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Abstract. In this paper, we consider a generalized (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-
Sawada (CDGKS) equation. By using the Bell polynomial, we derive its bilinear form. Based on the
homoclinic breather limit method, we construct the homoclinic breather wave and the rational rogue wave
solutions of the equation. Then by using its bilinear form, some solitary wave solutions of the CDGKS
equation are provided by a very natural way. Moreover, some prominent characteristics for the dynamic
behaviors of these solitons are analyzed by several graphics. Our results show that the breather wave can
be transformed into rogue wave under the extreme behavior.

1. Introduction

In modern mathematics, the study of nonlinear evolution equations (NLEEs) plays a significant role in
areas of physics and other sciences. It is well known that finding exact solutions of NLEEs is a popular topic,
and more and more researchers are involved. After the development of these years, there are a number of
methods to solve NLEEs, including Hirota bilinear method [24] and Lie group method [4], etc. Recently,
rogue wave, noted for the nature of giant waves and extreme waves, has attracted a lot of attentions.
Researchers notice it in the deep ocean for the first time. Since then, the rogue wave phenomenons can
also be observed in some other fields, like nonlinear optic fibers, Bose-Einstein condensates, biophysics and
sometimes finance [2, 26, 28, 29, 41, 64]. For the first time, Peregrine showed that the frst-order rational
solution of nonlinear Schödinger equation can describe the rogue waves phenomenon [37]. Nowadays,
according to the application of Darboux transformation and Hirota bilinear method, rogue wave solutions
can be found in some other nonlinear equations [1, 3, 6, 11, 12, 16, 19, 20, 23, 38, 53–55, 57–61, 66, 71]. There
are also recent systematical studies on lump solutions and interaction solutions to integrable equations
by Ma and his collaborators [7, 32–35, 67, 68, 70, 72]. Especially, the lump solutions to nonlinear partial
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differential equations are systematically studied in [35] via Hirota bilinear forms. The existence of diverse
lump and interaction solutions to linear partial differential equations in (3+1)-dimensions has been explored
in [33].

In this paper, we consider a generalized (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada
(CDGKS) equation

36ut = −α
(
uxxxxx + 15 (uuxx)x + 45u2ux

)
+ 5β

(
uxxy + 3uuy + 3ux

∫
uydx

)
+ γ

∫
uyydx, (1)

which describes a large range of nonlinear dispersive physical phenomena as one of the most important
integrable equations in soliton theory. Here u = u

(
x, y, t

)
, acts as the nonlinear dispersive wave, is a

differentiable function with the scaled space variables x, y and time variable t, the real constant parameters
α, β and γ are related to the dispersion, the subscripts represent partial derivatives, the operator

∫
means

integration to the corresponding variable. Eq.(1) was first presented by Konopelchenk and Dubovsky for
the case α = β = 1 and γ = 5 [8, 27]. On the other hand, when α = β = 1, γ = 5 and uy = 0, Eq.(1)
reduces to the (1+1)-dimensional CDGKS equation, its N-soliton solutions has been researched by Sawada
and Kotera [39]. Some systematic analysis were conducted via Gibbon, Dodd and Caudrey in [21, 22] and
the quasi-periodic solutions were obtained in [5]. Recently, the interaction behaviours between solitons
and cnoidal periodic waves for the CDGKS equation was studied in [9]. Eq.(1) is also called the BKP-type
equation. Lump solutions for the BKP equation are perfectly presented by Ma and his collaborators in [35],
and eight sets of mixed lump-soliton solutions which allow the separation of lumps and line solitons was
derived for the (2+1)-dimensional BKP equation in [68].

To the best of our knowledge, There are a great deal of works performed about the generalized (2+1)-
dimensional CDGKS equation. However, some phenomenons of rogue solitons for Eq.(1) have never been
reported before. In this work, we provide the homoclinic breather waves based on the approach of the
extended homoclinic test and the symbol calculation methods [10, 17, 18, 25, 40, 42–44, 50–52, 56, 62, 63,
65, 69]. Then taking extreme condition about the breather waves, we construct rogue solutions. Also, we
study some soliton solutions by Hirota bilinear method in detail.

The outline of this paper is as follows. In section 2, we carry out the bilinear form analysis for Eq.(1).
In section 3, the breather and rogue solutions are considered by bilinear form and the extended homoclinic
test analysis. In section 4, we apply Hirota bilinear method to get some soliton solutions. In section 5, we
discuss the solitons interactions. Finally, some conclusions of this paper are presented in the last section.

2. Bilinear Form

To begin with, we introduce a transformation in the form as follows

u = h (t) q2x, (2)

where h = h (t) is a function with the variable of t which can be confirmed later. Putting (2) into Eq.(1),
integrating the equation with respect to x twice, we have

E
(
q
)

= 5β
(
q3x,y + 3q2xqx,y

)
+ γq2y − α

(
q6x + 15q2xq4x + 15q3

2x

)
− 36qx,t = δ, (3)

under the condition of h (t) = 1. According to the following properties P-polynomial detailed cf. [13–
15, 30, 31, 36, 45–49],

Px,t = qx,t, P2y = q2y, P3x,y = q3x,y + 3q2xqx,y,

P6x = q6x + 15q2xq4x + 15q3
2x,

we get

E
(
q
)

= 5βP3x,y + γP2y − αP6x − 36Px,t = δ, (4)



W.Q. Peng et al. / Filomat 32:14 (2018), 4959–4969 4961

where δ is an integral constant. Considering δ = 0 as a special circumstance, the above equation can be
expressed by

E
(
q
)

= 5βP3x,y + γP2y − αP6x − 36Px,t = 0. (5)

Applying the transformation

q = 2 ln (F)⇔ u = 2 ln (F)xx , (6)

where F = F
(
x, y, t

)
is a real function with the variables of x, y, t, we have the bilinear form for Eq.(1)(

5βD3
xDy + γD2

y − αD6
x − 36DxDt

)
F · F = 0, (7)

with the D-operator being denoted by

Dm
x Dn

y
(

f · 1
)

=

(
∂
∂x
−

∂
∂x′

)m (
∂
∂y
−

∂
∂y′

)n

f
(
x, y

)
· 1

(
x′, y′

) ∣∣∣
x=x′,y=y′. (8)

3. Homoclinic Breather Waves and Rogue Waves

In this section, by employing the extended homoclinic test method (EHTM), we present the rogue wave
solutions for Eq.(1). At first, making ζ = x + t and replacing it into Eq.(1), we have

36uζ = −α
(
u5ζ + 15

(
uuζζ

)
ζ + 45u2uζ

)
+ 5β

(
uζζy + 3uuy + 3uζ

∫
uydζ

)
+ γ

∫
uyydζ. (9)

It is easy to see that Eq.(1) has a balanced solution u0, which is an arbitrary constant. Performing the
following assumption,

u = u0 + 2 (ln F)ζζ , (10)

where F = F
(
ζ, y

)
is a real function , and substituting (10) into (9), we obtain the new bilinear form ,[

5βD3
ζDy + γD2

y −
(
36 + 45αu2

0

)
D2
ζ − αD6

ζ − 15αu0D4
ζ + 15βu0DζDy

]
F · F = 0, (11)

with 

D6
ζF · F = 2

(
F6ζF + 15F4ζF2ζ − 10F2

3ζ − 6F5ζFζ
)
,

D4
ζF · F = 2

(
F4ζF − 4F3ζFζ + 3F2

2ζ

)
,

D3
ζDyF · F = 2

(
F3ζ,yF − F3ζFy − 3F2ζ,yFζ + 3F2ζFζ,y

)
,

DζDyF · F = 2
(
Fζ,yF − FζFy

)
,

D2
ζF · F = 2

(
F2ζF − F2

ζ

)
,

D2
yF · F = 2

(
F2yF − F2

y

)
.

(12)

3.1. Homoclinic Breather Wave Solutions

According to the approach of the extended homoclinic test, the solution of Eq.(11) can be showed as
follows

F = e−p1(ζ−µy) + κ1 cos
(
p
(
ζ + νy

))
+ κ2ep1(ζ−µy), (13)
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where p1, p, µ, ν, κ1, κ2 are all real constants. Putting (13) into (11), and equating the each coefficient for
emp1(ζ−µy) (m = −1, 0, 1) to zero, and let p = p1, we obtain following results

p2 =
15βu0µ + 15βu0ν − γµ2 + γν2

60αu0 + 10βµ − 10βν
,

− 8αp4 + 10βµp2 + 10βνp2 + 90αu2
0 + 15βu0µ − 15βu0ν + 2γµν + 72 = 0,

4κ2

(
16αp4 + 60αu0p2 + 20βµp2 + 45αu2

0 + 15βu0µ − γµ
2 + 36

)
= κ2

1

(
16αp4

− 60αu0p2 + 20βνp2 + 45αu2
0 − 15βu0ν − γν

2 + 36
)
, (14)

where α, β, γ, µ, ν, κ2 are all constants to be selected later. Then, we provide another expression for Eq.(13)
given by

F = 2
√
κ2 cosh

(
p
(
x + t − µy

)
+

1
2

lnκ2

)
+ κ1 cos

(
p
(
x + t + νy

))
. (15)

Through the substitution of Eq.(15) into Eq.(10), we have the following solution for Eq.(1)

u
(
x, y, t

)
= u0 +

2p2
[
4κ2 − κ2

1 + 4κ1
√
κ2 sinh (Ω1) sin (Ω2)

]
[
2
√
κ2 cosh (Ω1) + κ1 cos (Ω2)

]2 , (16)

where

Ω1 = p
(
x + t − µy

)
+

1
2

lnκ2,Ω2 = p
(
x + t + νy

)
,

u0 is a undetermined constant, p can be expressed by µ, ν based on the first formula of (14), and κ1 is wrote
by κ2, µ, ν according to the last formula of (14).

The above solution u is homoclinic breather wave, which has been provided in (16), and when t → ∞,
the above wave will tend to a fixed point u0. In fact, it also indicates that the breather wave propagates by
the way of periodic oscillation. Considering one direction, the expression of the solution means that the
homoclinic breather wave can be constituted via the mutual effect between the homoclinic waves and the
breather waves.

Taking κ2 = 1 leads to 1
2 lnκ2 = 0. Substituting it into Eq. (16), we have

u
(
x, y, t

)
= u0 +

2p2
[
4 − κ2

1 + 4κ1 sinh
(
p
(
x + t − µy

))
sin

(
p
(
x + t + νy

))][
2 cosh

(
p
(
x + t − µy

))
+ κ1 cos

(
p
(
x + t + νy

))]2 . (17)

In the following, we present the propagation of the homoclinic breather waves by two graphics. Figs.1
and 2 reflect the homoclinic breather wave (17) based on the different parameters, respectively.

(a) (b) (c)
Figure 1. (Color online) Homoclinic breather waves (17) for Eq.(1) by selecting suitable parameters: u0 = 1

6 , κ1 =

−1.6, κ2 = 1, p = 0.3, µ = 0.9, ν = 1.1, x = 1. (a) Perspective view of the real part of the wave. (b) Density plot of the
wave. (c) The wave propagation pattern of the wave along the t-axis.
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(a) (b) (c)
Figure 2. (Color online) Homoclinic breather waves (17) for Eq.(1) by selecting suitable parameters: u0 = 1

6 , κ1 =

−1, κ2 = 1, p = 0.4, µ = 0.7, ν = 1.1, x = 1. (a) Perspective view of the real part of the wave. (b) Density plot of the wave.
(c) The wave propagation pattern of the wave along the t-axis.

3.2. Rogue-Wave Solutions
Obviously, 2π

p denotes the period of Eq. (17). When the period 2π
p → ∞, the breather waves can

transform into the rogue waves. Therefore, we take p→ 0. Meanwhile, according to the principle of Taylor
expansion about the two-wave function H

(
x, y, t

)
at p = 0, we have

ep(x+t−µy) = 1 + p
(
x + t − µy

)
+

p2

2
(
x + t − µy

)2 + O
(
p3

)
,

cos
(
p
(
x + t + νy

))
= 1 −

p2

2
(
x + t + νy

)2 + O
(
p3

)
. (18)

Ultimately, we derive the rogue-wave solutions as follows

u = u0 +
16

[
M −

(
x + t − µy

) (
x + t + νy

)][(
x + t − µy

)2 +
(
x + t + νy

)2 + M
]2 , (19)

where M =
30αu0+5βµ−5βν

45αu2
0+15βu0µ−γµ+36 , and α, β, γ, u0, µ, ν are constants.

In the following, we present the propagation of the rogue waves by two graphics. Figs.3 and 4 reflect
the rogue waves (19) based on the different parameters, respectively.

(a) (b) (c)
Figure 3. (Color online) Rogue waves (19) for Eq.(1) by selecting suitable parameters: u0 = 1

10 , α = 0.1, β = 0.25, γ =

0.5, ν = 1. (a) Perspective view of the real part of the wave (x = 0). (b) Density plot of the wave. (c) The wave
propagation pattern of the wave along the t-axis.
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(a) (b) (c)
Figure 4. (Color online) Rogue waves (19) for Eq.(1) by selecting suitable parameters: u0 = 1

10 , α = 1, β = 1, γ = 5, ν = 2.
(a) Perspective view of the real part of the wave (x = 0). (b) Density plot of the wave. (c) The wave propagation pattern
of the wave along the t-axis.

4. Solitary Waves

Theorem 4.1. Based on the bilinear equation (7), Eq.(1) demits the following N-soliton solution with N = 1, 2

u = 2 [ln (F)]xx , F =
∑
σ=0,1

exp

 N∑
j=1

σiξi +

N∑
1≤i< j≤N

σiσ j∆i j

 , N = 1, 2, (20)

ξi = aix + biy + cit + θi, ci =
5βa3

i bi + γb2
i − αa6

i

36ai
, (21)

and

e∆i j = −

[
5β

(
ai − a j

)3 (
bi − b j

)
+ γ

(
bi − b j

)2
− α

(
ai − a j

)6
− 36

(
ai − a j

) (
ci − c j

)]
[
5β

(
ai + a j

)3 (
bi + b j

)
+ γ

(
bi + b j

)2
− α

(
ai + a j

)6
− 36

(
ai + a j

) (
ci + c j

)] , (22)

here α, β, γ, ai, bi, θi (i = 1, 2, . . . ,N) are all arbitrary real constants, and
∑
σ=0,1 means the summation over all possible

combinations of σi, σ j = 0, 1
(
i, j = 1, 2, . . . ,N

)
.

Taking N = 1, the one-soliton solution of Eq.(1) reads

u = 2
[
ln

(
1 + eξ1

)]
xx

=
a2

1

2
sech2 a1x + b1y + c1t + θ1

2
, (23)

with

c1 =
5βa3

1b1 + γb2
1 − αa6

1

36a1
, (24)

where a1, b1, θ1 are arbitrary constants, and c1 is denoted by a1, b1.
In the same way, taking N = 2, the two-soliton solutions for eq.(1) have the following form

u = 2
[
ln

(
1 + eξ1 + eξ2 + eξ1+ξ2+∆12

)]
xx
, (25)

with

ξi = aix + biy + cit + θi, ci =
5βa3

i bi + γb2
i − αa6

i

36ai
, i = 1, 2, (26)

e∆12 = −

[
5β (a1 − a2)3 (b1 − b2) + γ (b1 − b2)2

− α (a1 − a2)6
− 36 (a1 − a2) (c1 − c2)

][
5β (a1 + a2)3 (b1 + b2) + γ (b1 + b2)2

− α (a1 + a2)6
− 36 (a1 + a2) (c1 + c2)

] , (27)
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where ai, bi, θi, and ci are are free constants denoted by ai, bi.
In what follows, we present the propagation of the one-soliton waves and two-soliton waves by Figs. 5

and Figs. 6 based on the suitable parameters, respectively.

(a) (b) (c)
Figure 5. (Color online) One-soliton waves (23) for Eq.(1) by selecting suitable parameters: α = 1, β = 0.2, γ = 2, a1 =

b1 = 2, θ1 = π
3 . (a) Perspective view of the real part of the wave (x = 0). (b) Density plot of the wave. (c) The wave

propagation pattern of the wave along the y-axis at t = −20, t = 0, t = 20.

(a) (b) (c)
Figure 6. (Color online) Two-soliton waves (25) for Eq.(1) by selecting suitable parameters: α = 1, β = −0.5, γ = 2, a1 =

b1 = 1.8, a2 = −b2 = 1.5, θ1 = θ2 = 0. (a) Perspective view of the real part of the wave (x = 0). (b) Density plot of the
wave. (c) The wave propagation pattern of the wave along the y-axis at t = −10, t = 0, t = 10.

5. Analysis on Solitons Interaction

In this section, we discuss the solitons interactions of Eq. (1). In terms of one-soliton solution (23), it is
not hard to obtain the amplitude A and velocity υ along the x and y planes respectively,

A =
a2

1

2
, υ =

(
υx, υy

)T
, (28)

with

υx = −
5βa3

1b1 + γb2
1 − αa6

1

36a2
1

, υy = −
5βa3

1b1 + γb2
1 − αa6

1

36a1b1
. (29)

Fig. 7 presents the shape and propagation of one-soliton solutions (23) on x − y plane at t = −20, t = 0,
and t = 20. As we can see from Fig.7, amplitude and shape are invariable with the change of time, which
implies the energy of soliton (23) is steady.



W.Q. Peng et al. / Filomat 32:14 (2018), 4959–4969 4966

(a) (b) (c)
Figure 7. (Color online) One-soliton waves (23) for Eq.(1) with parameters: α = 0.1, β = 0.1, γ = 0.5, a1 = 2.5, b1 =

0.2, θ1 = 0. (a) t=-20. (b) t=0. (c) t=20.

According to two-soliton solution (25), we can analyze the asymptotic properties of two-solitons under
the circumstance of long time. Firstly, for one case, fixing ξ1, we derive ξ2 in the following form:

ξ2 = a2

[
ξ1

a1
+

(
b2

a2
−

b1

a1

)
y +

( c2

a2
−

c1

a1

)
t +

θ2

a2
−
θ1

a1

]
, (30)

where we suppose a1, a2 are positive number, and b2
a2
> b1

a1
, c2

a2
> c1

a1
.

Let t → −∞, y → −∞, eξ2 and eξ1+ξ2+∆12 tend to zero, and t → +∞, y → +∞, eξ2 and eξ1+ξ2+∆12 tend to
infinity. In terms of the above case, we have

lim
t→−∞,y→−∞

u
(
x, y, t

)
=

a2
1

2
sech2 a1x + b1y + c1t + θ1

2
,

lim
t→+∞,y→+∞

u
(
x, y, t

)
=

a2
1

2
sech2 a1x + b1y + c1t + θ1 + ∆12

2
. (31)

In the same way, for another case, ξ2 is fixed, ξ1 can be wrote as follows

ξ1 = a1

[
ξ2

a2
+

(
b1

a1
−

b2

a2

)
y +

( c1

a1
−

c2

a2

)
t +

θ1

a1
−
θ2

a2

]
. (32)

Let t→ −∞, y→ −∞, eξ1 and eξ1+ξ2+∆12 tend to infinity, and t→ +∞, y→ +∞, eξ2 and eξ1+ξ2+∆12 tend to zero.
In terms of the above case, we have

lim
t→+∞,y→+∞

u
(
x, y, t

)
=

a2
2

2
sech2 a2x + b2y + c2t + θ2 + ∆12

2
,

lim
t→−∞,y→−∞

u
(
x, y, t

)
=

a2
2

2
sech2 a2x + b2y + c2t + θ2

2
. (33)

By considering Eqs. (31) and (33), we realize that it is a an elastic interaction for solitons propagation.
It doesn’t make any difference between the previous period of interaction(t→ −∞) and the latter period of
interaction(t→ +∞) in the amplitude, width and velocity of u, which can be corroborated in Figs. 8 and 9.
As presented in Fig 8, by plotting the pictures of diagonal interaction (means that the propagation directions
of two soliton are different), we know that there are not any change before and after each interaction besides
the moving of phase. As for Fig. 9, by plotting the pictures of two parallel solitons (same propagation di-
rections), it shows that tall-thin wave spreads faster than dwarf-fat wave and then catches up with it. When
the interval between the two waves shrinks to zero (t = 0), their amplitudes are linearly superimposed and
reach to a maximum point(see Fig 9 (b)). Then, as time goes on, they continue to move in their original state.
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(a) (b) (c)
Figure 8. (Color online) Elastic interaction between the two soliton waves for (25) with parameters: α = 0.1, β = 0.1, γ =

0.5, a1 = 2.5, b1 = 1.2, a2 = 3, b2 = −0.28, θ1 = θ2 = 0. (a) t=-8. (b) t=0. (c) t=8.

(a) (b) (c)
Figure 9. (Color online) Interaction between the two parallel soliton waves for (25) with parameters: α = 0.1, β =

0.1, γ = 0.5, a1 = 2.5, b1 = 0.2, a2 = 4, b2 = 0.32, θ1 = θ2 = 0. (a) t=-8. (b) t=0. (c) t=8.

6. Conclusions and Discussions

In this work, we have studied the generalized (2+1)-dimensional CDGKS equation. By employing the
homoclinic breather method, we have derived its breather waves. Then according to the the principle
of Taylor expansion, we have got the rogue waves from the extremity of breather waves. Furthermore,
based on Hirota bilinear method, the solitary waves of Eq. (1) have been provided. Additionally, in order
to analysis the characteristic of the dynamical behavior for these solition solutions, we have drawn some
figures, see Figs. 1-6. Finally, we have discussed the solitons interaction for Eq. (1) with Figs.7-9. The topic
of the paper is of current interest and the results will enrich exact solutions to equations of mathematical
physics. These effective methods that we show in this paper should play a important role in studying other
issues in the filed of mathematical physics and engineering.
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