $\left\langle 1^{* *}, 1^{*}\right\rangle=1$. Let now $Z$ be an arbitrary complex Banach space and let $\zeta \in Z^{*}$. The adjoint $\zeta^{*}$ is given by $\left\langle\zeta^{*}\left(\alpha 1^{*}\right), z\right\rangle=\left\langle\alpha 1^{*}, \zeta(z)\right\rangle=\alpha \zeta(z)=\langle\alpha \zeta, z\rangle$, where $\alpha 1^{*} \in \mathbb{C}^{*}$ and $z \in Z$ are arbitrary. Hence $\zeta^{*}\left(\alpha 1^{*}\right)=\alpha \zeta$. Similarly we see, that for all $\Theta \in Z^{* *}$,

$$
\begin{equation*}
\zeta^{* *}(\Theta)=\langle\Theta, \zeta\rangle 1^{* *} \tag{2}
\end{equation*}
$$

Let $X, Y, Z$ be complex Banach spaces and $m \in \operatorname{Bil}(X \times Y, Z)$. Compositions of $m$ with linear operators give bilinear operators. Let $X^{\prime}, Y^{\prime}$ and $Z^{\prime}$ be complex Banach spaces and let $Q \in B\left(X^{\prime}, X\right), R \in B\left(Y^{\prime}, Y\right)$, $T \in B\left(Z, Z^{\prime}\right)$. Then $m \circ(Q, R) \in \operatorname{Bil}\left(X^{\prime} \times Y^{\prime}, Z\right)$ and $T \circ m \in \operatorname{Bil}\left(X \times Y, Z^{\prime}\right)$ are given by

$$
m \circ(Q, R)\left(x^{\prime}, y^{\prime}\right)=m\left(Q x^{\prime}, R y^{\prime}\right) \quad\left(x^{\prime} \in X^{\prime}, y^{\prime} \in Y^{\prime}\right)
$$

and

$$
T \circ m(x, y)=T(m(x, y)) \quad(x \in X, y \in Y)
$$

Since the statements in the following lemmas are easy to check the proofs are omitted.
Lemma 2.1. Let $m \in \operatorname{Bil}(X \times Y, Z), Q \in B\left(X^{\prime}, X\right)$ and $R \in B\left(Y^{\prime}, Y\right)$ be arbitrary. Then
(i) $(m \circ(Q, R))^{t}=m^{t} \circ(R, Q)$;
(ii) $(m \circ(Q, R))^{*}=R^{*} \circ m^{*} \circ\left(I_{Z^{*}}, Q\right)$;
(iii) $(m \circ(Q, R))^{* *}=Q^{*} \circ m^{* *} \circ\left(R^{* *}, I_{Z^{*}}\right)$;
(iv) $(m \circ(Q, R))^{* * *}=m^{* * *} \circ\left(Q^{* *}, R^{* *}\right)$ and $(m \circ(Q, R))^{t * * t t}=m^{t_{* * * t}} \circ\left(Q^{* *}, R^{* *}\right)$.

Lemma 2.2. Let $m \in \operatorname{Bil}(X \times Y, Z)$ and $T \in B\left(Z, Z^{\prime}\right)$ be arbitrary. Then
(i) $(T \circ m)^{t}=T \circ m^{t}$;
(ii) $(T \circ m)^{*}=m^{*} \circ\left(T^{*}, I_{X}\right)$;
(iii) $(T \circ m)^{* *}=m^{* *} \circ\left(I_{Y *}, T^{*}\right)$;
(iv) $(T \circ m)^{* * *}=T^{* *} \circ m^{* * *}$ and $(T \circ m)^{t * * * t}=T^{* *} \circ m^{t * * * t}$.

## 3. Arens functionals of a bilinear operator

Let $m \in \operatorname{Bil}(X \times Y, Z)$. We say that $\zeta \in Z^{*}$ is Arens functional of $m$ if the bilinear form $\zeta \circ m: X \times Y \rightarrow \mathbb{C}$ is Arens regular. Of course, 0 is Arens functional of every $m$. Let $\operatorname{Ar}(m) \subseteq Z^{*}$ be the set of all Arens functionals of $m$. As a special example we mention that for a bilinear form $\omega \in \operatorname{Bil}(X \times Y, \mathbb{C})$ we have $\operatorname{Ar}(\omega)=\mathbb{C} 1^{*}$ if and only if $\omega$ is Arens regular and $\operatorname{Ar}(\omega)=\{0\}$ otherwise. Arens [1] proved that $m \in \operatorname{Bil}(X \times Y, Z)$ is Arens regular if and only if $\operatorname{Ar}(m)=Z^{*}$. We include a slightly more general result. To prove it, we need the following proposition.

Proposition 3.1. $\operatorname{Ar}(m)$ is a weakly closed subspace of $Z^{*}$.
Proof. It is obvious that $\operatorname{Ar}(m)$ is a linear subspace of $Z^{*}$. Let $\left(\zeta_{i}\right)_{i \in \mathbb{I}} \subseteq \operatorname{Ar}(m)$ be a net which converges to $\zeta \in Z^{*}$ in the weak topology. Then

$$
\left\langle m^{* * *}(\Phi, \Gamma)-m^{t * * t}(\Phi, \Gamma), \zeta\right\rangle=\lim _{i \in \mathbb{I}}\left\langle m^{* * *}(\Phi, \Gamma)-m^{t * * * t}(\Phi, \Gamma), \zeta_{i}\right\rangle=0
$$

for arbitrary $\Phi \in X^{* *}, \Gamma \in Y^{* *}$. It follows, by (2), that $\zeta^{* *}\left(m^{* * *}(\Phi, \Gamma)-m^{t * * t}(\Phi, \Gamma)\right)=0$ and therefore ( $\zeta$ 。 $m)^{* * *}(\Phi, \Gamma)=(\zeta \circ m)^{t * * * t}(\Phi, \Gamma)$, by Lemma 2.2 (iv).

We will call $\operatorname{Ar}(m)$ the Arens space of a bilinear operator $m$.
Theorem 3.2 (cf. Theorem 2.3 [1]). The following are equivalent for $m \in \operatorname{Bil}(X \times Y, Z)$ :
(i) $m$ is Arens regular;
(ii) for every complex Banach space $Z^{\prime}$ and every $T \in B\left(Z, Z^{\prime}\right)$, the bilinear mapping $T \circ m$ is Arens regular;
(iii) there exists a subset $\mathcal{D} \subseteq Z^{*}$ whose linear span is weakly dense in $Z^{*}$ and $\zeta \circ m$ is Arens regular for every $\zeta \in \mathcal{D}$.

Proof. (i) $\Rightarrow$ (ii). Let $Z^{\prime}$ be a complex Banach space and $T \in B\left(Z, Z^{\prime}\right)$. Since $m$ is Arens regular we have $(T \circ m)^{* * *}=(T \circ m)^{t * * * t}$, by Lemma 2.2 (iv). To prove (ii) $\Rightarrow\left(\right.$ iii), take $Z^{\prime}=\mathbb{C}$. To see (iii) $\Rightarrow(\mathrm{i})$, assume that $m$ is not Arens regular. Then there exist $\Phi \in X^{* *}$ and $\Gamma \in Y^{* *}$ such that $m^{* * *}(\Phi, \Gamma) \neq m^{t * * t}(\Phi, \Gamma)$. Hence, there exists $\zeta \in Z^{*}$ such that $\left\langle m^{* * *}(\Phi, \Gamma), \zeta\right\rangle \neq\left\langle m^{t * * * t}(\Phi, \Gamma), \zeta\right\rangle$. By $(2), \zeta^{* *} \circ m^{* * *}(\Phi, \Gamma) \neq \zeta^{* *} \circ m^{t * * * t}(\Phi, \Gamma)$ which gives, by Lemma 2.2 (iv), $(\zeta \circ m)^{* * *} \neq(\zeta \circ m)^{t * * * t}$. It follows that $\zeta \notin \operatorname{Ar}(m)$. Since, by Proposition 3.1, $\operatorname{Ar}(m)$ is a weakly closed subspace of $Z^{*}$ we conclude that there does not exist $\mathcal{D} \subseteq Z^{*}$ such that (iii) holds.

In the following theorem the inclusion relations between the Arens space of $m \in \operatorname{Bil}(X \times Y, Z)$ and the Arens spaces of compositions of $m$ with linear operators and their consequences for Arens regularity are presented.

Theorem 3.3. Let $X, X^{\prime}, Y, Y^{\prime}, Z, Z^{\prime}$ be complex Banach spaces and $m \in \operatorname{Bil}(X \times Y, Z)$. Then, for arbitrary $Q \in$ $B\left(X^{\prime}, X\right), R \in B\left(Y^{\prime}, Y\right), T \in B\left(Z, Z^{\prime}\right)$, the following hold.
(i) $\operatorname{Ar}(m) \subseteq \operatorname{Ar}(m \circ(Q, R))$.
(ii) If $m$ is Arens regular, then $m \circ(Q, R)$ is Arens regular.
(iii) If $m \circ(Q, R)$ is Arens regular and $Q^{* *}, R^{* *}$ are surjective, then $m$ is Arens regular.
(iv) $\operatorname{Ar}(T \circ m)=\left\{\zeta^{\prime} \in Z^{\prime *} ; T^{*} \zeta^{\prime} \in \operatorname{Ar}(m)\right\}$; in particular, $T \circ m$ is Arens regular if and only if $T^{*}\left(Z^{\prime *}\right) \subseteq \operatorname{Ar}(m)$.
(v) If $m$ is Arens regular, then $T \circ m$ is Arens regular.
(vi) If $T \circ m$ is Arens regular and $T^{* *}$ is injective, then $m$ is Arens regular.

Proof. (i) Let $\zeta \in \operatorname{Ar}(m)$. Then $(\zeta \circ m)^{* * *}=(\zeta \circ m)^{t * * * t}$. By using Lemma 2.1 it is not hard to see that $(\zeta \circ m \circ(Q, R))^{* * *}=(\zeta \circ m)^{* * *} \circ\left(Q^{* *}, R^{* *}\right)=(\zeta \circ m)^{t * * * t} \circ\left(Q^{* *}, R^{* *}\right)=(\zeta \circ m \circ(Q, R))^{t * * t}$. Hence $\zeta \in \operatorname{Ar}(m \circ(Q, R))$.
(ii) If $m$ is Arens regular, then $\operatorname{Ar}(m)=Z^{*}$. It follows, by (i), that $\operatorname{Ar}(m \circ(Q, R))=Z^{*}$.
(iii) Let $\Phi \in X^{* *}$ and $\Gamma \in Y^{* *}$ be arbitrary. By the surjectivity, there exist $\Phi^{\prime} \in X^{\prime * *}$ and $\Gamma^{\prime} \in Y^{\prime * *}$ such that $\Phi=Q^{* *} \Phi^{\prime}$ and $\Gamma=R^{* *} \Gamma^{\prime}$. Hence

$$
\begin{aligned}
m^{t * * * t}(\Phi, \Gamma) & =m^{t * * * t}\left(Q^{* *} \Phi^{\prime}, R^{* *} \Gamma^{\prime}\right)=(m \circ(Q, R))^{t * * * t}\left(\Phi^{\prime}, \Gamma^{\prime}\right) \\
& =(m \circ(Q, R))^{* * *}\left(\Phi^{\prime}, \Gamma^{\prime}\right)=m^{* * *}(\Phi, \Gamma) .
\end{aligned}
$$

(iv) Let $\zeta^{\prime} \in Z^{\prime *}$ be arbitrary. Since $\left(T^{*} \zeta^{\prime}\right) \circ m(x, y)=\left\langle T^{*} \zeta^{\prime}, m(x, y)\right\rangle=\zeta^{\prime} \circ T \circ m(x, y)$, for all $x \in X, y \in Y$, we have $\zeta^{\prime} \circ T \circ m=\left(T^{*} \zeta^{\prime}\right) \circ m$. Hence, $\zeta^{\prime} \in \operatorname{Ar}(T \circ m)$ if and only if $T^{*} \zeta^{\prime} \in \operatorname{Ar}(m)$.
(v) If $m$ is Arens regular, then $\operatorname{Ar}(m)=Z^{*}$ and therefore $T^{*} \zeta^{\prime} \in \operatorname{Ar}(m)$ for every $\zeta^{\prime} \in Z^{\prime *}$. It follows, by (iv), $\operatorname{Ar}(T \circ m)=Z^{\prime *}$.
(vi) Since $T \circ m$ is Arens regular $\operatorname{Ar}(m)$ contains the image of $T^{*}$, by (iv). By injectivity of $T^{* *}$, the image of $T^{*}$ is a weakly dense subset of $Z^{*}$. We conclude, by Proposition 3.1, that $\operatorname{Ar}(m)=Z^{*}$.

Let $U \subseteq X, V \subseteq Y$ be a closed subspace and $Q: U \hookrightarrow X, R: V \hookrightarrow Y$ be the embeddings. For $m \in \operatorname{Bil}(X \times Y, Z)$, let $\left.m\right|_{(U, V)}=m \circ(Q, R)$ be the restriction of $m$ to $U \times V$. It follows easily from Theorem 3.3 that $\left.m\right|_{(U, V)}$ is Arens regular whenever $m$ is Arens regular. In particular, if $\mathcal{A}$ is an Arens regular Banach algebra, i.e., the multiplication in $\mathcal{A}$ is Arens regular, then every closed subalgebra of $\mathcal{A}$ is Arens regular.

## 4. Arens regularity of the tensor operator

Let $X$ and $Y$ be complex Banach spaces and let $\tau: X \times Y \rightarrow X \widehat{\otimes} Y$ be given by $\tau(x, y)=x \otimes y(x \in X, y \in Y)$. It is clear that $\tau$ is a bilinear operator. Now on we call this mapping the tensor operator and if we want to point out the underlying spaces, then we denote it by $\tau_{X, Y}$. If $Z$ is a complex Banach space and $m \in \operatorname{Bil}(X \times Y, Z)$, then there exists a unique linear operator $M: X \widehat{\otimes} Y \rightarrow Z$ such that $m(x, y)=M(x \otimes y)$ for all $x \in X, y \in Y$, that is, $m=M \circ \tau$ (see [10, Theorem 2.9]). We call $m=M \circ \tau$ the canonical factorization of $m$. Note that, by Theorem 3.3 (iv), $\operatorname{Ar}(m)=\left\{\zeta \in Z^{*} ; M^{*} \zeta \in \operatorname{Ar}(\tau)\right\}$ and $m$ is Arens regular if and only if $M^{*}\left(Z^{*}\right) \subseteq \operatorname{Ar}(\tau)$.

In order to describe $\operatorname{Ar}(\tau)$, recall that an operator $T \in B(X, Y)$ is said to be weakly compact if $T(\{x \in$ $X ;\|x\| \leq 1\}$ ) is relatively weakly compact in $Y$. The set $W(X, Y)$ of all weakly compact operators from $X$ to $Y$ is an operator ideal (see [9, Corollary 4.1]). In the proof of the following theorem we will use the fact that $T \in B(X, Y)$ is weakly compact if and only if $T^{* *}\left(X^{* *}\right) \subseteq \iota_{Y}(Y)$ (see [9, Theorem 4.5]).

Theorem 4.1. Let $X$ and $Y$ be complex Banach spaces. Then $\zeta \in(\widehat{X \otimes} Y)^{*}$ is in $\operatorname{Ar}(\tau)$ if and only if $\varphi(\zeta)$ is weakly compact, that is, $\varphi(\operatorname{Ar}(\tau))=W\left(X, Y^{*}\right)$. Similarly, $\psi(\operatorname{Ar}(\tau))=W\left(Y, X^{*}\right)$.

Proof. Let $\zeta \in(X \widehat{\otimes} Y)^{*}$. Denote by $\tau_{\zeta}$ the bilinear form $\zeta \circ \tau: X \times Y \rightarrow \mathbb{C}$. Hence $\tau_{\zeta}(x, y)=\langle\varphi(\zeta) x, y\rangle$ for all $x \in X$ and $y \in Y$. Straightforward computations show that

$$
\begin{aligned}
\tau_{\zeta}^{*}\left(\alpha 1^{*}, x\right) & =\alpha \varphi(\zeta) x, \quad \tau_{\zeta}^{* *}\left(\Gamma, \alpha 1^{*}\right)=\alpha \varphi(\zeta)^{*} \Gamma, \quad \tau_{\zeta}^{* * *}(\Phi, \Gamma)=\left\langle\varphi(\zeta)^{* *} \Phi, \Gamma\right\rangle 1^{* *}, \\
\tau_{\zeta}^{t}(y, x) & =\left\langle\varphi(\zeta)^{*} \widehat{y}, x\right\rangle, \quad \tau_{\zeta}^{t *}\left(\alpha 1^{*}, y\right)=\alpha \varphi(\zeta)^{*} \widehat{y}, \quad \tau_{\zeta}^{t * *}\left(\Phi, \alpha 1^{*}\right)=\alpha l_{\zeta}^{*}\left(\varphi(\zeta)^{* *} \Phi\right), \\
\tau_{\zeta}^{t * *}(\Gamma, \Phi) & =\left\langle\Gamma, \iota_{\zeta}^{*}\left(\varphi(\zeta)^{* *} \Phi\right)\right\rangle 1^{* *}, \quad \text { and } \quad \tau_{\zeta}^{t * * t}(\Phi, \Gamma)=\left\langle\iota^{*}\left(l_{\zeta}^{*}\left(\varphi(\zeta)^{* *} \Phi\right)\right), \Gamma\right\rangle 1^{* *},
\end{aligned}
$$

where $\alpha \in \mathbb{C}, x \in X, y \in Y, \Phi \in X^{* *}$ and $\Gamma \in Y^{* *}$ are arbitrary. Hence, $\tau_{\zeta}$ is Arens regular if and only if $\left\langle\iota_{\gamma^{*}}\left(\iota_{\gamma}^{*}\left(\varphi(\zeta)^{* *} \Phi\right)\right), \Gamma\right\rangle=\left\langle\varphi(\zeta)^{* *} \Phi, \Gamma\right\rangle$ holds for all $\Phi \in X^{* *}$ and $\Gamma \in Y^{* *}$.

Assume that $\varphi(\zeta)$ is weakly compact. Let $\Phi \in X^{* *}$ be arbitrary. By [9, Theorem 4.5], there exists $\eta \in Y^{*}$ such that $\varphi(\zeta)^{* *} \Phi=\widehat{\eta}$. It follows that $\left\langle\varphi(\zeta)^{* *} \Phi, \Gamma\right\rangle=\langle\Gamma, \eta\rangle$ and $\left\langle\iota_{Y}\left(l_{Y}^{*}\left(\varphi(\zeta)^{* *} \Phi\right)\right), \Gamma\right\rangle=\left\langle\Gamma, \iota_{Y}^{*}(\eta)\right\rangle=\langle\Gamma, \eta\rangle$ for every $\Gamma \in Y^{* *}$. This proves that $\tau_{\zeta}$ is Arens regular. The proof of the opposite implication is shorter: if, for $\Phi \in X^{* *}$, equality $\left\langle\iota_{Y^{*}}\left(\iota_{\zeta}^{*}\left(\varphi(\zeta)^{* *} \Phi\right)\right), \Gamma\right\rangle=\left\langle\varphi(\zeta)^{* *} \Phi, \Gamma\right\rangle$ holds for every $\Gamma \in Y^{* *}$, then $\varphi(\zeta)^{* *} \Phi=\iota_{\gamma^{*}}\left(l_{Y}^{*}\left(\varphi(\zeta)^{* *} \Phi\right)\right)$. Hence, $\varphi(\zeta)^{* *}\left(X^{* *}\right) \subseteq \iota_{\Upsilon^{*}}\left(Y^{*}\right)$ which is equivalent to the weak compactness of $\varphi(\zeta)$. It is obvious that the equality $\psi(\operatorname{Ar}(\tau))=W\left(Y, X^{*}\right)$ can be proven similarly.

The following corollary states the equivalence of items (i) and (iv) of [7, Theorem 2.1].
Corollary 4.2. For $m \in \operatorname{Bil}(X \times Y, Z)$ with the canonical factorization $m=M \circ \tau$, the following assertions are equivalent:
(i) $m$ is Arens regular,
(ii) $\varphi\left(M^{*} \zeta\right) \in B\left(X, Y^{*}\right)$ is weakly compact for every $\zeta \in Z^{*}$,
(iii) $\psi\left(M^{*} \zeta\right) \in B\left(Y, X^{*}\right)$ is weakly compact for every $\zeta \in Z^{*}$.

Proof. The equivalences hold by Theorems 3.3 (iv) and 4.1.
Corollary 4.3. The bilinear mapping $\tau: X \times Y \rightarrow X \widehat{\otimes} Y$ is Arens regular if and only if every operator in $B\left(X, Y^{*}\right)$, or every operator in $B\left(Y, X^{*}\right)$, is weakly compact.

If $X$ or $Y$ is reflexive, then every $T \in B(X, Y)$ is weakly compact. However there exist pairs of nonreflexive Banach spaces $X$ and $Y$ such that $B(X, Y)=W(X, Y)$. Recall from [9, §4.3] that a Banach space $X$ is said to be a Grothendieck space if every sequence $\left(\xi_{n}\right)_{n=1}^{\infty} \subseteq X^{*}$ which converges to 0 in the $w^{*}$-topology converges to 0 in the weak topology, as well. A Banach space $X$ is WCG (weakly compactly generated) if there exists a weakly compact subset $K \subseteq X$ such that $X$ is the closed linear span of $K$. By [9, Theorem 4.9], $B(X, Y)=W(X, Y)$ if $X$ is a Grothendieck space and $Y$ is WCG.

Corollary 4.4. Let $X$ be a Grothendieck space, $Y^{*}$ a WCG space, and $Z$ an arbitrary Banach space. Then every $m \in \operatorname{Bil}(X \times Y, Z)$ is Arens regular.

Proof. By the assumptions, $B\left(X, Y^{*}\right)=W\left(X, Y^{*}\right)$ which implies, by Corollary 4.3 , that $\tau$ is Arens regular. Now the assertion follows by Theorem 3.3 (iv).

Corollary 4.5 (Ülger, Theorem 2.2 [11]). Let $X$ and $Y$ be complex Banach spaces. A bilinear form $\mu \in \operatorname{Bil}(X \times Y, \mathbb{C})$ is Arens regular if and only if $\rho(\mu) \in B\left(X, Y^{*}\right)\left(\right.$ or $\left.\lambda(\mu) \in B\left(Y, X^{*}\right)\right)$ is weakly compact.

Example 4.6. Let $X$ be a complex Banach space. Then $\gamma(\xi, x)=\langle\xi, x\rangle$ is a bounded bilinear form on $X^{*} \times X$. Let $X^{\prime}$, $Y^{\prime}$ be complex Banach spaces and let $Q \in B\left(X^{\prime}, X^{*}\right), R \in B\left(Y^{\prime}, X\right)$ be arbitrary operators. Let $\gamma_{Q, R}\left(x^{\prime}, y^{\prime}\right)=\left\langle Q x^{\prime}, R y^{\prime}\right\rangle$. This is a bilinear form on $X^{\prime} \times Y^{\prime}$. Since $\left\langle\rho\left(\gamma_{Q, R}\right) x^{\prime}, y^{\prime}\right\rangle=\left\langle Q x^{\prime}, R y^{\prime}\right\rangle=\left\langle R^{*} Q x^{\prime}, y^{\prime}\right\rangle$ for all $x^{\prime} \in X^{\prime}$ and $y^{\prime} \in Y^{\prime}$ we have $\rho\left(\gamma_{Q, R}\right)=R^{*} Q$. Hence, $\gamma_{Q, R}$ is Arens regular if and only if $R^{*} Q$ is a weakly compact operator from $X^{\prime}$ to $Y^{\prime *}$. In particular, the bilinear form $\gamma$ is Arens regular if and only if $I_{X}^{*} I_{X^{*}}=I_{X^{*}}$ is weakly compact. It is well known that the identity operator is weakly compact if and only if the underlying space is reflexive. Hence, $\gamma$ is Arens regular if and only if $X$ is a reflexive space.

Proposition 4.7. Let $X, X^{\prime}, Y, Y^{\prime}$ and $Z$ be complex Banach spaces. Let $m \in \operatorname{Bil}(X \times Y, Z)$ and $Q \in B\left(X^{\prime}, X\right)$, $R \in B\left(Y^{\prime}, Y\right)$ be arbitrary. Let $m=M \circ \tau$ be the canonical factorization of $m$. Then $\operatorname{Ar}(m \circ(Q, R))=\{\zeta \in$ $\left.Z^{*} ; R^{*} \varphi\left(M^{*} \zeta\right) Q \in W\left(X^{\prime}, Y^{* *}\right)\right\}$.

Proof. Denote $\tau^{\prime}=\tau_{X^{\prime}, Y^{\prime}}$ and let $m \circ(Q, R)=M^{\prime} \circ \tau^{\prime}$ be the canonical factorization of $m \circ(Q, R)$. For arbitrary $x^{\prime} \in X^{\prime}, y^{\prime} \in Y^{\prime}$ we have $m \circ(Q, R)\left(x^{\prime}, y^{\prime}\right)=M \circ \tau\left(Q x^{\prime}, R y^{\prime}\right)=M(Q \otimes R)\left(x^{\prime} \otimes y^{\prime}\right)=M(Q \otimes R) \tau^{\prime}\left(x^{\prime}, y^{\prime}\right)$. Hence, $M^{\prime}=M(Q \otimes R)$. It follows, by Corollary 4.2, that $\zeta \in Z^{*}$ is in $\operatorname{Ar}(m \circ(Q, R))$ if and only if $\varphi^{\prime}\left((Q \otimes R)^{*} M^{*} \zeta\right)$ is a weakly compact operator, where by $\varphi^{\prime}$ we have denoted the natural isometric isomorphism from $\left(X^{\prime} \widehat{\otimes} Y^{\prime}\right)^{*}$ to $B\left(X^{\prime}, Y^{* *}\right)$. It is easily seen that $\varphi^{\prime}\left((Q \otimes R)^{*} M^{*} \zeta\right)=R^{*} \varphi\left(M^{*} \zeta\right) Q$.

Let $\mathcal{A}$ be a complex Banach algebra and let a complex Banach space $X$ be a left Banach module over $\mathcal{A}$ through the multiplication $m(a, x)=a \cdot x(a \in \mathcal{A}, x \in X)$. It is assumed that $\|m\| \leq 1$, that is $\|a \cdot x\| \leq\|a\|\|x\|$ for all $a \in \mathcal{A}, x \in X$. Through the mapping $m^{*}: X^{*} \times \mathcal{A} \rightarrow X^{*}$ the dual space $X^{*}$ is equipped with the structure of a right Banach $\mathcal{A}$-module. For every $\xi \in X^{*}$, we have a bounded linear operator $L_{\xi}: \mathcal{A} \rightarrow X^{*}$ given by $L_{\xi} a=\xi \cdot a$. The following proposition is an extension of [5, Theorem 2.1], see also [4, Theorem 3.4].

Proposition 4.8. Let $X$ be a left Banach $\mathcal{A}$-module through the multiplication $m$. Then $m$ is Arens regular if and only if $L_{\xi} \in B\left(\mathcal{A}, X^{*}\right)$ is a weakly compact operator for every $\xi \in X^{*}$.

Proof. Let $m=M \circ \tau$ be the canonical factorization. Then, for every $\xi \in X^{*}$, we have $\left\langle\varphi\left(M^{*} \xi\right) a, x\right\rangle=$ $\left\langle M^{*} \xi, a \otimes x\right\rangle=\langle\xi, m(a, x)\rangle=\left\langle L_{\xi} a, x\right\rangle$ for all $a \in \mathcal{A}, x \in X$. Hence $\varphi\left(M^{*} \xi\right)=L_{\xi}$. Now the assertion follows by Corollary 4.2.

Let $\mathcal{A}$ be a complex Banach algebra and let $m$ denotes the multiplication in $\mathcal{A}$. A functional $\zeta \in \mathcal{A}^{*}$ is said to be weakly almost periodic on $\mathcal{A}$ if $L_{\zeta} \in B\left(\mathcal{A}, \mathcal{A}^{*}\right)$ is a weakly compact operator. Hence in this case Arens functionals of $m$ are precisely the weakly almost periodic functionals.

## 5. Topological centers

The left topological center of $m \in \operatorname{Bil}(X \times Y, Z)$ is

$$
\mathcal{Z}^{\ell}(m)=\left\{\Phi \in X^{* *} ; \quad m^{* * *}(\Phi, \cdot): Y^{* *} \rightarrow Z^{* *} \quad \text { is } w^{*}-w^{*} \text { continuous }\right\}
$$

and the right topological center of $m$ is $\mathcal{Z}^{r}(m)=\mathcal{Z}^{\ell}\left(m^{t}\right)$ (see $[2,3,6]$ ). It is not hard to see that $\mathcal{Z}^{\ell}(m)=\left\{\Phi \in X^{* *} ; m^{* * *}(\Phi, \Gamma)=m^{t * * *}(\Phi, \Gamma)\right.$ for all $\left.\Gamma \in Y^{* *}\right\}$, and therefore $\mathcal{Z}^{r}(m)=\left\{\Gamma \in Y^{* *} ; m^{* * *}(\Phi, \Gamma)=\right.$ $m^{t * * * t}(\Phi, \Gamma)$ for all $\left.\Phi \in X^{* *}\right\}$. Hence, a bilinear operator $m \in \operatorname{Bil}(X \times Y, Z)$ is Arens regular if and only if $\mathcal{Z}^{\ell}(m)=X^{* *}$ or $\mathcal{Z}^{r}(m)=Y^{* *}$. It is clear that $\widehat{X} \subseteq \mathcal{Z}^{\ell}(m)$ and $\widehat{Y} \subseteq \mathcal{Z}^{r}(m)$. If $m$ is such that $\mathcal{Z}^{\ell}(m)=\widehat{X}$, then $m$ is said to be left strongly Arens irregular. Similarly, if $\mathcal{Z}^{r}(m)=\widehat{Y}$, then $m$ is right strongly Arens irregular. There exist bilinear operators which are left strongly Arens irregular but not right strongly Arens irregular (and vice versa), see [3].

Lemma 5.1. Let $m \in \operatorname{Bil}(X \times Y, Z)$ and let $m=M \circ \tau$ be its canonical factorization. If $\zeta \in Z^{*}$, then

$$
\begin{equation*}
(\zeta \circ m)^{* * *}(\Phi, \Gamma)=\left\langle\varphi\left(M^{*} \zeta\right)^{* *} \Phi, \Gamma\right\rangle 1^{* *}=\left\langle\Phi, \iota_{X}^{*} \psi\left(M^{*} \zeta\right)^{* *} \Gamma\right\rangle 1^{* *} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
(\zeta \circ m)^{t * * *}(\Phi, \Gamma)=\left\langle\psi\left(M^{*} \zeta\right)^{* *} \Gamma, \Phi\right\rangle 1^{* *}=\left\langle\Gamma, \iota_{Y}^{*}\left(\varphi\left(M^{*} \zeta\right)^{* *} \Phi\right)\right\rangle 1^{* *} \tag{4}
\end{equation*}
$$

for every $\Phi \in X^{* *}, \Gamma \in Y^{* *}$.

Proof. We will prove the first equality in (3) and the second equality in (4). By (1), we have $\zeta \circ m(x, y)=$ $\left.\langle\zeta, M \circ \tau(x, y)\rangle=\left\langle M^{*} \zeta, x \otimes y\right)\right\rangle=\left\langle\varphi\left(M^{*} \zeta\right) x, y\right\rangle$ for every $x \in X, y \in Y$. Hence $\left\langle(\zeta \circ m)^{*}\left(1^{*}, x\right), y\right\rangle=\left\langle 1^{*}, \zeta \circ m(x, y)\right\rangle=$ $\left\langle 1^{*},\left\langle\varphi\left(M^{*} \zeta\right) x, y\right\rangle\right\rangle=\left\langle\varphi\left(M^{*} \zeta\right) x, y\right\rangle$ for every $x \in X, y \in Y$ which gives $(\zeta \circ m)^{*}\left(1^{*}, x\right)=\varphi\left(M^{*} \zeta\right) x$ for every $x \in X$. Let $\Gamma \in Y^{* *}$ be arbitrary. Then $\left\langle(\zeta \circ m)^{* *}\left(\Gamma, 1^{*}\right), x\right\rangle=\left\langle\Gamma,(\zeta \circ m)^{*}\left(1^{*}, x\right)\right\rangle=\left\langle\Gamma, \varphi\left(M^{*} \zeta\right) x\right\rangle=\left\langle\varphi\left(M^{*} \zeta\right)^{*} \Gamma, x\right\rangle$ for every $x \in X$ and therefore $(\zeta \circ m)^{* *}\left(\Gamma, 1^{*}\right)=\varphi\left(M^{*} \zeta\right)^{*} \Gamma$. Let $\Phi \in X^{* *}, \Gamma \in Y^{* *}$ be arbitrary. We have $\left\langle(\zeta \circ m)^{* * *}(\Phi, \Gamma), 1^{*}\right\rangle=\left\langle\Phi,(\zeta \circ)^{* *}\left(\Gamma, 1^{*}\right)\right\rangle=\left\langle\Phi, \varphi\left(M^{*} \zeta\right)^{*} \Gamma\right\rangle=\left\langle\varphi\left(M^{*} \zeta\right)^{* *} \Phi, \Gamma\right\rangle=\left\langle\left\langle\varphi\left(M^{*} \zeta\right)^{* *} \Phi, \Gamma\right\rangle 1^{* *}, 1^{*}\right\rangle$ which shows that the first equality in (3) holds.

Since $(\zeta \circ m)^{t}(y, x)=\left\langle\varphi\left(M^{*} \zeta\right) x, y\right\rangle$ we have $\left\langle(\zeta \circ m)^{t *}\left(1^{*}, y\right), x\right\rangle=\left\langle 1^{*},\left\langle\varphi\left(M^{*} \zeta\right) x, y\right\rangle\right\rangle=\left\langle\varphi\left(M^{*} \zeta\right) x, y\right\rangle=$ $\left\langle\varphi\left(M^{*} \zeta\right)^{*} \iota_{Y}(y), x\right\rangle$ for every $x \in X, y \in Y$ which gives $(\zeta \circ m)^{t *}\left(1^{*}, y\right)=\varphi\left(M^{*} \zeta\right)^{*} \iota_{Y}(y)$. Let $\Phi \in X^{* *}$ be arbitrary. Then $\left\langle(\zeta \circ m)^{t * *}\left(\Phi, 1^{*}\right), y\right\rangle=\left\langle\Phi, \varphi\left(M^{*} \zeta\right)^{*} \iota_{\gamma}(y)\right\rangle=\left\langle\iota_{\gamma}^{*} \varphi\left(M^{*} \zeta\right)^{* *} \Phi, y\right\rangle(y \in Y)$ and therefore $(\zeta \circ m)^{t * *}\left(\Phi, 1^{*}\right)=$ $\iota_{\gamma}^{*} \varphi\left(M^{*} \zeta\right)^{* *} \Phi$. Now, for arbitrary $\Phi \in X^{* *}$ and $\Gamma \in Y^{* *}$, it follows from $\left\langle(\zeta \circ m)^{t * * *}(\Gamma, \Phi), 1^{*}\right\rangle=\left\langle\Gamma, \iota_{\gamma}^{*} \varphi\left(M^{*} \zeta\right)^{* *} \Phi\right\rangle=$ $\left\langle\left\langle\Gamma, \iota_{\gamma}^{*} \varphi\left(M^{*} \zeta\right)^{* *} \Phi\right\rangle 1^{* *}, 1^{*}\right\rangle$ that the second equality in (4) holds.

Proposition 5.2. Let $m \in \operatorname{Bil}(X \times Y, Z)$ and let $m=M \circ \tau$ be its canonical factorization. If $\zeta \in Z^{*}$, then $\mathcal{Z}^{\ell}(\zeta \circ m)=\left\{\Phi \in X^{* *} ; \varphi\left(M^{*} \zeta\right)^{* *} \Phi \in \widehat{Y^{*}}\right\}$ and $\mathcal{Z}^{r}(\zeta \circ m)=\left\{\Gamma \in Y^{* *} ; \psi\left(M^{*} \zeta\right)^{* *} \Gamma \in \widehat{X^{*}}\right\}$.

Proof. Assume that $\Phi \in X^{* *}$ is such that $\varphi\left(M^{*} \zeta\right)^{* *} \Phi \in \widehat{Y^{*}}$, say $\varphi\left(M^{*} \zeta\right)^{* *} \Phi=\widehat{\eta}$, where $\eta \in Y^{*}$. Note that $\langle\eta, y\rangle=\langle\widehat{\eta}, \widehat{y}\rangle=\left\langle\iota_{\gamma}^{*} \varphi\left(M^{*} \zeta\right)^{* *} \Phi, y\right\rangle$ for every $y \in Y$ which gives $\eta=\iota_{\gamma}^{*} \varphi\left(M^{*} \zeta\right)^{* *} \Phi$. Hence $\left\langle\varphi\left(M^{*} \zeta\right)^{* *} \Phi, \Gamma\right\rangle=$ $\langle\Gamma, \eta\rangle=\left\langle\Gamma, \iota_{\gamma}^{*}\left(\varphi\left(M^{*} \zeta\right)^{* *} \Phi\right)\right\rangle$ holds for every $\Gamma \in Y^{* *}$. It follows, by Lemma 5.1, that $(\zeta \circ m)^{* * *}(\Phi, \Gamma)=$ $(\zeta \circ m)^{t * * * t}(\Phi, \Gamma)$ for every $\Gamma \in Y^{* *}$, that is, $\Phi \in \mathcal{Z}^{\ell}(m)$. To see the opposite inclusion, suppose that $\Phi \in \mathcal{Z}^{\ell}(m)$. Then $(\zeta \circ m)^{* * *}(\Phi, \Gamma)=(\zeta \circ m)^{t * * *}(\Phi, \Gamma)$ for every $\Gamma \in Y^{* *}$ which gives, by Lemma $5.1,\left\langle\varphi\left(M^{*} \zeta\right)^{* *} \Phi, \Gamma\right\rangle=$ $\left\langle\Gamma, \iota_{Y}^{*}\left(\varphi\left(M^{*} \zeta\right)^{* *} \Phi\right)\right\rangle$ for every $\Gamma \in Y^{* *}$. We conclude that $\varphi\left(M^{*} \zeta\right)^{* *} \Phi=\iota_{Y^{*}}\left(\iota_{Y}^{*}\left(\varphi\left(M^{*} \zeta\right)^{* *} \Phi\right)\right) \in \widehat{Y^{*}}$.

The second equality follows now from the first equality. Indeed, note that $\mathcal{Z}^{r}(\zeta \circ m)=\mathcal{Z}^{\ell}\left((\zeta \circ m)^{t}\right)$ which means that the second equality is actually the first one with $X$ and $Y$ interchanged.

By [9, Theorem 4.5], it follows from Proposition 5.2 that $\varphi\left(M^{*} \zeta\right)$ is a weakly compact operator if and only if $\mathcal{Z}^{\ell}(\zeta \circ m)=X^{* *}$, that is, if and only if $\zeta \in \operatorname{Ar}(m)$. Similarly, $\psi\left(M^{*} \zeta\right)$ is a weakly compact operator if and only if $\mathcal{Z}^{r}(\zeta \circ m)=Y^{* *}$.

For an arbitrary $m \in \operatorname{Bil}(X \times Y, Z)$, we have the following characterization of the left and the right topological center of $m$.

Proposition 5.3. The topological centers of $m \in \operatorname{Bil}(X \times Y, Z)$ are

$$
\mathcal{Z}^{\ell}(m)=\bigcap_{\zeta \in Z^{*}} \mathcal{Z}^{\ell}(\zeta \circ m) \quad \text { and } \quad \mathcal{Z}^{r}(m)=\bigcap_{\zeta \in Z^{*}} \mathcal{Z}^{r}(\zeta \circ m) .
$$

Proof. Let $m \in \operatorname{Bil}(X \times Y, Z)$ and let $m=M \circ \tau$ be its canonical factorization. If $\zeta \in Z^{*}$, then $\varphi\left(M^{*} \zeta\right) x=m^{*}(\zeta, x)$ for all $x \in X$. It follows that $m^{* *}(\Gamma, \zeta)=\varphi\left(M^{*} \zeta\right)^{*} \Gamma$ for all $\Gamma \in Y^{* *}$ and finally we have $\left\langle m^{* * *}(\Phi, \Gamma), \zeta\right\rangle=$ $\left\langle\varphi\left(M^{*} \zeta\right)^{* *} \Phi, \Gamma\right\rangle$ for all $\Phi \in X^{* *}$ and $\Gamma \in Y^{* *}$. Similarly, it is straightforward that $m^{t *}(\zeta, y)=\varphi\left(M^{*} \zeta\right)^{*} y$ for all $y \in Y$. This gives $m^{t * *}(\Phi, \zeta)=\iota_{Y}^{*}\left(\varphi\left(M^{*} \zeta\right)^{* *} \Phi\right)$ for all $\Phi \in X^{* *}$. Hence, $\left\langle m^{t * * *}(\Phi, \Gamma), \zeta\right\rangle=\left\langle\Gamma, \iota_{\gamma}^{*}\left(\varphi\left(M^{*} \zeta\right)^{* *} \Phi\right)=\right.$ $\left\langle\iota_{\gamma^{*}}\left(\iota_{\gamma}^{*}\left(\varphi\left(M^{*} \zeta\right)^{* *} \Phi\right)\right), \Gamma\right\rangle$ for all $\Phi \in X^{* *}$ and $\Gamma \in Y^{* *}$.

Assume that $\Phi \in Z^{\ell}(m)$. Let $\zeta \in Z^{*}$ be arbitrary. Since $m^{* * *}(\Phi, \Gamma)=m^{t * * *}(\Phi, \Gamma)$ for all $\Gamma \in Y^{* *}$ we conclude that $\varphi\left(M^{*} \zeta\right)^{* *} \Phi$ is equal to $\iota_{Y^{*}}\left(\iota_{Y}^{*}\left(\varphi\left(M^{*} \zeta\right)^{* *} \Phi\right)\right) \in \widehat{Y^{*}}$, which shows that $\Phi \in \mathcal{Z}^{\ell}(\zeta \circ m)$.

Suppose now that $\Phi \in X^{* *}$ is not in $\mathcal{Z}^{\ell}(m)$. Then there exists $\Gamma \in Y^{* *}$ such that $m^{* * *}(\Phi, \Gamma) \neq m^{t * * t}(\Phi, \Gamma)$. It follows that there exists $\zeta \in Z^{*}$ such that $\left\langle m^{* * *}(\Phi, \Gamma), \zeta\right\rangle \neq\left\langle m^{t * * *}(\Phi, \Gamma), \zeta\right\rangle$. By the previous paragraph, $\varphi\left(M^{*} \zeta\right)^{* *} \Phi \neq \iota_{\gamma^{*}}\left(\iota_{\zeta}^{*}\left(\varphi\left(M^{*} \zeta\right)^{* *} \Phi\right)\right)$. If there were $\eta \in Y^{*}$ such that $\varphi\left(M^{*} \zeta\right)^{* *} \Phi=\widehat{\eta}$, then we would have $\langle\eta, y\rangle=$ $\langle\hat{\eta}, \widehat{y}\rangle=\left\langle\varphi\left(M^{*} \zeta\right)^{* *} \Phi, \iota_{\gamma}(y)\right\rangle=\left\langle\iota_{\gamma}^{*}\left(\varphi\left(M^{*} \zeta\right)^{* *} \Phi\right), y\right\rangle$ for every $y \in Y$. Hence, we would have $\eta=\iota_{\gamma}^{*}\left(\varphi\left(M^{*} \zeta\right)^{* *} \Phi\right)$ and consequently $\varphi\left(M^{*} \zeta\right)^{* *} \Phi=\iota_{Y^{*}}(\eta)=\iota_{Y^{*}}\left(\iota_{Y}^{*}\left(\varphi\left(M^{*} \zeta\right)^{* *} \Phi\right)\right)$ which is a contradiction. We conclude that $\varphi\left(M^{*} \zeta\right)^{* *} \Phi \notin \widehat{Y^{*}}$, that is $\Phi \notin \mathcal{Z}^{\ell}(\zeta \circ m)$.

The second equality is proven similarly.

Assume that $m \in \operatorname{Bil}(X \times Y, Z)$ is a left strongly Arens irregular bilinear operator, that is, $\mathcal{Z}^{\ell}(m)=\widehat{X}$. By Proposition 5.3, for every $\Phi \in X^{* *} \backslash \widehat{X}$, there exists $\zeta_{\Phi} \in Z^{*}$ such that $\Phi \notin \mathcal{Z}^{\ell}\left(\zeta_{\Phi} \circ m\right)$. It would be interesting to know, for which left strongly Arens irregular bilinear operators $m$, there exists $\zeta_{0} \in Z^{*}$ such that $\zeta_{0} \circ m$ is left strongly Arens irregular, that is, $\mathcal{Z}^{\ell}\left(\zeta_{0} \circ m\right)=\widehat{X}$.

## 6. Bilinear operators approximable by linear operators

If $m \in \operatorname{Bil}(X \times Y, Z)$, then $m^{*} \in \operatorname{Bil}\left(Z^{*} \times X, Y^{*}\right)$. Let $m^{*}=\tilde{M} \circ \tilde{\tau}$ be the canonical factorization (hence $\left.\tilde{\tau}=\tau_{Z^{*}, X}\right)$ and let $\tilde{\varphi}:\left(Z^{*} \widehat{\otimes} X\right)^{*} \rightarrow B\left(Z^{*}, X^{*}\right)$ be the natural isometric isomorphism (see (1)). It is not hard to see that, for arbitrary $\zeta \in Z^{*}$ and $\Gamma \in Y^{* *}$, we have $m^{* *}(\Gamma, \zeta)=\tilde{\varphi}\left(\tilde{M}^{*} \Gamma\right) \zeta$. It follows that the adjoint of $\tilde{\varphi}\left(\tilde{M}^{*} \Gamma\right) \in B\left(Z^{*}, X^{*}\right)$ satisfies $m^{* * *}(\Phi, \Gamma)=\tilde{\varphi}\left(\tilde{M}^{*} \Gamma\right)^{*} \Phi$ for every $\Phi \in X^{* *}$. If $\Gamma=\widehat{y}$, where $y \in Y$, let $A_{\widehat{y}} \in B(X, Z)$ be defined by $A_{\overparen{y}} x=m(x, y)(x \in X)$. Then $\left\langle m^{* *}(\widehat{y}, \zeta), x\right\rangle=\langle\zeta, m(x, y)\rangle=\left\langle A_{\hat{y}}^{*} \zeta, x\right\rangle$ for every $x \in X$. Hence $\tilde{\varphi}\left(\tilde{M}^{*} \widehat{y}\right)=A_{\hat{y}}^{*}$ and therefore $\tilde{\varphi}\left(\tilde{M}^{*} \widehat{y}\right)^{*}=A_{\widehat{y}}^{* *}$. However, if $\Gamma \in Y^{* *}$ is arbitrary, then it is not necessary that $\tilde{\varphi}\left(\tilde{M}^{*} \Gamma\right)^{*}$ is the second adjoint of an operator in $B(X, Z)$.

Example 6.1. Let $X, Y$ be complex Banach spaces, $Y$ non-reflexive. Let $\xi \in X^{*}$ be non-zero. Then $m(x, y)=\langle\xi, x\rangle y$, where $x \in X, y \in Y$ are arbitrary, defines $m \in \operatorname{Bil}(X \times Y, Y)$. It is easily seen that $m^{* * *}$ is given by $m^{* * *}(\Phi, \Gamma)=\langle\Phi, \xi\rangle \Gamma$ for every $\Phi \in X^{* *}, \Gamma \in Y^{* *}$. Assume that $\Gamma \in Y^{* *} \backslash \widehat{Y}$. If $\tilde{\varphi}\left(\tilde{M}^{*} \Gamma\right)^{*}$ were the second adjoint of $A_{\Gamma} \in B(X, Y)$, then we would have $\left\langle\Phi, A_{\Gamma}^{*} \eta\right\rangle=\left\langle\tilde{\varphi}\left(\tilde{M}^{*} \Gamma\right)^{*} \Phi, \eta\right\rangle=\left\langle\Phi, m^{* *}(\Gamma, \eta)\right\rangle$ for all $\Phi \in X^{* *}, \eta \in Y^{*}$ which would give $A_{\Gamma}^{*} \eta=m^{* *}(\Gamma, \eta)$ for all $\eta \in Y^{*}$. It would follow that for $x \in X$ we have $\left\langle m^{* * *}(\widehat{x}, \Gamma), \eta\right\rangle=\left\langle m^{* *}(\Gamma, \eta), x\right\rangle=\left\langle\widehat{A_{\Gamma} x}, \eta\right\rangle$ for all $\eta \in Y^{*}$. Hence $\widehat{A_{\Gamma} x}=m^{* * *}(\widehat{x}, \Gamma)=\langle\xi, x\rangle \Gamma$ for every $x \in X$. But this is impossible since $\xi \neq 0$ and $\Gamma \notin \widehat{Y}$. Note that this holds even in the case when $X$ is reflexive and therefore $m$ is Arens regular, which means that $\Gamma \in \mathcal{Z}^{r}(m)=Y^{* *}$.

Proposition 6.2. Let $m \in \operatorname{Bil}(X \times Y, Z)$. As in the paragraph before Example 6.1, let $\tilde{\varphi}\left(\tilde{M}^{*} \Gamma\right) \in B\left(Z^{*}, X^{*}\right)$ be such that $m^{* *}(\Gamma, \zeta)=\tilde{\varphi}\left(\tilde{M}^{*} \Gamma\right) \zeta\left(\zeta \in Z^{*}, \Gamma \in Y^{* *}\right)$. For $\Gamma \in Y^{* *}$, there exists $A_{\Gamma} \in B(X, Z)$ such that $\tilde{\varphi}\left(\tilde{M}^{*} \Gamma\right)=A_{\Gamma}^{*}$ if and only if $\Gamma \in \mathcal{Z}^{r}(m)$ and $\tilde{\varphi}\left(\tilde{M}^{*} \Gamma\right)^{*}(\widehat{X}) \subseteq \widehat{Z}$.

Proof. Assume that for $\Gamma \in Y^{* *}$ there exists $A_{\Gamma} \in B(X, Z)$ such that $\tilde{\varphi}\left(\tilde{M}^{*} \Gamma\right)=A_{\Gamma}^{*}$. Then $\tilde{\varphi}\left(\tilde{M}^{*} \Gamma\right)^{*}=m^{* * *}(\cdot, \Gamma)$ is $w^{*}$-continuous, by [9, Proposition 4.6], which means that $\Gamma \in \mathcal{Z}^{r}(m)$, by the definition of the right topological center. For an arbitrary $x \in X$, we have $\left\langle\tilde{\varphi}\left(\tilde{M}^{*} \Gamma\right)^{*} \widehat{x}, \zeta\right\rangle=\left\langle\widehat{x}, A_{\Gamma}^{*} \zeta\right\rangle=\left\langle\widehat{A_{\Gamma} x}, \zeta\right\rangle$ for every $\zeta \in Z^{*}$. It follows that $\tilde{\varphi}\left(\tilde{M}^{*} \Gamma\right) \widehat{x}=\widehat{A_{\Gamma} x} \in \widehat{Z}$.

Suppose now that $\Gamma \in \mathcal{Z}^{r}(m)$ and $\tilde{\varphi}\left(\tilde{M}^{*} \Gamma\right)^{*}(\widehat{X}) \subseteq \widehat{Z}$. Then for every $x \in X$ there exists a unique $A_{\Gamma} x \in Z$ such that $\tilde{\varphi}\left(\tilde{M}^{*} \Gamma\right)^{*} \widehat{x}=\widehat{A_{\Gamma} x}$. It is not hard to see that $x \mapsto A_{\Gamma} x$ defines an operator $A_{\Gamma} \in B(X, Z)$. Since $\widehat{A_{\Gamma} x}=A_{\Gamma}^{* *} \widehat{x}$ for every $x \in X$ and $\tilde{\varphi}\left(\tilde{M}^{*} \Gamma\right)^{*}$ is $w^{*}$-continuous, by the definition of the right topological center, we conclude that $\tilde{\varphi}\left(\tilde{M}^{*} \Gamma\right)^{*} \Phi=A_{\Gamma}^{* *} \Phi$ for every $\Phi \in X^{* *}$ which gives $\tilde{\varphi}\left(\tilde{M}^{*} \Gamma\right)=A_{\Gamma}^{*}$.

Let $m \in \operatorname{Bil}(X \times Y, Z)$ and $\Gamma \in Y^{* *}$ be such that there exists $A_{\Gamma} \in B(X, Z)$ satisfying $A_{\Gamma}^{*} \zeta=m^{* *}(\Gamma, \zeta)$ for every $\zeta \in Z^{*}$. By the Goldstine's Theorem (see [8, Theorem 2.6.26]), there exists a net $\left(y_{j}\right)_{j \in \mathrm{~J}} \subseteq Y$, bounded by $\|\Gamma\|$, such that $\Gamma$ is the $w^{*}$-limit of $\left(\widehat{y}_{j}\right)_{j \in \mathrm{~J}}$. Hence, if $x \in X$, then $\left\langle\zeta, A_{\Gamma} x\right\rangle=\left\langle m^{* *}(\Gamma, \zeta), x\right\rangle=\lim _{j \in J}\left\langle\widehat{y}_{j}, m^{*}(\zeta, x)\right\rangle=$ $\lim _{j \in \mathrm{~J}}\left\langle\zeta, m\left(x, y_{j}\right)\right\rangle$ for every $\zeta \in Z^{*}$ which means that $\left(m\left(x, y_{j}\right)_{j \in \mathrm{~J}}\right.$ converges to $A_{\Gamma} x$ in the weak topology.

Definition 6.3. A bilinear operator $m \in \operatorname{Bil}(X \times Y, Z)$ is approximable by a linear operator $A \in B(X, Z)$ at a bounded net $\left(y_{j}\right)_{j \in \mathrm{~J}} \subseteq Y$ if $w-\lim _{j \in \mathrm{~J}} m\left(x, y_{j}\right)=A x$ for every $x \in X$.

Our definition is inspired by the notion of approximately unital bilinear mappings which are considered in [6]. In the following proposition we state a few conditions on $m \in \operatorname{Bil}(X \times Y, Z)$ which are equivalent to the condition formulated in Definition 6.3.

Proposition 6.4. Let $m \in \operatorname{Bil}(X \times Y, Z)$ and $\Gamma \in Y^{* *}$. Let $\left(y_{j}\right)_{j \in \mathrm{~J}} \subseteq Y$ be a bounded net such that $\Gamma=w^{*}-\lim _{j \in \mathrm{~J}} \widehat{y}_{j}$. Let $A_{\Gamma} \in B(X, Z)$. The following assertions are equivalent:
(i) $m$ is approximable by $A_{\Gamma}$ at $\left(y_{j}\right)_{j \in \mathrm{~J}}$;
(ii) $m^{* *}(\Gamma, \zeta)=A_{\Gamma}^{*} \zeta$ for every $\zeta \in Z^{*}$;
(ii') $m^{* * *}(\Gamma, x)=A_{\Gamma}^{* *} \widehat{x}$ for every $x \in X$;
(iii) $m^{* * *}(\Phi, \Gamma)=A_{\Gamma}^{* *} \Phi$ for every $\Phi \in X^{* *}$;
(iii') $m^{* * * *}(\Omega, \Gamma)=l_{X}^{*}\left(A_{\Gamma}^{* * *} \Omega\right)$ for every $\Omega \in Z^{* * *}$.

Proof. (i) $\Rightarrow$ (ii). Let $\zeta \in Z^{*}$ be arbitrary. For every $x \in X$, we have $\left|\left\langle m^{* *}(\Gamma, \zeta)-A_{\Gamma}^{*} \zeta, x\right\rangle\right| \leq \mid\left\langle\Gamma, m^{*}(\zeta, x)\right\rangle-$ $\left\langle\widehat{y}_{j}, m^{*}(\zeta, x)\right\rangle\left|+\left|\left\langle\zeta, m\left(x, y_{j}\right)\right\rangle-\left\langle\zeta, A_{\Gamma} x\right\rangle\right|\right.$. Since $\Gamma$ is a $w^{*}$-limit of $\left(\widehat{y}_{j}\right)_{j \in \mathrm{~J}}$ and $A_{\Gamma} x$ is $w$-limit of $\left(m\left(x, y_{j}\right)\right)_{j \in \mathrm{~J}}$ we conclude that $m^{* *}(\Gamma, \zeta)=A_{\Gamma}^{*} \zeta$.
(ii) $\Rightarrow$ (i). Let $x \in X$ be arbitrary. For every $\zeta \in Z^{*}$, we have $\left\langle\zeta, m\left(x, y_{j}\right)-A_{\Gamma} x\right\rangle=\left\langle m^{* *}\left(\widehat{y}_{j}, \zeta\right)-A_{\Gamma}^{*} \zeta, x\right\rangle=$ $\left\langle m^{* *}\left(\widehat{y}_{j}, \zeta\right)-m^{* *}(\Gamma, \zeta), x\right\rangle=\left\langle\widehat{y}_{j}-\Gamma, m^{*}(\zeta, x)\right\rangle$. Since $\left(\widehat{y}_{j}\right)_{j \in J}$ converges to $\Gamma$ in the $w^{*}$-topology we conclude that ( $\left.m\left(x, y_{j}\right)\right)_{j \in \mathrm{~J}}$ converges to $A_{\Gamma} x$ in the weak topology.
(ii) $\Longleftrightarrow($ ii' $)$. Let $x \in X$ and $\zeta \in Z^{*}$ be arbitrary. Then $\left\langle m^{* *}(\Gamma, \zeta)-A_{\Gamma}^{*} \zeta, x\right\rangle=\left\langle\Gamma, m^{* t}(x, \zeta)\right\rangle-\left\langle A_{\Gamma}^{*} \widehat{x}, \zeta\right\rangle=$ $\left\langle m^{* * *}(\Gamma, x)-A_{\Gamma}^{* *} \widehat{x}, \zeta\right\rangle$. Hence, $m^{* *}(\Gamma, \zeta)=A_{\Gamma}^{*} \zeta$ for every $\zeta \in X^{*}$ if and only if $m^{* * *}(\Gamma, x)=A_{\Gamma}^{* *} \widehat{x}$ for every $x \in X$.
(ii) $\Longleftrightarrow$ (iii). Let $\Phi \in X^{* *}$ and $\zeta \in Z^{*}$ be arbitrary. Then $\left\langle m^{* * *}\left(\Phi, \Gamma_{0}\right)-A_{\Gamma}^{* *} \Phi, \zeta\right\rangle=\left\langle\Phi, m^{* *}(\Gamma, \zeta)-A_{\Gamma}^{*} \zeta\right\rangle$. Hence, $m^{* * *}(\Phi, \Gamma)=A_{\Gamma}^{* *} \Phi$ for every $\Phi \in X^{* *}$ if and only if $m^{* *}(\Gamma, \zeta)=A_{\Gamma}^{*} \zeta$ for every $\zeta \in Z^{*}$.
(ii') $\Longleftrightarrow$ (iii'). Let $x \in X$ and $\Omega \in Z^{* * *}$ be arbitrary. Then $\left\langle m^{* * *}(\Omega, \Gamma)-l_{X}^{*}\left(A_{\Gamma}^{* * *} \Omega\right), x\right\rangle=\left\langle\Omega, m^{* * *}(\Gamma, x)\right\rangle-$ $\left\langle A_{\Gamma}^{* * *} \Omega, \widehat{x}\right\rangle=\left\langle\Omega, m^{* * *}(\Gamma, x)-A_{\Gamma}^{* *} \widehat{x}\right\rangle$. Hence, $m^{* * *}(\Omega, \Gamma)=l_{X}^{*}\left(A_{\Gamma}^{* * *} \Omega\right)$ for every $\Omega \in Z^{* * *}$ if and only if $m^{* * *}(\Gamma, x)=$ $A_{\Gamma}^{* *} \widehat{x}$ for every $x \in X$.

Let $m \in \operatorname{Bil}(X \times Y, Z)$. If for $\Gamma \in Y^{* *}$ there exists $A_{\Gamma} \in B(X, Y)$ such that $m^{* * *}(\Phi, \Gamma)=A_{\Gamma}^{* *} \Phi$ for all $\Phi \in X^{* *}$, then $A_{\Gamma}$ is uniquely determined. Let $A p p(m)$ be a subset of $Y^{* *}$ of all those $\Gamma$ such that there exists $A_{\Gamma} \in B(X, Z)$ satisfying $m^{* * *}(\Phi, \Gamma)=A_{\Gamma}^{* *} \Phi$ for every $\Phi \in X^{* *}$. It is clear that $\operatorname{App}(m)$ is a linear subspace of $Y^{* *}$. We have already observed that $\widehat{Y} \subseteq A p p(m)$ and, by Proposition 6.2, $\operatorname{App}(m) \subseteq \mathcal{Z}^{r}(m)$. This last inclusion can be proper as we have seen in Example 6.1. Hence, in general, the condition $\operatorname{App}(m)=Y^{* *}$ is stronger than the condition $\mathcal{Z}^{r}(m)=Y^{* *}$, which is equivalent to the Arens regularity of $m$. Of course, every bilinear operator satisfying the former condition satisfies the latter condition, as well. The converse does not hold in general as shows the bilinear operator $m$ from Example 6.1 - if in that example $X$ is reflexive and $Y$ is non-reflexive, then $\operatorname{App}(m)=\widehat{Y}$ and $\mathcal{Z}^{r}(m)=Y^{* *}$ which means that $\operatorname{App}(m)$ is a proper subspace of $\mathcal{Z}^{r}(m)$.

Theorem 6.5. Let $m \in \operatorname{Bil}(X \times Y, Z)$. Assume that for $\Gamma \in Y^{* *}$ there exists $A_{\Gamma} \in B(X, Z)$ such that $m^{* * *}(\Phi, \Gamma)=A_{\Gamma}^{* *} \Phi$ for every $\Phi \in X^{* *}$. Then $A_{\Gamma}^{* * *}\left(\mathcal{Z}^{\ell}\left(m^{*}\right)\right) \subseteq \widehat{X^{*}}$ and $A_{\Gamma}^{* *}\left(\mathcal{Z}^{r}\left(m^{*}\right)\right) \subseteq \widehat{Z}$. In particular, if $m^{*}$ is Arens regular, then $A_{\Gamma}$ is weakly compact.

Proof. Let $\Omega \in \mathcal{Z}^{\ell}\left(m^{*}\right)$ be arbitrary. For every $\Phi \in X^{* *}$ we have

$$
\begin{aligned}
\left\langle A_{\Gamma}^{* *} \Omega, \Phi\right\rangle & \left.\left.=\left\langle\Omega, m^{* * *}(\Phi, \Gamma)\right\rangle=\left\langle m^{* * *}(\Omega, \Phi), \Gamma\right)\right\rangle=\left\langle m^{* * * * *}(\Omega, \Phi), \Gamma\right)\right\rangle \\
& =\left\langle\Phi, m^{* * *}(\Omega, \Gamma)\right\rangle=\left\langle\Phi, \iota_{X}^{*}\left(A_{\Gamma}^{* * *} \Omega\right)\right\rangle=\left\langle l_{X^{*}}\left(l_{X}^{*}\left(A_{\Gamma}^{* * *} \Omega\right)\right), \Phi\right\rangle,
\end{aligned}
$$

where we used equivalence (iii) $\Longleftrightarrow$ (iii') of Proposition 6.4. It follows that $A_{\Gamma}^{* * *} \Omega=\iota_{X^{*}}\left(l_{X}^{*}\left(A_{\Gamma}^{* *} \Omega\right)\right) \in \widehat{X^{*}}$.
Let $\left(y_{j}\right)_{j \in \mathbb{J}} \subseteq Y$ be a bounded net such that $\Gamma=w^{*}-\lim _{j \in \mathbb{J}} \widehat{y}_{j}$. For an arbitrary $\Phi \in \mathcal{Z}^{r}\left(m^{*}\right)$, let $\left(x_{i}\right)_{i \in \mathbb{I}} \subseteq X$ be a bounded net such that $\Phi=w^{*}-\lim _{i \in \mathbb{I}} \widehat{x_{i}}$. We want to show that $A_{\Gamma}^{* *} \Phi$ is the weak limit of $\left(\widehat{A_{\Gamma} x_{i}}\right)_{i \in \mathbb{I}}$. Let
$\Omega \in Z^{* * *}$ be arbitrary and let $\left(\zeta_{k}\right)_{k \in \mathbb{K}} \subseteq Z^{*}$ be a bounded net such that $\Omega=w^{*}-\lim _{k \in \mathbb{K}} \widehat{\zeta}_{k}$. Then we have

$$
\begin{aligned}
\left\langle\Omega, A_{\Gamma}^{* *} \Phi\right\rangle & =\left\langle\Omega, m^{* * *}(\Phi, \Gamma)\right\rangle=\left\langle m^{* * * *}(\Omega, \Phi), \Gamma\right\rangle=\left\langle m^{* * * * * t}(\Omega, \Phi), \Gamma\right\rangle \\
& =\left\langle\Phi, m^{* * * *}(\Omega, \Gamma)\right\rangle=\lim _{i \in \mathbb{I}}\left\langle\widehat{x}_{i}, m^{* * * *}(\Omega, \Gamma)\right\rangle=\lim _{i \in \mathbb{I}}\left\langle m^{* * * *}(\Omega, \Gamma), x_{i}\right\rangle \\
& =\lim _{i \in \mathbb{I}}\left\langle\Omega, m^{* * *}\left(\Gamma, x_{i}\right)\right\rangle=\lim _{i \in \mathbb{I}} \lim _{k \in \mathbb{K}}\left\langle\widehat{\zeta}_{k}, m^{* * *}\left(\Gamma, x_{i}\right)\right\rangle=\lim _{i \in \mathbb{I}} \lim _{k \in \mathbb{K}}\left\langle m^{* * *}\left(\Gamma, x_{i}\right), \zeta_{k}\right\rangle \\
& =\lim _{i \in \mathbb{I}} \lim _{k \in \mathbb{K}}\left\langle\Gamma, m^{* t}\left(x_{i}, \zeta_{k}\right)\right\rangle=\lim _{i \in \mathbb{I}} \lim _{k \in \mathbb{K}} \lim _{j \in \mathbb{J}}\left\langle\widehat{y}_{j}, m^{*}\left(\zeta_{k}, x_{i}\right)\right\rangle=\lim _{i \in \mathbb{I}} \lim _{k \in \mathbb{K}} \lim _{j \in \mathbb{J}}\left\langle\zeta_{k}, m\left(x_{i}, y_{j}\right)\right\rangle \\
& =\lim _{i \in \mathbb{I}} \lim _{k \in \mathbb{K}}\left\langle\zeta_{k}, A_{\Gamma} x_{i}\right\rangle,
\end{aligned}
$$

where the last equality follows by the definition of $A_{\Gamma}$ - see the paragraph before Definition 6.3 and the equivalence of (i) and (ii) in Proposition 6.4. Hence, $\left\langle\Omega, A_{\Gamma}^{* *} \Phi\right\rangle=\lim _{i \in \mathbb{I}} \lim _{k \in \mathbb{K}}\left\langle\widehat{\zeta_{k}}, \widehat{A_{\Gamma} x_{i}}\right\rangle=\lim _{i \in \mathbb{I}}\left\langle\Omega, \widehat{A_{\Gamma} x_{i}}\right\rangle$, that is, $A_{\Gamma}^{* *} \Phi$ is the weak limit of $\left(\widehat{A_{\Gamma} x_{i}}\right)_{i \in \mathbb{I}}$. Since $\widehat{Z}$ is a weakly closed subspace of $Z^{* *}$ we conclude that $A_{\Gamma}^{* *} \Phi \in \widehat{Z}$.

If $m^{*}$ is Arens regular, then $\mathcal{Z}^{\ell}\left(m^{*}\right)=Z^{* * *}$. Hence, $A_{\Gamma}^{* * *}$ maps $Z^{* * *}$ into $\widehat{X^{*}}$ which is equivalent, by [9, Theorem 4.5], to the weak compactness of $A_{\Gamma}^{*}$. Since $A_{\Gamma}^{*}$ is weakly compact if and only if $A_{\Gamma}$ is weakly compact (see [9, Theorem 4.7]), we conclude that $A_{\Gamma}$ is weakly compact.

Corollary 6.6. Let $m \in \operatorname{Bil}(X \times Y, Z)$ and for each $y \in Y$ let $A_{\widehat{y}} \in B(X, Z)$ be given by $A_{\widehat{y}} x=m(x, y)(x \in X)$. If $m^{*}$ is Arens regular, then every operator $A_{\overparen{y}}(y \in Y)$ is weakly compact.

Proof. It is clear that $m^{* * *}(\Phi, \widehat{y})=A_{\widehat{y}}^{* *} \Phi$ for every $\Phi \in X^{* *}$. Hence the assumption of Theorem 6.5 is satisfied.

Next corollary generalizes Theorem 4.1 in [6] as well as some results in [3, Section 2].
Corollary 6.7. Let $m \in \operatorname{Bil}(X \times Y, X)$. Assume that for $\Gamma \in Y^{* *}$ there exists an invertible $A_{\Gamma} \in B(X)$ such that $m^{* * *}(\Phi, \Gamma)=A_{\Gamma}^{* *} \Phi$ for every $\Phi \in X^{* *}$. Then $m^{*} \in \operatorname{Bil}\left(X^{*} \times X, Y^{*}\right)$ is left and right strongly Arens irregular. In particular, $m^{*}$ is Arens regular if and only if $X$ is reflexive.

Proof. By Theorem 6.5, for every $\Omega \in \mathcal{Z}^{\ell}\left(m^{*}\right)$ there exists $\xi \in X^{*}$ such that $A_{\Gamma}^{* * *} \Omega=\widehat{\xi}$. Since $A_{\Gamma}$ is invertible we have $\Omega=\left(A_{\Gamma}^{* * *}\right)^{-1} \widehat{\xi}=\left(\widehat{\left.A_{\Gamma}^{*}\right)^{-1}} \xi \in \widehat{X^{*}}\right.$. Hence, $\mathcal{Z}^{\ell}\left(m^{*}\right)=\widehat{X^{*}}$. Similarly, $\mathcal{Z}^{r}\left(m^{*}\right)=\widehat{Z}$.

## References

[1] R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951) 839-848.
[2] S. Barootkoob, S. Mohammadzadeh, H. R. E. Vishki, Topological centers of certain Banach module actions, Bull. Iran. Math. Soc. 35 (2009) 25-36.
[3] M. Eshaghi Gordji, M. Filali, Arens regularity of module actions, Studia Math. 181(3) (2007) 237-254.
[4] S. L. Gulick, Commutativity and ideals in the biduals of topological algebras, Pac. J. Math. 18 (1966) 121-137.
[5] J. Hennefeld, A note on the Arens products, Pac. J. Math. 26 (1968) 115-119.
[6] A. A. Khadem-Maboudi, H. R. E. Vishki, Strong Arens irregularity of bilinear mappings and reflexivity, Banach J. Math. Anal. 6 (2012) 155-160.
[7] S. Mohammadzadeh, H. R. E. Vishki, Arens regularity of module actions and the second adjoint of a derivation, Bull. Austral. Math. Soc. 77 (2008) 465-476.
[8] R. E. Megginson, An introduction to Banach space theory, GTM 183, Springer, 1998.
[9] T. J. Morrison, Functional analysis, John Wiley\& Sons, 2001.
[10] R. A. Ryan, Introduction to tensor products of Banach spaces, Springer, 2002.
[11] A. Ülger, Weakly compact bilinear forms and Arens regularity, Proc. Amer. Math. Soc. 101 (1987) 697-704.
[12] A. Zivari-Kazempour, On the Arens Product and Approximate Identity in Locally Convex Algebras, Filomat 30:6 (2016) 14931496.


[^0]:    2010 Mathematics Subject Classification. Primary 46H99; Secondary 47B10
    Keywords. Arens regular bilinear operator, weakly compact operator
    Received: 28 February 2018; Accepted: 12 August 2018
    Communicated by Dragan S. Djordjević
    Research supported by the Slovenian Research Agency through the research program P2-0268.
    Email address: janko.bracic@fmf.uni-lj.si (Janko Bračič)

