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Abstract. Let H be a separable Hilbert space with the unit operator I. We derive a sharp norm estimate
for the operator function (λI− f (A))−1 (λ ∈ C), where A is a bounded linear operator inH whose Hermitian
component (A − A∗)/2i is a Hilbert-Schmidt operator and f (z) is a function holomorphic on the convex
hull of the spectrum of A. Here A∗ is the operator adjoint to A. Applications of the obtained estimate to
perturbations of operator equations, whose coefficients are operator functions and localization of spectra
are also discussed.

1. Introduction and statement of the main result

Throughout the present paper H is a complex separable Hilbert space with a scalar product (., .), the
norm ‖.‖ =

√
(., .) and unit operator I;L(H) denotes the space of bounded operators inH . For an A ∈ L(H),

‖A‖ is the operator norm, A∗ is the adjoint operator, σ(A) is the spectrum, rs(A) is the spectral radius;
Rλ(A) = (A − λI)−1 (λ < σ(A)) is the resolvent; co(A) is the convex hull of σ(A); SN2 is the Hilbert-Schmidt
ideal with the norm N2(A) = (Trace A∗A)1/2.

It is assumed that
A ∈ L(H) and AI := (A − A∗)/2i ∈ SN2. (1.1)

Numerous integral operators satisfy this condition. Let f be a scalar-valued function, which is analytic on
a neighborhood of σ(A). Let contour L consist of a finite number of rectifiable Jordan curves, oriented in
the positive sense customary in the theory of complex variables. Suppose that L is the boundary of an open
set M ⊃ σ(A) and M ∪ L is contained in the domain of analyticity of f . As usually, f (A) is defined by the
equality

f (A) = −
1

2πi

∫
L

f (λ)Rλ(A)dλ. (1.2)

In the present paper we derive a sharp norm estimate for the operator function (λI − f (A))−1 (λ < σ( f (A)).
Recall that one of the first norm estimates for functions of non-normal matrices has been established by
I.M. Gel’fand and G.E. Shilov [8] in connection with their investigations of partial differential equations.
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However that estimate is not sharp, it is not attained for any matrix. In the paper [9] the author has derived
a sharp estimate for matrix-valued functions regular on co(A). That estimate is attained for normal matrices.
The results of the paper [9] were generalized to various operators, cf. [14]. Obviously, (λ − f (z))−1 can be
nonregular on co(A). Our approach is based on a combined usage of the results from [9] with the estimate
for the nilpotent part of f (A) derived below.

We also discuss applications of the obtained estimate to solutions of operator equations whose coeffi-
cients are operator functions (function operator equations) and to localization of spectra.

Operator (in particular, matrix) equations naturally arise in various applications, in particular, in the
theories of differential and difference equations, and control theory, cf. [5, 18, 20]. The theory of operator
equations is well developed. About the classical results see the just cited books, the recent results can be
found, in particular, in [1–3, 6, 17, 21, 24–26] and references given therein.

To formulate the results introduce the quantity

1I(A) :=
√

2

N2
2(AI) −

∞∑
k=1

(= λk(A))2


1/2

,

where λk(A) (k = 1, 2, ...) are the eigenvalues of A taken with their multiplicities. Obviously, 1I(A) ≤
√

2N2(AI). Assume that f is regular on a neighborhood of co(A) and put

1I( f ,A) :=
∞∑
j=1

sup
λ∈co(A)

| f ( j)(λ)|
1

j
I(A)

j!
√

( j − 1)!
. (1.3)

For example, if f (z) = zν with a positive integer ν, then 1I( f ,A) = 1I(Aν). Here

1I(Aν) =

ν∑
j=1

rν− j
s (A)

ν(ν − 1)...(ν − j + 1)1 j
I(A)

j!
√

( j − 1)!
. (1.4)

If A is normal, then 1I(A) = 0 and therefore 1I( f ,A) = 0. Now we are in a position to formulate our main
result.

Theorem 1.1. Let conditions (1.1) hold, f be regular on a neighborhood of co(A) and

ρ( f (A), λ) := inf
µ∈σ(A)

| f (µ) − λ| > 0.

Then ∥∥∥( f (A) − λI)−1
∥∥∥ ≤ ∞∑

k=0

1k
I ( f ,A)

√
k!ρk+1( f (A), λ)

. (1.5)

The proof of this theorem is divided into a series of lemmas which are presented in the next section. The
theorem is sharp. Inequality (1.5) becomes the equality, if A is normal.

By the Schwarz inequality for constants c ∈ (0, 1) and a ≥ 0 we have

∞∑
k=0

ak

√
k!

=

∞∑
k=0

(ac)k

ck
√

k!
≤

 ∞∑
j=0

c2 j
∞∑

k=0

a2k

c2kk!


1/2

=
1

(1 − c2)1/2
ea2/(2c2).

Thus (1.5) implies

‖( f (A) − λI)−1
‖ ≤

1
(1 − c2)1/2ρ( f (A), λ)

exp
[
12

I ( f ,A)

2c2ρ2( f (A), λ)

]
(λ < σ( f (A))).

In particular, taking c2 = 1/2 we obtain

‖( f (A) − λI)−1
‖ ≤

√
2

ρ( f (A), λ)
exp

[
12

I ( f ,A)

ρ2( f (A), λ)

]
(λ < σ( f (A))). (1.6)
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2. Proof of Theorem 1.1

2.1. Preliminaries

In this subsectionH = Cn-the n-dimensional Euclidean space (n < ∞) and A is an n×n-matrix. Introduce
the quantity (the departure from normality)

1(A) := [N2
2(A) −

n∑
k=1

|λk(A)|2]1/2. (2.1)

Recall that λk(A) (k = 1, 2, ...,n) are the eigenvalues of A taken with their multiplicities. The following
properties of 1(A) are checked in [14, Section 3.1]:

1(A) = 1I(A), (2.2)

12(A) ≤ N2
2(A) − |Trace A2

|, if A is normal, then 1(A) = 0. In the n-dimensional case

1I(A) =
√

2

N2
2(AI) −

n∑
k=1

(= λk(A))2


1/2

≤

√

2N2(AI).

About other properties of 1(A) see [14, Section 3.1].
By Schur’s theorem [7], there is an orthogonal normal (Schur’s) basis {ek}

n
k=1, in which A has the triangular

representation

Aek =

k∑
j=1

a jke j with a jk = (Aek, e j) (k = 1, ...,n).

Schur’s basis is not unique. We can write

A = D + V (σ(A) = σ(D)) (2.3)

with a normal (diagonal) operator D defined by De j = λ j(A)e j ( j = 1, ...,n) and a nilpotent operator V
defined by

Vek =

k−1∑
j=1

a jke j (k = 2, ...,n), Ve1 = 0.

Equality (2.3) is called the triangular representation of A; D and V are called the diagonal part and nilpotent part
of A, respectively. Put

P j =

j∑
k=1

(., ek)ek ( j = 1, ...,n), P0 = 0.

So 0 = P0Cn
⊂ P1Cn

⊂ ... ⊂ PnCn = Cn, dim (Pk − Pk−1)Cn = 1,

APk = PkAPk; VPk = Pk−1VPk (k = 1, ...,n) and D =

n∑
k=1

λk(A)∆Pk,

where ∆Pk = Pk − Pk−1 (k = 1, ...,n). Since f (A) commutes with A, f (A) and A have the joint Schur
basis. Besides the diagonal part of f (A) is f (D) : f (D)e j = f (λ j(A))e j ( j = 1, ...,n) and its nilpotent part is
V f ,A = f (A) − f (D). In addition, f (A),V f ,A and f (D) have joint invariant subspaces and

f (D) =

n∑
k=1

f (λk(A))∆Pk.
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Moreover, according to [14, Lemma 3.1] N2(V) = 1(A) and consequently,

N2(V f ,A) = 1( f (A)), (2.4)

where

1( f (A)) := (N2
2( f (A)) −N2

2( f (D)))1/2 = (N2
2( f (A)) −

n∑
k=1

| f (λk(A))|2)1/2.

Denote by |V|e the matrix whose entries in {ek} are the absolute values of the entries of V in the Schur basis.
That is,

|V|e =

n∑
k=2

k−1∑
j=1

|a jk|(., ek)e j,

where a jk = (Aek, e j). Put

I j1... jk+1 =
(−1)k+1

2πi

∫
L

f (λ)dλ
(λ j1 − λ) . . . (λ jk+1 − λ)

(λ j = λ j(A)).

Lemma 2.1. Let A ∈ Cn×n and f be holomorphic in a Jordan domain containing σ(A). Then

N2(V f ,A) ≤ N2(V)
n−1∑
k=1

Jk‖ |V|k−1
e ‖,

where Jk = max{|I j1... jk+1 | : 1 ≤ j1 < . . . < jk+1 ≤ n}.

Proof. Since Rλ(D)V is a nilpotent matrix, (Rλ(D)V)n = 0. By (2.3) we have

Rλ(A) = (D + V − λ)−1 = (I + (D − λ)−1V)−1(D − λ)−1 =

n−1∑
k=0

(−1)k(Rλ(D)V)kRλ(D).

Hence according (1.2)

f (A) − f (D) = −
1

2πi

∫
L

f (λ)(Rλ(A) − Rλ(D))dλ =

n−1∑
k=1

Bk, (2.5)

where

Bk = (−1)k+1 1
2πi

∫
L

f (λ)(Rλ(D)V)kRλ(D)dλ.

Since D is a diagonal matrix with respect to {ek} and its diagonal entries are the eigenvalues of A, we can
write

Rλ(D) =

n∑
j=1

∆P j

λ j(A) − λ
.

Recall that ∆Pk = (., ek)ek. Thus,

Bk =

n∑
jk+1=1

n∑
jk=1

. . .
n∑

j2=1

n∑
j1=1

∆P j1 V∆P j2 V∆P j3 . . .∆P jk V∆P jk+1 I j1 j2... jk+1 .

In addition, ∆P jV∆Pk = 0 for j ≥ k. Consequently,

Bk =

n∑
jk+1=1

jk+1−1∑
jk=1

. . .

j3−1∑
j2=1

j2−1∑
j1=1

∆P j1 V∆P j2 V∆P j3 . . .∆P jk V∆P jk+1 I j1 j2... jk+1 .
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Let |Bk|e be the operator whose entries in basis {ek} are the absolute values of the entries of Bk in that basis.
Then

|Bk|e ≤ Jk

n∑
jk+1=1

jk+1−1∑
jk=1

. . .

j3−1∑
j2=1

j2−1∑
j1=1

∆P j1 |V|e∆P j2 |V|e . . . |V|e∆P jk+1

= JkPn−k|V|ePn−k+1|V|ePn−k+2 . . .Pn−1|V|e,

where the inequality is understood in the entry-wise sense. But

Pn−k|V|ePn−k+1|V|ePn−k+2 . . .Pn−1|V|e = |V|ePn−k+1|V|ePn−k+2 . . .Pn−1|V|e

= |V|2e Pn−k+2 . . .Pn−1|V|e ≤ |V|ke .

Thus |Bk|e ≤ Jk|V|ke . Since N2(|V|e) = N2(V) and N2(|B|e) = N2(B), we get

N2(Bk) ≤ JkN2(V)‖|V|k−1
e ‖.

Now (2.5) implies the required result. �

Due to Lemma 3.4 [14]

‖|V|ke‖ ≤
Nk

2(|V|e)
√

k!
(k = 1, 2, ...,n − 1). (2.6)

Since N2(|V|e) = N2(V) = 1(A), by the previous lemma

N2(V f ,A) ≤
n−1∑
k=1

1k(A)Jk√
(k − 1)!

. (2.7)

If f is holomorphic on a neighborhood co(A), then by [14, Lemma 3.8]

Jk ≤
1
k!

sup
λ∈co(A)

| f (k)(λ)|, k = 1, ...,n − 1. (2.8)

Now (2.7) implies

Lemma 2.2. One has 1( f (A)) = N2(V f ,A) ≤ 1A, f , where

1 f ,A :=
n−1∑
j=1

sup
λ∈co(A)

| f ( j)(λ)|
1 j(A)

j!
√

( j − 1)!
.

Furthermore, due to [14, Theorem 3.2],

‖Rλ(A)‖ ≤
n−1∑
k=0

1k(A)
√

k!ρk+1(A, λ)
(λ < σ(A)), (2.9)

where ρ(A, λ) = mink |λ − λk(A)|. From (2.9) it follows

‖( f (A) − λI)−1
‖ ≤

n−1∑
k=0

1k( f (A))
√

k!ρk+1( f (A), λ)
(λ < σ( f (A))). (2.10)

Making use of (2.10) and Lemma 2.2 we arrive at

Lemma 2.3. Let A ∈ Cn×n and f be regular on a neighborhood of co(A). Then

∥∥∥( f (A) − λI)−1
∥∥∥ ≤ n−1∑

k=0

1k
f ,A

√
k!ρk+1( f (A), λ)

(λ < σ( f (A))).
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2.2. Proof of Theorem 1.1
Let An be n-dimensional operator inH . Then

1I(An) =
√

2

N2
2(AIn) −

n∑
k=1

(= λk(An))2


1/2

(AIn = (An − A∗n)/2i).

Due to (2.2) 1(An) = 1I(An) and therefore 1 f ,An = 1I( f ,An). Here

1I( f ,An) =

n−1∑
j=1

sup
λ∈co(A)

| f ( j)(λ)|
1

j
I(An)

j!
√

( j − 1)!
.

Lemma 2.3 implies ∥∥∥( f (An) − λI)−1
∥∥∥ ≤ n−1∑

k=0

1k
I ( f ,An)

√
k!ρk+1( f (An), λ)

. (2.11)

According to [14, Lemma 10.2] (see also [13]), under condition (1.1) there is a sequence of n-dimensional op-
erators An strongly converging to A, such that σ(An) ⊆ σ(A), n < ∞ and by [14, Corollary 10.2] 1I(An)→ 1I(A)
(see also [13]). Hence 1I( f ,An)→ 1I( f ,A) as n→∞. Now the required result follows from (2.11). �

3. Applications to operator equations

In this section we derive solution estimates for the equation

X f (A) + ( f (A))∗X = C, (3.1)

where A,C ∈ L(H) are given, and X ∈ L(H) should be found. It is assumed that

β( f (A)) := inf< σ( f (A)) > 0. (3.2)

To the best of our knowledge, bounds for solutions of function operator equation (3.1) have been established
only for f (z) = z, cf. [14] and the references given therein. In particular in the case f (z) = zν with a positive
integer ν we obtain conditions that provide localization of the spectrum of a perturbed matrix in a certain
angle. Such conditions play an essential role, in the theories of periodic differential equations [5] and
fractional differential and difference equations, [4, 15, 19, 22, 23].

Lemma 3.1. Let condition (3.2) hold. Then equation (3.1) has a unique solution X representable in the form

X =

∫
∞

0
e− f ∗(A)tCe− f (A)tdt. (3.3)

Proof. Consider the equation YB + B∗Y = C where B,C ∈ L(H) are given, and Y ∈ L(H) should be found.
If Re σ (B) < 0, then as it is well known Y = −

∫
∞

0 eB∗tCeBtdt, cf. [5, Section 1.5] (see also [14, Theorem 2.4]).
Hence (3.3) follows. �

By the Parseval equality, (3.3) implies

(Xy, y1) =

∫
∞

0
(Ce f (A)ty, e f (A)ty1)dt =

1
2π

∫
∞

−∞

(C( f (A) + iωI)−1y, ( f (A) + iωI)−1y1)dω

(y, y1 ∈ H). Since ‖X‖ = supy,y1∈H ; ‖y‖=‖y1‖=1 |(Xy, y1), we have

‖X‖ ≤ ‖C‖
1

2π

∫
∞

−∞

‖( f (A) + iωI)−1
‖

2dω. (3.4)
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Hence, under the hypothesis of Theorem 1.1 we get

‖X‖ ≤
1

2π

∫
∞

−∞

 ∞∑
k=0

1k
I ( f ,A)

√
k!ρk+1( f (A),−iω)


2

dω. (3.5)

Put ζ( f (A)) := supµ∈σ(A) |= f (µ)|. Then ρ( f (A),−iω) ≥ w( f (A), ω), where

w( f (A), ω) =

{
β( f (A)) if |ω| ≤ ζ( f (A)),
(β2( f (A)) + (|ω| − ζ( f (A)))2)1/2 if |ω| ≥ ζ( f (A)).

We thus arrive at.

Corollary 3.2. Let conditions (1.1) and (3.2) hold and f be regular on a neighborhood of co(A). Then ‖X‖ ≤
χ( f (A))‖C‖, where

χ( f (A)) :=
1
π

∫
∞

0

 ∞∑
k=0

1k
I ( f ,A)

√
k!wk+1( f (A), ω)


2

dω. (3.6)

Similarly we can estimate the unique solution to the equation

Y0 − f (A)Y0 f ∗(A) = C, (3.7)

under the condition
rs( f (A)) = sup

z∈σ(A)
| f (z)| < 1, (3.8)

making use of the representation of the unique solution Y0 of (3.7):

Y0 =
1

2π

∫ 2π

0
(Ie−iω

− f (A))−1C(eiωI − f ∗(A))−1dω. (3.9)

To obtain this representation it is enough to consider the equation Y1 − BY1B∗ = C, whose unique solution
Y1 is representable as

Y1 =
1

2π

∫ 2π

0
(Ie−iω

− B)−1C(eiωI − B∗)−1dω,

provided rs(B) < 1, cf. [14, Lemma 2.2] and references therein. Hence (3.9) follows. Now we can directly
apply Theorem 1.1 to (3.9).

4. Spectrum perturbations

Let A, Ã ∈ L(H) and condition (3.2) hold. In this section we derive the conditions that provide the
relation

β( f (Ã)) = inf<σ( f (Ã)) > 0. (4.1)

Furthermore, due to the Lyapunov theorem (see [5]) an operator B satisfies the inequality β(B) > 0 if and
only if for some positive definite operator Z, the operator ZB + B∗Z > 0, i.e. positive definite. Take B = f (Ã).
Then we have (4.1), provided

( f (Ã))∗XL + XL f (Ã) > 0, (4.2)

where XL is a solution to the equation

( f (A))∗XL + XL f (A) = 2I. (4.3)

With ∆ f = f (Ã) − f (A), (4.3) gives

( f (A) + ∆ f )∗XL + XL( f (A) + ∆ f ) = 2I + ∆ f ∗XL + XL∆ f .

According to (4.2) we arrive at
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Lemma 4.1. Let f be holomorphic on a neighborhood of σ(A) ∪ σ(Ã) and the conditions (3.2) and

‖XL‖‖ f (Ã) − f (A)‖ < 1 (4.4)

hold. Then inequality (4.1) is valid.

Let condition (1.1) hold. Then by Corollary 3.2 ‖XL‖ ≤ 2χ( f (A)), provided f is holomorphic a neighborhood
of co(A). Now Lemma 4.1 implies

Corollary 4.2. Let f be holomorphic on a neighborhood of co(A) ∪ σ(Ã) and the conditions (1.1), (3.2) and

2‖ f (A) − f (Ã)‖χ( f (A)) < 1 (4.5)

hold. Then inequality (4.1) is valid.

For example, let f (z) = zν with an integer ν > 0, and let the spectrum of A lie inside the angle

Sν = {z ∈ C : | arg z| < π/(2ν)},

then we have | arg zν| < π/2, i.e. condition (3.2) holds in the form

β(Aν) = inf <σ(Aν) > 0. (4.6)

In addition, ζ( f (A)) = ζ(Aν) = supµ∈σ(A) |=µ
ν(A)| and

w( f (A), ω) = w(Aν, ω) :=
{
β(Aν) if |ω| ≤ ζ(Aν),
β2(Aν) + (|ω| − ζ(Aν))2)1/2 if |ω| ≥ ζ(Aν).

In this case 1I( f ,A) is defined by (1.4). So χ( f (A)) = χ(Aν), where

χ(Aν) =
1
π

∫
∞

0

 ∞∑
k=0

1k
I (Aν)

√
k!wk+1(Aν, ω)


2

dω

and condition (4.5) takes the form
2‖Aν

− Ãν
‖χ(Aν) < 1. (4.7)

Since for any µ(A) ∈ σ(A) we have µν(A) = µ(Aν) ∈ σ(Aν) and µ(A) = ν
√
µ(Aν) , where the principal branch of

the root is taken, making use of Corollary 4.2 we obtain

Corollary 4.3. Let σ(A) ⊂ Sν and conditions (1.1) and (4.7) hold. Then also σ(Ã) ⊂ Sν.

Note that

Aν
− Ãν =

ν−1∑
k=0

Aν−k−1(A − Ã)Ãk.

(see also [14, Corollary 13.1]). So

‖Aν
− Ãν
‖ ≤ q

ν−1∑
k=0

‖Aν−k−1
‖‖Ãk
‖, (4.8)

where q := ‖A − Ã‖. About norm estimates for Ak and other operator functions see [14].
Note that to apply Theorem 3.1 we need estimates for the norm of f (A) − f (Ã). In particular recall that

eA
− eÃ

≤

∫ 1

0
eAs(A − Ã)eÃ(1−s)ds.

Hence,

‖eA
− eÃ
‖ ≤ q

∫ 1

0
‖eAs
‖‖eÃ(1−s)

‖ds.
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Furthermore, for an r0 > max(rs(A), rs(Ã)), let

f (z) =

∞∑
k=0

ckzk (z ∈ C : |z| < r0). Then f (A) − f (Ã) =

∞∑
k=0

ck(Ak
− Ãk).

Suppose that
‖Ak
‖ ≤ a0rk

0, ‖Ã
k
‖ ≤ ã0rk

0 (k = 1, 2, ...),

where a0 and ã0 are constants. Then by (4.8) ‖An
− Ãn

‖ ≤ qa0ã0 nrn−1
0 (n = 1, 2, ...), and

‖ f (A) − f (Ã)‖ ≤ qa0ã0

∞∑
k=1

|ck|krk−1
0

provided the series converges. Additional estimates for the norms of f (A) − f (Ã) with non-self-adjoint
operators A and Ã can be found in [14, Chapter 13].

5. Additional perturbation results

For two operators A and Ã, the spectral variation of Ã with respect to A is defined by

svA(Ã) := sup
t∈σ(Ã)

inf
s∈σ(A)

|t − s|.

Let f be holomorphic on a neighborhood of σ(A)∪ σ(Ã). Following the just pointed definition, the quantity

sv f (A)( f (Ã)) := sup
t∈σ(Ã)

inf
s∈(A)
| f (t) − f (s)|.

will be called the spectral variation of f (Ã) with respect to f (A).

Lemma 5.1. Let f be holomorphic on a neighborhood of the convex hull co(A, Ã) of σ(A) ∪ σ(Ã). Then

sv f (A)( f (Ã)) ≤ sup
z∈co(A,Ã)

| f ′(z)|svA(Ã)

Proof. We need the well-known relation f (z1)− f (z2) = f ′(c)(z2 − z1) (z1, z2 ∈ C) for some c belonging to the
segment connecting z1 and z2. Now take t ∈ σ(Ã) and s ∈ σ(A) Then

f (t) − f (s) = f ′(θ)(t − s) (θ ∈ co(A, Ã)).

Hence
sup

t∈σ(Ã)
inf

s∈(A)
| f (t) − f (s)| ≤ sup

θ∈co(A,Ã)
| f ′(θ)| sup

t∈σ(Ã)
inf

s∈σ(A)
|t − s|.

This proves the lemma. �

Put

F(x) =

∞∑
k=0

1k
I (A)
√

k!
xk+1 (x ∈ R).

Then taking in Theorem 1.1 f (z) = z, we have ‖(A − λI)−1
‖ ≤ F(1/ρ(A, λ)) (λ < σ(A)). Hence by [14, Lemma

1.10] we have svA(Ã) ≤ z(q,A), where z(q,A) is the unique positive root of the equation qF(1/z) = 1. Now
the previous lemma implies

Theorem 5.2. Let condition (1.1) hold and f be holomorphic on a neighborhood of co(A, Ã). Then

sv f (A)( f (Ã)) ≤ sup
z∈co(A,Ã)

| f ′(z)|z(q,A).

If A is normal, then 1I(A) = 0, z(q,A) = q and sv f (A)( f (Ã)) ≤ q supz∈co(A,Ã) | f
′(z)|.
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6. Integral operators

Throughout this section Ã is an operator in L2(0, 1) defined by

(Ãh)(x) = φ(x)h(x) +

∫ 1

0
k(x, s)h(s)ds (h ∈ L2, x ∈ [0, 1]), (6.1)

where φ is a positive bounded measurable function and k(x, s) is a Hilbert-Schmidt kernel defined on [0, 1]2:∫ 1

0

∫ 1

0
|k(x, s)|2ds dx < ∞. (6.2)

Introduce the operators S, V̂ and W by (Sh)(x) = φ(x)h(x),

(V̂h)(x) =

∫ x

0
k(x, s)h(s)ds and (Wh)(x) =

∫ 1

x
k(x, s)h(s)ds (h ∈ L2, x ∈ [0, 1]).

Take A = S + V̂ and f (z) = z2. Simple calculations show that σ(A) = σ(S) is real, AI = (V̂ − V̂∗)/2i and

12
I (A) = 2N2

2(AI) = 2N2
2(V̂ − V̂∗)/4 =

1
2
|Trace (V̂ − V̂∗)2

| = |Trace (V̂V̂∗) −
1
2

Trace (V̂2 + (V̂∗)2)| = N2
2(V̂).

According to (1.4) 1I( f ,A) = 1I(A2) = 2rs(A)N2(V̂) + N2
2(V̂). Besides, rs(A) = supx φ(x), σ(A2) is real, ζ(A2) = 0

and β(A2) = b(φ), where b(φ) := infx φ2(x). Therefore, w(A2, ω) = (b2(φ) + ω2)1/2, and

χ(A2) =
1
π

∫
∞

0

 ∞∑
k=0

1k
I (A2)

√
k!(b2(φ) + ω2)(k+1)/2


2

dω.

Hence, according to (1.6)

χ(A2) ≤
2
π

∫
∞

0

1
b2(φ) + ω2 exp [

212
I (A2)

b2(φ) + ω2 ]dω ≤ exp [
212

I (A2)

b2(φ)
]

2
π

∫
∞

0

dω
b2(φ) + ω2

= exp [
212

I (A2)

b2(φ)
].

In addition, ‖A2
− Ã2
‖ = ‖W2 + AW + WA‖ and condition (4.5) is provided by the inequality

‖W2 + AW + WA‖ exp [
212

I (A2)

b2(φ)
] < 1. (6.3)

We thus arrive at

Corollary 6.1. Let conditions (6.2) and (6.3) hold. Then the spectrum of the operator Ã defined by (6.1) lies in the
angle {z ∈ C : | arg z| < π/4}.

About other bounds for the spectrum of integral operators see [10, 11] and references therein.
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