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Slant Ruled Surfaces and Slant Developable Surfaces of Spacelike
Curves in Lorentz-Minkowski 3-space

Handan Yıldırıma

aIstanbul University, Faculty of Science, Department of Mathematics, Vezneciler-Fatih, 34134, Istanbul, TURKEY

Abstract. In this paper, by means of the Lorentzian Frenet frame along a spacelike curve in Lorentz-
Minkowski 3-space, we construct slant ruled surfaces and slant developable surfaces with different director
curves which belong to one-parameter families of the pseudo-spheres in this space. Moreover, for each
slant ruled surface with each director curve, we search if this slant ruled surface has any singularities or not.
Furthermore, for the cases in which the singularities appear, we determine the singularities of non-lightlike
and non-cylindrical slant developable surfaces and also investigate the singularities of slant ruled surfaces.

1. Introduction

It is known that a ruled surface is defined by a one-parameter family of lines while a developable surface
is a ruled surface whose regular part’s Gauss curvature is identically zero. Ruled surfaces and developable
surfaces are of great interest in classical differential geometry. Indeed, these surfaces have been studied
intensively in Euclidean space and Lorentz-Minkowski space from different viewpoints (See, for instance,
[1], [4], [6], [7], [9]-[18], [23], [25], [26], [28], [30]-[32], [35]-[38], [40], [41].). We point out that some of these
papers use the singularity theory techniques given in [2] and [5].

A ruled surface in R3 is parametrized by

F(γ,N) : I × J −→ R3

(s,u) 7−→ γ(s) + uN(s)

such that γ : I → R3 and N : I → S2 are smooth mappings, where I and J are open intervals in R or unit
circles S1. Here, γ is said to be a base curve. Without loss of generality, we may assume that γ is parametrized
by arc length s. Moreover,N is said to be a director curve and the straight lines u→ γ(s) + uN(s) are said to
be rulings. Since

∂F(γ,N)

∂s
(s,u) = γ′(s) + uN′(s) and

∂F(γ,N)

∂u
(s,u) =N(s),
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we have the following equation for the normal vector of F(γ,N) at any (s,u) ∈ I × J:

∂F(γ,N)

∂s
(s,u) ×

∂F(γ,N)

∂u
(s,u) = γ′(s) ×N(s) + uN′(s) ×N(s).

So, (s0,u0) is a singular point of F(γ,N) if and only if

γ′(s0) ×N(s0) + u0N
′(s0) ×N(s0) = 0

(See [17] for the details.).
A ruled surface F(γ,N) is called cylindrical if N(s) ×N′(s) ≡ 0. Moreover, it is called non-cylindrical if

N(s) ×N′(s) , 0 (Cf. [17].).
Let σ be a curve on F(γ,N) such that 〈σ′(s),N′(s)〉 = 0. Then, it is said to be the line of striction of F(γ,N). It is

known that the singular points of F(γ,N) are located on the line of striction on which the Gauss curvature is
zero. At regular points of F(γ,N), its Gauss curvature denoted by K satisfies K ≤ 0 and K is zero only along
the rulings which meet the line of striction at a singular point (See [17] for the details.).

It was shown in [17] that the cuspidal edge C×R, the swallowtail SW and the cuspidal cross cap CCR, which
are respectively defined by

C ×R = {(x1, x2) | x2
1 = x3

2} ×R,

SW = {(x1, x2, x3) | x1 = 3u4 + u2v, x2 = 4u3 + 2uv, x3 = v}

and

CCR = {(x1, x2, x3) | x1 = u3, x2 = u3v3, x3 = v2
},

appear as the singularities of the developable surfaces in R3. Moreover, we refer [15] and [17] for the
singularities of the general ruled surfaces in R3.

In this paper, by means of the Lorentzian Frenet frame along a spacelike base curve γ which is
parametrized by arc length s in Lorentz-Minkowski 3-space, we deal with the ruled surfaces having different
director curves which belong to one-parameter families of the pseudo-spheres (depending on a parameter
φ ∈ [0, π/2]) in this space. These one-parameter families of the pseudo-spheres were given in [22]. The
geometry related with this parameter φ is said to be slant geometry (See [3], [21] and [22] for the details.).
Since we are interested in the ruled (respectively, developable) surfaces depending on φ, we call these
surfaces slant ruled (respectively, slant developable) surfaces. In this study, for each slant ruled surface with
each director curve, we first search if this slant ruled surface has any singularities or not. Moreover, for the
cases in which the singularities appear, we determine the singularities of non-lightlike and non-cylindrical
slant developable surfaces and also investigate the singularities of slant ruled surfaces. Here we remark
that, for our purpose, we used the tools and the techniques which were given in [17], [33] and [39]. We also
emphasize that φ = 0 case was studied in [14].

Throughout the whole paper, we assume that all of the manifolds and maps are of class C∞.

2. Basic notions

In this section, we give some basic notions related with Lorentz-Minkowski 3-space. LetR3 = {(x0, x1, x2) |
xi ∈ R, i = 0, 1, 2} be a 3-dimensional real vector space. For any vectors x = (x0, x1, x2) and y = (y0, y1, y2) in
R3, the pseudo-scalar product of x and y is defined by 〈x, y〉 = −x0y0 +

∑2
i=1 xiyi. The space (R3, 〈, 〉) is said to

be Lorentz-Minkowski 3-space and denoted by R3
1 briefly. A vector x ∈ R3

1 \ {0} is called spacelike, lightlike or
timelike if 〈x, x〉 > 0,= 0 or < 0, respectively. Also, the signature of x is given by

si1n(x) =


1 if x is spacelike,
0 if x is lightlike,
−1 if x is timelike.
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Moreover, the norm of a vector x ∈ R3
1 is defined by ‖x‖ =

√
|〈x, x〉| (Cf. [29].). Furthermore, for any vectors

x, y ∈ R3
1, the vector x × y is defined by

x × y =

∣∣∣∣∣∣∣∣
−e0 e1 e2
x0 x1 x2
y0 y1 y2

∣∣∣∣∣∣∣∣ ,
where {e0, e1, e2} is the orthonormal basis of R3

1 (See [8].). It is obvious that

〈z, x × y〉 = det(z, x, y),

so that x × y is pseudo-orthogonal to x and y.
It is known that Hyperbolic 2-space H2(−1), de Sitter 2-space S2

1 and 2-dimensional (open) lightcone LC∗ are
three kinds of pseudo-spheres in R3

1 which are defined respectively by

H2(−1) = {x ∈ R3
1 | 〈x, x〉 = −1},

S2
1 = {x ∈ R3

1 | 〈x, x〉 = 1}

and

LC∗ = {x ∈ R3
1 \ {0} | 〈x, x〉 = 0}.

For φ ∈ [0, π/2], H2(− sin2 φ) (respectively, S2
1(sin2 φ)) is said to be φ-hyperbolic 2-space (respectively, φ-de

Sitter 2-space) (Cf. [3], [21] and [22].). Here, we remark that H2(− sin2 0) \ {0} = S2
1(sin2 0) \ {0} = LC∗.

Throughout the remainer part of this paper, we write S2
1 instead of S2

1(1) and for φ = 0, we deal with only
LC∗.

Let γ : I → R3
1 be a spacelike curve parametrized by arc length s, where I ⊂ R. In this case, at any s ∈ I,

the tangent vector of γ denoted by t(s) = γ′(s) is always spacelike, where γ′(s) =
dγ
ds (s). Since γ is spacelike,

the normal plane of γ at any s ∈ I is always timelike (See [29].).
The curvature of γ at any s ∈ I is defined by k(s) =

√
|〈γ′′(s),γ′′(s)〉|. Throughout this paper, we

assume that k(s) , 0 for any s ∈ I. Then, the unit principal normal vector n(s) of γ at any s ∈ I is given
by n(s) = γ′′(s)/k(s). On the other hand, the unit binormal vector b(s) of γ at any s ∈ I is defined by
b(s) = t(s)×n(s). Since t(s) is spacelike, it is clear that si1n

(
b(s)

)
= −δ

(
γ(s)

)
, where δ

(
γ(s)

)
= si1n

(
n(s)

)
. It can

be easily seen that n(s) = t(s) × b(s) and t(s) = −δ
(
γ(s)

)
n(s) × b(s). Moreover, in terms of the frame {t,n, b}

which is said to be Lorentzian Frenet frame along γ, we have the following Frenet-Serret type equations for
any s ∈ I:

t′(s) = k(s)n(s),

n′(s) = −δ
(
γ(s)

)
k(s)t(s) + τ(s)b(s),

b′(s) = τ(s)n(s),

where τ(s) = δ
(
γ(s)

)
〈b′(s),n(s)〉 is the torsion of γ at any s ∈ I (Cf. [14], [19] and [20].). Here, it can be easily

verified that τ(s) = −δ
(
γ(s)

)
det

(
γ′(s),γ′′(s),γ′′′(s)

)/
k2(s).

3. Slant ruled surfaces with the director curveN[φ]nb
±

In this section, for any fixed φ ∈ [0, π/2], we define a slant ruled surface by

F(
γ,N[φ]nb

±

) : I × J −→ R3
1

(s,u) 7−→ γ(s) + uN[φ]nb
± (s)
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such that γ : I→ R3
1 is a spacelike base curve parametrized by arc length s,N[φ]nb

±
= cosφn±b is a director

curve and the straight lines u 7−→ γ(s) + uN[φ]nb
±

(s) are rulings, where I and J are open intervals inR or unit
circles S1. Here, we remark that

N[φ]nb
± (s) ∈

{
S2

1(sin2 φ) if n(s) is timelike,
H2(− sin2 φ) if n(s) is spacelike

for any fixed φ ∈ [0, π/2] and we say that F(
γ,N[φ]nb

±

) is

{
a φ-de Sitter normal surface of γ if n(s) is timelike,
a φ-hyperbolic normal surface of γ if n(s) is spacelike.

We briefly say that F(
γ,N[φ]nb

±

) is a slant normal surface of γ if it is either a φ-de Sitter normal surface or a

φ-hyperbolic normal surface of γ. Especially, we say that F(
γ,N[π/2]nb

±

) is

{
a de Sitter binormal surface of γ if n(s) is timelike,
a hyperbolic binormal surface of γ if n(s) is spacelike

(See [17] in Euclidean sense.). Moreover, F(
γ,N[0]nb

±

) is said to be the lightcone normal surface of γ, where

N[0]nb
±

(s) ∈ LC∗. Here, we point out that this case was studied in [14].
For the normal vector of a slant ruled surface F(

γ,N[φ]nb
±

), we get

∂F(
γ,N[φ]nb

±

)
∂s

(s,u) ×

∂F(
γ,N[φ]nb

±

)
∂u

(s,u) = γ′(s) ×N[φ]nb
± (s) + u(N[φ]nb

± )′(s) ×N[φ]nb
± (s)

at any (s,u) ∈ I × J. If we denote this normal vector by Nφ,nb
±

(s,u), then we obtain

Nφ,nb
±

(s,u) = −u sin2 φδ
(
γ(s)

)
τ(s)t(s) ±

(
1 − u cosφδ

(
γ(s)

)
k(s)

)
n(s)

+ cosφ
(
1 − u cosφδ

(
γ(s)

)
k(s)

)
b(s).

As a result, we have the following propositions and remark:

Proposition 3.1. Let φ ∈ (0, π/2). (s0,u0) is a singular point of F(
γ,N[φ]nb

±

) if and only if τ(s0) = 0 and u0 =

1
cosφδ

(
γ(s0)

)
k(s0)

.

Proposition 3.2.

s0, 1
δ
(
γ(s0)

)
k(s0)

 is a singular point of F(
γ,N[0]nb

±

).

We emphasize that φ = 0 case was investigated in [14].

Remark 3.3. F(
γ,N[π/2]nb

±

) is always regular.

Now, we consider the following cases:
(1) φ = 0 and uδ

(
γ(s)

)
k(s) , 1.

(2) φ ∈ (0, π/2], n(s) is spacelike and at least one of the following conditions holds:
(i) τ(s) , 0,
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(ii) u cosφ k(s) , 1.

(3) φ ∈ (0, π/2], n(s) is timelike and u2 sin2 φτ2(s) >
(
1 + u cosφ k(s)

)2
, where one of the following

conditions holds:
(i) τ(s) , 0 and u cosφ k(s) = −1,
(ii) τ(s) , 0 and u cosφ k(s) , −1.

(4)φ ∈ (0, π/2], n(s) is timelike and u2 sin2 φτ2(s) =
(
1+u cosφ k(s)

)2
, where τ(s) , 0 and u cosφ k(s) , −1.

(5) φ ∈ (0, π/2], n(s) is timelike and u2 sin2 φτ2(s) <
(
1 + u cosφ k(s)

)2
, where one of the following

conditions holds:
(i) τ(s) = 0 and u cosφ k(s) , −1,
(ii) τ(s) , 0 and u cosφ k(s) , −1.

By means of the above cases, we classify the normal vector Nφ,nb
±

(s,u) of F(
γ,N[φ]nb

±

) at any regular

(s,u) ∈ I × J as follows:

Nφ,nb
±

(s,u) is


spacelike if either (2) or (3) is satisfied,
lightlike if either (1) or (4) is satisfied,
timelike if (5) is satisfied.

Example 3.4. Let γ(s) = (0, cos s, sin s), where 0 ≤ s < 2π. In this case, we have the following slant ruled surface
parametrized by

F(
γ,N[φ]nb

±

)(s,u) =
(
∓ u, (1 − u cosφ) cos s, (1 − u cosφ) sin s

)
,

where the points
(
s, 1

cosφ

)
are its singular points for φ ∈ [0, π/2). Moreover, F(

γ,N[φ]nb
±

) is timelike (respectively,

lightlike) for φ ∈ (0, π/2] (respectively, φ = 0), where u cosφ , 1 (respectively, u , 1).

Example 3.5. Let γ(s) = (cosh s, sinh s, 0). In this case, we have the following slant ruled surface parametrized by

F(
γ,N[φ]nb

±

)(s,u) =
(
(1 + u cosφ) cosh s, (1 + u cosφ) sinh s,∓u

)
,

where the points
(
s,− 1

cosφ

)
are its singular points for φ ∈ [0, π/2). Moreover, F(

γ,N[φ]nb
±

) is spacelike (respectively,

lightlike) for φ ∈ (0, π/2] (respectively, φ = 0), where u cosφ , −1 (respectively, u , −1).

Example 3.6. Letγ(s) =
(

cosh s, sinh s√

2
, sinh s√

2

)
. In this case, we have the following slant ruled surface parametrized

by

F(
γ,N[φ]nb

±

)(s,u) =
(
(1 + u cosφ) cosh s, (1 + u cosφ)

sinh s
√

2
±

u
√

2
, (1 + u cosφ)

sinh s
√

2
∓

u
√

2

)
,

where the points
(
s,− 1

cosφ

)
are its singular points for φ ∈ [0, π/2). Moreover, F(

γ,N[φ]nb
±

) is spacelike (respectively,

lightlike) for φ ∈ (0, π/2] (respectively, φ = 0), where u cosφ , −1 (respectively, u , −1).

Example 3.7. Let γ(s) =
(

sin s,
√

2 sin s, cos s
)
, where 0 ≤ s < 2π. In this case, we have the following slant ruled

surface parametrized by

F(
γ,N[φ]nb

±

)(s,u) =
(
(1 − u cosφ) sin s ±

√

2u,
√

2(1 − u cosφ) sin s ± u, (1 − u cosφ) cos s
)
,

where the points
(
s, 1

cosφ

)
are its singular points for φ ∈ [0, π/2). Moreover, F(

γ,N[φ]nb
±

) is timelike (respectively,

lightlike) for φ ∈ (0, π/2] (respectively, φ = 0), where u cosφ , 1 (respectively, u , 1).
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We can define the unit non-lightlike normal vector denoted by nφ,nb
±

(s,u) of F(
γ,N[φ]nb

±

) at any regular

(s,u) ∈ I × J as follows:

n
φ,nb
±

(s,u) =



−u sin2 φτ(s)t(s) ±
(
1 − u cosφ k(s)

)
n(s) + cosφ

(
1 − u cosφ k(s)

)
b(s)

sinφ

√
u2 sin2 φ τ2(s) +

(
1 − u cosφ k(s)

)2
if (2) is satisfied,

u sin2 φτ(s)t(s) ±
(
1 + u cosφ k(s)

)
n(s) + cosφ

(
1 + u cosφ k(s)

)
b(s)

sinφ

√
u2 sin2 φ τ2(s) −

(
1 + u cosφ k(s)

)2
if (3) is satisfied,

u sin2 φτ(s)t(s) ±
(
1 + u cosφ k(s)

)
n(s) + cosφ

(
1 + u cosφ k(s)

)
b(s)

sinφ

√
−

(
u2 sin2 φ τ2(s) −

(
1 + u cosφ k(s)

)2) if (5) is satisfied.

In terms of the Frenet-Serret type equations, we obtain

∂F(
γ,N[φ]nb

±

)
∂s (s,u) =

(
1 − u cosφδ

(
γ(s)

)
k(s)

)
t(s) ± uτ(s)n(s) + u cosφτ(s)b(s),

∂F(
γ,N[φ]nb

±

)
∂u (s,u) = cosφn(s) ± b(s),

∂2F(
γ,N[φ]nb

±

)
∂2s

(s,u) =
(
− u cosφδ

(
γ(s)

)
k′(s) ∓ uδ

(
γ(s)

)
k(s)τ(s)

)
t(s)

+
(
k(s) − u cosφδ

(
γ(s)

)
k2(s) ± uτ′(s) + u cosφτ2(s)

)
n(s)

+
(
± uτ2(s) + u cosφτ′(s)

)
b(s),

∂2F(
γ,N[φ]nb

±

)
∂u∂s (s,u) = − cosφδ

(
γ(s)

)
k(s)t(s) ± τ(s)n(s) + cosφτ(s)b(s),

∂2F(
γ,N[φ]nb

±

)
∂2u

(s,u) = 0.

Therefore, for the Gauss curvature denoted by Kφ,nb
±

of a non-lightlike (either timelike or spacelike) slant
ruled surface F(

γ,N[φ]nb
±

), we have the following classifications:

Kφ,nb
±

(s,u) =



τ2(s)(
u2 sin2 φτ2(s) +

(
1 − u cosφ k(s)

)2)2 ≥ 0 if (2) is satisfied,

τ2(s)(
u2 sin2 φτ2(s) −

(
1 + u cosφ k(s)

)2)2 > 0 if (3) is satisfied,

−
τ2(s)(

u2 sin2 φτ2(s) −
(
1 + u cosφ k(s)

)2)2 ≤ 0 if (5) is satisfied

by the formula

Kφ,nb
±

(s,u) = ε
ln −m2

EG − F2 ,



H. Yıldırım / Filomat 32:14 (2018), 4875–4895 4881

where ε = si1n(nφ,nb
±

(s,u)) and

l =
〈
n
φ,nb
±

(s,u),

∂2F(
γ,N[φ]nb

±

)
∂s2 (s,u)

〉
,

m =
〈
n
φ,nb
±

(s,u),

∂2F(
γ,N[φ]nb

±

)
∂s∂u (s,u)

〉
,

n =
〈
n
φ,nb
±

(s,u),

∂2F(
γ,N[φ]nb

±

)
∂u2 (s,u)

〉
,

E =
〈∂F(

γ,N[φ]nb
±

)
∂s (s,u),

∂F(
γ,N[φ]nb

±

)
∂s (s,u)

〉
,

F =
〈∂F(

γ,N[φ]nb
±

)
∂s (s,u),

∂F(
γ,N[φ]nb

±

)
∂u (s,u)

〉
,

G =
〈∂F(

γ,N[φ]nb
±

)
∂u (s,u),

∂F(
γ,N[φ]nb

±

)
∂u (s,u)

〉
(See [27] and [29].). Thus, for a non-lightlike slant ruled surface F(

γ,N[φ]nb
±

), we can conclude that

Kφ,nb
±

(s,u) = 0⇐⇒ τ(s) = 0.

So, taking into account [1], [4] and the proposition which was given in [17] for the Euclidean case, we have
the following proposition:

Proposition 3.8. Singular points of a non-lightlike slant ruled surface F(
γ,N[φ]nb

±

) are located on the line of striction

on which the Gauss curvature Kφ,nb
±

is zero. At regular points of a timelike (respectively, spacelike) slant ruled surface
F(
γ,N[φ]nb

±

), Kφ,nb
±

satisfies Kφ,nb
±
≥ 0 (respectively, Kφ,nb

±
≤ 0) and Kφ,nb

±
is zero only along the rulings which meet the

line of striction at a singular point.

4. Singularities of non-lightlike and non-cylindrical slant developable surfaces with the director curve
N[φ]nb

±

For any fixed φ ∈ [0, π/2], we say that a non-lightlike slant ruled surface F(
γ,N[φ]nb

±

) is a non-lightlike

slant developable surface if the Gauss curvature Kφ,nb
±

of the regular part of F(
γ,N[φ]nb

±

) is identically zero.

Moreover, we say that a slant developable surface F(
γ,N[φ]nb

±

)(s,u) is a φ-de Sitter (respectively, φ-hyperbolic)

normal developable surface of γ(s) if n(s) is timelike (respectively, spacelike). Furthermore, F(
γ,N[0]nb

±

)(s,u) =

γ(s) + u
(
n(s)± b(s)

)
is said to be the lightcone developable surface of γ(s), whereN[0]nb

±
∈ LC∗. Here, we remark

that this case was studied in [14].

It can be easily seen that

det
(
γ′(s),N[φ]nb

± (s),
(
N[φ]nb

±

)′
(s)

)
= sin2 φδ

(
γ(s)

)
τ(s).

Hence, taking into account [17], [36]-[38], [40] and [41], we have the following proposition:
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Proposition 4.1. Let φ ∈ (0, π/2]. Then, a non-lightlike slant ruled surface F(
γ,N[φ]nb

±

) is a non-lightlike slant

developable surface if and only if

det
(
γ′(s),N[φ]nb

± (s),
(
N[φ]nb

±

)′
(s)

)
= 0.

On the other hand, since

N[φ]nb
± (s) ×

(
N[φ]nb

±

)′
(s) = sin2 φδ

(
γ(s)

)
τ(s)t(s) ± cosφδ

(
γ(s)

)
k(s)n(s) + cos2 φδ

(
γ(s)

)
k(s)b(s),

following [17] in Euclidean sense, we have the following proposition:

Proposition 4.2. A slant ruled surface

F(
γ,N[φ]nb

±

) is


non-cylindrical if φ ∈ [0, π/2),
non-cylindrical if φ = π/2 and τ(s) , 0,
cylindrical if φ = π/2 and τ(s) = 0.

As a result, the space of non-lightlike and non-cylindrical slant developable surfaces F(
γ,N[φ]nb

±

) is given

by

Dev[φ]nb
±

(I,R3
1) = { γ : I→ R3

1 is a spacelike curve which
is parametrized by arc length s | k(s) , 0 and τ(s) = 0 for any s ∈ I},

where φ ∈ (0, π/2) (See [17] for the Euclidean case.).

Example 4.3. In Example 3.4, F(
γ,N[φ]nb

±

) is a φ-hyperbolic normal developable surface of γ. Moreover, it is non-

cylindrical (respectively, cylindrical) for φ ∈ [0, π/2) (respectively, φ = π/2).

Example 4.4. In Example 3.5, F(
γ,N[φ]nb

±

) is a φ-de Sitter normal developable surface of γ. Moreover, it is non-

cylindrical (respectively, cylindrical) for φ ∈ [0, π/2) (respectively, φ = π/2).

Example 4.5. In Example 3.6, F(
γ,N[φ]nb

±

) is a φ-de Sitter normal developable surface of γ. Moreover, it is non-

cylindrical (respectively, cylindrical) for φ ∈ [0, π/2) (respectively, φ = π/2).

Example 4.6. In Example 3.7, F(
γ,N[φ]nb

±

) is a φ-hyperbolic normal developable surface of γ. Moreover, it is non-

cylindrical (respectively, cylindrical) for φ ∈ [0, π/2) (respectively, φ = π/2).

Now, we investigate the singularities of non-lightlike and non-cylindrical slant developable surfaces
F(
γ,N[φ]nb

±

), where φ ∈ (0, π/2). Taking into account [17] in Euclidean sense, we have the following lemma

and corollary:

Lemma 4.7. Let F(
γ,N[φ]nb

±

) be a non-lightlike and non-cylindrical slant ruled surface, where φ ∈ (0, π/2). Then,

F(
γ,N[φ]nb

±

) is a non-lightlike slant developable surface if and only if

γ′(s) = −
1

cosφδ
(
γ(s)

)
k(s)

(
N[φ]nb

±

)′
(s).
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Corollary 4.8. Let F(
γ,N[φ]nb

±

) be a non-lightlike and non-cylindrical slant developable surface, where φ ∈ (0, π/2).

In this case, the set of the singular points of F(
γ,N[φ]nb

±

) is a curve parametrized by

σ[φ]nb
± (s) = γ(s) +

1

cosφδ
(
γ(s)

)
k(s)
N[φ]nb

± (s).

If σ[φ]nb
±

is non-singular, then F(
γ,N[φ]nb

±

) is the tangent developable surface of σ[φ]nb
±

.

Proof. Since F(
γ,N[φ]nb

±

) is a non-lightlike and non-cylindrical slant developable surface for φ ∈ (0, π/2),

from Lemma 4.7, we have γ′(s) = − 1
cosφδ

(
γ(s)

)
k(s)

(
N[φ]nb

±

)′
(s). It is obvious that F(

γ,N[φ]nb
±

) is singular at

a point (s0,u0) ∈ I × J if and only if

γ′(s0) ×N[φ]nb
± (s0) + u0

(
N[φ]nb

±

)′
(s0) ×N[φ]nb

± (s0) = 0.

If we use γ′(s0) = − 1
cosφδ

(
γ(s0)

)
k(s0)

(
N[φ]nb

±

)′
(s0) in the above equation, we obtain u0 = 1

cosφδ
(
γ(s0)

)
k(s0)

.

Consequently, for the singular locus on F(γ,N[φ]nb
±

), we get

∑(
F(
γ,N[φ]nb

±

)) = σ[φ]nb
± (s) =

γ(s) +
1

cosφδ
(
γ(s)

)
k(s)
N[φ]nb

± (s)

∣∣∣∣∣∣ s ∈ I

 .
It can be easily seen that the singular locus σ[φ]nb

±
(s) is the line of striction of F(

γ,N[φ]nb
±

). Moreover, since

(
σ[φ]nb

±

)′
(s) = −

1

cosφδ
(
γ(s)

) k′(s)
k2(s)

N[φ]nb
± (s),

a non-lightlike and non-cylindrical slant developable surface F(
γ,N[φ]nb

±

) can be considered as the tangent

developable surface of the singular locus σ[φ]nb
±

if k′(s) , 0 at any s ∈ I (that is, if σ[φ]nb
±

is non-singular). �

Now, taking into account [17], in terms of

det
(
N[φ]nb

± (s),
(
N[φ]nb

±

)′
(s),

(
N[φ]nb

±

)′′
(s)

)
= − cosφ sin2 φτ(s)k′(s) ∓ sin2 φ k(s)τ2(s)

∓ cos2 φδ
(
γ(s)

)
k3(s) + cosφ sin2 φ k(s)τ′(s),

we have the following theorem for the singularities of a non-lightlike and non-cylindrical slant developable
surface F(

γ,N[φ]nb
±

), where φ ∈ (0, π/2):

Theorem 4.9. Let F(
γ,N[φ]nb

±

) be a non-lightlike and non-cylindrical slant developable surface, where φ ∈ (0, π/2).

Moreover, let (s0,u0) ∈ I× J be a singular point of F(
γ,N[φ]nb

±

) and x0 = F(
γ,N[φ]nb

±

)(s0,u0) = γ(s0) + u0

(
cosφn(s0)±

b(s0)
)
. In this case, we have the following:

(1) The germ of F(
γ,N[φ]nb

±

)(I× J) at x0 is diffeomorphic to the cuspidal edge if u0 = 1
cosφδ

(
γ(s0)

)
k(s0)

and k′(s0) , 0.

(2) The germ of F(
γ,N[φ]nb

±

)(I × J) at x0 is diffeomorphic to the swallowtail if u0 = 1
cosφδ

(
γ(s0)

)
k(s0)

, k′(s0) = 0 and

k′′(s0) , 0.
(3) The cuspidal cross cap never appears as a singularity of F(

γ,N[φ]nb
±

).
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Proof. A non-lightlike and non-cylindrical slant developable surface F(
γ,N[φ]nb

±

) can be taken into account

as the tangent developable surface of the singular locus σ[φ]nb
±

(s) of F(
γ,N[φ]nb

±

) around σ[φ]nb
±

(s0) under

the condition
(
σ[φ]nb

±

)′′
(s0) , 0 even if σ[φ]nb

±
(s) has a singularity at s0. Hence, the classifications of the

singularities of F(
γ,N[φ]nb

±

) can be reduced to the classifications of the singularities of the tangent developable

surface of a (not necessarily regular) space curve in R3
1 (Cf. [7], [10], [11], [17], [28] and [35] in Euclidean

sense.). �

Example 4.10. Let γ(s) =
(

sinh(
√

2s) −
√

2s cosh(
√

2s),− cosh(
√

2s) +
√

2s sinh(
√

2s), 0
)
, s > 0. In this case,

we have the following slant ruled surface parametrized by

F(
γ,N[φ]nb

±

)(s,u) =
(

sinh(
√

2s) −
√

2s cosh(
√

2s) − cosφ cosh(
√

2s) u,

− cosh(
√

2s) +
√

2s sinh(
√

2s) + cosφ sinh(
√

2s) u,±u
)
,

where
(
s,−

√
2s

cosφ

)
are its singular points for φ ∈ [0, π/2). Moreover, it is spacelike (respectively, lightlike) for

φ ∈ (0, π/2] (respectively, φ = 0), where u cosφ
√

2s
, −1 (respectively, u

√
2s
, −1). Furthermore, it is non-cylindrical

(respectively, cylindrical) for φ ∈ [0, π/2) (respectively, φ = π/2). Since k(s) = 1
√

2s
and k′(s) = − 1√

(2s)3
, the germ of

the slant developable surface F(
γ,N[φ]nb

±

)(I × J) at F(
γ,N[φ]nb

±

)(s,− √2s
cosφ

)
is diffeomorphic to the cuspidal edge for each

s, where φ ∈ (0, π/2).

Example 4.11. Let γ(s) =
(

arccosh s,
√

s2 − 1, 0
)
, s > 1. In this case, we have the following slant ruled surface

parametrized by

F(
γ,N[φ]nb

±

)(s,u) =

(
arccosh s − cosφ

s u
√

s2 − 1
,
√

s2 − 1 − cosφ
u

√

s2 − 1
,±u

)
,

where
(
s, 1−s2

cosφ

)
are its singular points forφ ∈ [0, π/2). Moreover, it is spacelike (respectively, lightlike) forφ ∈ (0, π/2]

(respectively, φ = 0), where u cosφ
s2−1 , −1 (respectively, u

s2−1 , −1). Furthermore, it is non-cylindrical (respectively,
cylindrical) for φ ∈ [0, π/2) (respectively, φ = π/2). Since k(s) = 1

s2−1 and k′(s) = − 2s
(s2−1)2 , the germ of the slant

developable surface F(
γ,N[φ]nb

±

)(I × J) at F(
γ,N[φ]nb

±

)(s, 1−s2

cosφ

)
is diffeomorphic to the cuspidal edge for each s, where

φ ∈ (0, π/2).

Example 4.12. Let γ(s) = 1
2
(
s2, s
√

s2 + 1 + arcsinh s, 0
)
. In this case, we have the following slant ruled surface

parametrized by

F(
γ,N[φ]nb

±

)(s,u) =

(
s2

2
+ cosφ

√

s2 + 1 u,
s
√

s2 + 1 + arcsinh s
2

+ cosφ s u,∓u
)
,

where
(
s,−

√

s2+1
cosφ

)
are its singular points for φ ∈ [0, π/2). Moreover, it is spacelike (respectively, lightlike) for

φ ∈ (0, π/2] (respectively, φ = 0), where u cosφ
√

s2+1
, −1 (respectively, u

√

s2+1
, −1). Furthermore, it is non-cylindrical

(respectively, cylindrical) for φ ∈ [0, π/2) (respectively, φ = π/2). Since k(s) = 1
√

s2+1
, k′(s) = − s√

(s2+1)3
, k′′(s) =

2s2
−1√

(s2+1)5
, k′(0) = 0 and k′′(0) = −1, the germ of the slant developable surface F(

γ,N[φ]nb
±

)(I× J) at F(
γ,N[φ]nb

±

)(s,− √s2+1
cosφ

)
is diffeomorphic to the cuspidal edge (respectively, the swallowtail) when s , 0 (respectively, s = 0), whereφ ∈ (0, π/2).
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Example 4.13. Let γ(s) =
(
0, 2 arctan(es), ln(2 cosh s)

)
. In this case, we have the following slant ruled surface

parametrized by

F(
γ,N[φ]nb

±

)(s,u) =
(
∓ u, 2 arctan(es) − cosφu tanh s, ln(2 cosh s) + cosφ

u
cosh s

)
,

where
(
s, cosh s

cosφ

)
are its singular points forφ ∈ [0, π/2). Moreover, it is timelike (respectively, lightlike) forφ ∈ (0, π/2]

(respectively, φ = 0), where u cosφ
cosh s , 1 (respectively, u

cosh s , 1). Furthermore, it is non-cylindrical (respectively,
cylindrical) for φ ∈ [0, π/2) (respectively, φ = π/2). Since k(s) = 1

cosh s , k′(s) = − sinh s
cosh2s

, k′′(s) = sinh2 s−1
cosh3s

, k′(0) = 0

and k′′(0) = −1, the germ of the slant developable surface F(
γ,N[φ]nb

±

)(I × J) at F(
γ,N[φ]nb

±

)(s, cosh s
cosφ

)
is diffeomorphic to

the cuspidal edge (respectively, the swallowtail) when s , 0 (respectively, s = 0), where φ ∈ (0, π/2).

Example 4.14. Let γ(s) = 1
2
(
0, 1 − s2, arccos s − s

√

1 − s2
)
, 1 > s2. In this case, we have the following slant ruled

surface parametrized by

F(
γ,N[φ]nb

±

)(s,u) =

(
± u,

1 − s2

2
− cosφ

√

1 − s2 u,
arccos s − s

√

1 − s2

2
+ cosφ s u

)
,

where
(
s,
√

1−s2

cosφ

)
are its singular points forφ ∈ [0, π/2). Moreover, it is timelike (respectively, lightlike) forφ ∈ (0, π/2]

(respectively, φ = 0), where u cosφ
√

1−s2
, 1 (respectively, u

√

1−s2
, 1). Furthermore, it is non-cylindrical (respectively,

cylindrical) for φ ∈ [0, π/2) (respectively, φ = π/2). Since k(s) = 1
√

1−s2
, k′(s) = s√

(1−s2)3
, k′′(s) = 1+2s2

√
(1−s2)5

, k′(0) = 0

and k′′(0) = 1, the germ of the slant developable surface F(
γ,N[φ]nb

±

)(I × J) at F(
γ,N[φ]nb

±

)(s, √1−s2

cosφ

)
is diffeomorphic to

the cuspidal edge (respectively, the swallowtail) when s , 0 (respectively, s = 0), where φ ∈ (0, π/2).

Example 4.15. Let γ(s) =
(

ln(sec s), ln(sec s + tan s), 0
)
, 0 ≤ s < π

2 . In this case, we have the following slant ruled
surface parametrized by

F(
γ,N[φ]nb

±

)(s,u) =
(

ln(sec s) + cosφu sec s, ln(sec s + tan s) + cosφu tan s,∓u
)
,

where
(
s,− cos s

cosφ

)
are its singular points for φ ∈ [0, π/2). Moreover, it is spacelike (respectively, lightlike) for

φ ∈ (0, π/2] (respectively, φ = 0), where u cosφ
cos s , −1 (respectively, u

cos s , −1). Furthermore, it is non-cylindrical
(respectively, cylindrical) for φ ∈ [0, π/2) (respectively, φ = π/2). Since k(s) = 1

cos s , k′(s) = sin s
cos2s , k′′(s) = 1+sin2s

cos3s ,
k′(0) = 0 and k′′(0) = 1, the germ of the slant developable surface F(

γ,N[φ]nb
±

)(I × J) at F(
γ,N[φ]nb

±

)(s,− cos s
cosφ

)
is

diffeomorphic to the cuspidal edge (respectively, the swallowtail) when s , 0 (respectively, s = 0), where φ ∈ (0, π/2).

5. Singularities of slant ruled surfaces with the director curveN[φ]nb
±

In this section, taking into account [17] for the principal normal surface of a unit speed curve with
non-zero curvature in Euclidean 3-space, we investigate the singularities of slant ruled surfaces F(

γ,N[φ]nb
±

),

where φ ∈ (0, π/2).

Theorem 5.1. Let φ ∈ (0, π/2). For a spacelike curve γ : I → R3
1 which is parametrized by arc length s such that

k(s) , 0, the slant normal surface F(
γ,N[φ]nb

±

) of γ is the cross cap at (s0,u0) ∈ I × J if and only if

u0 =
1

cosφδ
(
γ(s0)

)
k(s0)

, τ(s0) = 0 and τ′(s0) , 0.
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Proof. For φ ∈ (0, π/2), we showed in Section 3 that (s0,u0) is a singular point of F(
γ,N[φ]nb

±

) if and only if

τ(s0) = 0 and u0 = 1
cosφδ

(
γ(s0)

)
k(s0)

. If we use these equations in the derivative equations of F(
γ,N[φ]nb

±

) at

(s0,u0), we find

∂F(
γ,N[φ]nb

±

)
∂s (s0,u0) = 0,

∂F(
γ,N[φ]nb

±

)
∂u (s0,u0) = cosφn(s0) ± b(s0),

∂2F(
γ,N[φ]nb

±

)
∂u∂s (s0,u0) = − cosφδ

(
γ(s0)

)
k(s0)t(s0),

∂2F(
γ,N[φ]nb

±

)
∂s2 (s0,u0) = −

k′(s0)
k(s0) t(s0) ± τ′(s0)

cosφδ
(
γ(s0)

)
k(s0)

n(s0) +
τ′(s0)

δ
(
γ(s0)

)
k(s0)

b(s0).

By means of these relations, we deduce

det


∂F(

γ,N[φ]nb
±

)
∂u

(s0,u0),

∂2F(
γ,N[φ]nb

±

)
∂u∂s

(s0,u0),

∂2F(
γ,N[φ]nb

±

)
∂s2 (s0,u0)

 = sin2 φδ
(
γ(s0)

)
τ′(s0).

In terms of the characterization of the cross cap which was given in [2], [5] and [17] for the Euclidean case,
we find from the last equation that τ′(s0) , 0. Thus, the proof is completed. �

Example 5.2. Let γ(s) =
(
−

(a2
−1)
2

(
cosh((a+1)s)

(a+1)2 +
cosh((a−1)s)

(a−1)2

)
,− (a2

−1)
2

(
sinh((a+1)s)

(a+1)2 −
sinh((a−1)s)

(a−1)2

)
,−
√

a2−1
a cosh(as)

)
, where

a2 > 1. It follows that k(s) =
√

a2 − 1 cosh(as), τ(s) = −
√

a2 − 1 sinh(as), τ(0) = 0 and so
(
0, 1

cosφ
√

a2−1

)
(respectively,

(
s, 1
√

a2−1 cosh(as)

)
) is the singular point (respectively, are the singular points) of F(

γ,N[φ]nb
±

) for φ ∈

(0, π/2) (respectively, φ = 0). Moreover, since τ′(s) = −a
√

a2 − 1 cosh(as) and τ′(0) = −a
√

a2 − 1, F(
γ,N[φ]nb

±

) is the

cross cap at
(
0, 1

cosφ
√

a2−1

)
for φ ∈ (0, π/2).

Example 5.3. Let γ(s) =
(

s2

2 , s cos s, s sin s
)
. It follows that k(s) =

√

s2 + 3, τ(s) = −
s(s2+4)

s2+3 , τ(0) = 0 and so(
0, 1

cosφ
√

3

)
(respectively,

(
s, 1
√

s2+3

)
) is the singular point (respectively, are the singular points) of F(

γ,N[φ]nb
±

) for

φ ∈ (0, π/2) (respectively, φ = 0). Moreover, since τ′(s) = −
(s4+5s2+12)

(s2+3)2 and τ′(0) = − 4
3 , F(

γ,N[φ]nb
±

) is the cross cap at(
0, 1

cosφ
√

3

)
for φ ∈ (0, π/2).

Now, we take into account the following generic conditions on a space curve γ : S1
→ R3

1 which is
spacelike and parametrized by arc length s (See [5] and [17] for the Euclidean case.):

(1) There are no points on S1 with τ(s) = τ′(s) = 0.
(2) The number of the points s0 ∈ S1 such that τ(s0) = 0 and τ′(s0) , 0 is finite.
(3) k(s) , 0 at any point s ∈ S1.

Thus, taking into account [17], we have the following corollary:
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Corollary 5.4. For a ”generic” spacelike curve γ : S1
→ R3

1, the number of the singular points of F(
γ,N[φ]nb

±

) is finite

and each singular point is the cross cap.

6. Slant ruled surfaces with the director curve Ñ[φ]nb
±

In this section, in a similar way to the one in Section 3, for any fixed φ ∈ [0, π/2], we define a slant ruled
surface by

F(
γ,Ñ[φ]nb

±

) : I × J −→ R3
1

(s,u) 7−→ γ(s) + uÑ[φ]nb
± (s)

such that γ : I→ R3
1 is a spacelike base curve parametrized by arc length s, Ñ[φ]nb

±
= n± cosφ b is a director

curve and the straight lines u 7−→ γ(s) + uÑ[φ]nb
±

(s) are rulings, where I and J are open intervals inR or unit
circles S1. Here, we remark that

Ñ[φ]nb
± (s) ∈

{
S2

1(sin2 φ) if n(s) is spacelike,
H2(− sin2 φ) if n(s) is timelike

for any fixed φ ∈ [0, π/2] and we say that F(
γ,Ñ[φ]nb

±

) is

{
a φ-de Sitter normal surface of γ if n(s) is spacelike,
a φ-hyperbolic normal surface of γ if n(s) is timelike.

We briefly say that F(
γ,Ñ[φ]nb

±

) is a slant normal surface of γ if it is either a φ-de Sitter normal surface or a

φ-hyperbolic normal surface of γ. Especially, we say that F(
γ,Ñ[π/2]nb

±

) is

{
a de Sitter principal normal surface of γ if n(s) is spacelike,
a hyperbolic principal normal surface of γ if n(s) is timelike

(Cf. [17] in Euclidean sense.). Moreover, F(
γ,Ñ[0]nb

±

) is said to be the lightcone normal surface of γ, where

Ñ[0]nb
±

(s) ∈ LC∗. Here, we remark that this case was investigated in [14].

For the normal vector of a slant ruled surface F(
γ,Ñ[φ]nb

±

), we obtain

∂F(
γ,Ñ[φ]nb

±

)
∂s

(s,u) ×

∂F(
γ,Ñ[φ]nb

±

)
∂u

(s,u) = γ′(s) × Ñ[φ]nb
± (s) + u

(
Ñ[φ]nb

±

)′
(s) × Ñ[φ]nb

± (s)

at any (s,u) ∈ I × J. If we denote this normal vector by Ñφ,nb
±

(s,u), then we get

Ñφ,nb
±

(s,u) = u sin2 φδ
(
γ(s)

)
τ(s)t(s) ± cosφ

(
1 − uδ

(
γ(s)

)
k(s)

)
n(s) +

(
1 − uδ

(
γ(s)

)
k(s)

)
b(s).

Consequently, we have the following propositions and remark:

Proposition 6.1. Let φ ∈ (0, π/2]. (s0,u0) is a singular point of F(
γ,Ñ[φ]nb

±

) if and only if τ(s0) = 0 and u0 =

1
δ
(
γ(s0)

)
k(s0)

.
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Proposition 6.2.
(
s0, 1
δ
(
γ(s0)

)
k(s0)

)
is a singular point of F(

γ,Ñ[0]nb
±

).

We point out that φ = 0 case was studied in [14].

Remark 6.3. The singular points of F(
γ,Ñ[φ]nb

±

) don’t depend on φ.

Now, we take into account the following cases:

(1) φ = 0 and uδ
(
γ(s)

)
k(s) , 1.

(2) φ ∈ (0, π/2], n(s) is spacelike and u2 sin2 φτ2(s) >
(
1 − uk(s)

)2
, where one of the following conditions

holds:
(i) τ(s) , 0 and uk(s) = 1,
(ii) τ(s) , 0 and uk(s) , 1.

(3) φ ∈ (0, π/2], n(s) is spacelike and u2 sin2 φτ2(s) =
(
1 − uk(s)

)2
, where τ(s) , 0 and uk(s) , 1.

(4) φ ∈ (0, π/2], n(s) is spacelike and u2 sin2 φτ2(s) <
(
1 − uk(s)

)2
, where one of the following conditions

holds:
(i) τ(s) = 0 and uk(s) , 1,
(ii) τ(s) , 0 and uk(s) , 1.
(5) φ ∈ (0, π/2], n(s) is timelike and at least one of the following conditions holds:
(i) τ(s) , 0,
(ii) uk(s) , −1.

In terms of the above cases, we classify the normal vector Ñφ,nb
±

(s,u) of F(
γ,Ñ[φ]nb

±

) at any regular (s,u) ∈ I×J

as follows:

Ñφ,nb
±

(s,u) is


spacelike if either (2) or (5) is satisfied,
lightlike if either (1) or (3) is satisfied,
timelike if (4) is satisfied.

Example 6.4. Let γ(s) = (0, cos s, sin s), where 0 ≤ s < 2π. In this case, we have the following slant ruled surface
parametrized by

F(
γ,Ñ[φ]nb

±

)(s,u) =
(
∓ cosφu, (1 − u) cos s, (1 − u) sin s

)
,

where the points (s, 1) are its singular points for φ ∈ [0, π/2]. Moreover, F(
γ,Ñ[φ]nb

±

) is spacelike (respectively,

lightlike) for φ ∈ (0, π/2] (respectively, φ = 0), where u , 1.

Example 6.5. Let γ(s) = (cosh s, sinh s, 0). In this case, we have the following slant ruled surface parametrized by

F(
γ,Ñ[φ]nb

±

)(s,u) =
(
(1 + u) cosh s, (1 + u) sinh s,∓ cosφu

)
,

where the points (s,−1) are its singular points for φ ∈ [0, π/2]. Moreover, F(
γ,Ñ[φ]nb

±

) is timelike (respectively,

lightlike) for φ ∈ (0, π/2] (respectively, φ = 0), where u , −1.

Example 6.6. Letγ(s) =
(

cosh s, sinh s√

2
, sinh s√

2

)
. In this case, we have the following slant ruled surface parametrized

by

F(
γ,Ñ[φ]nb

±

)(s,u) =
(
(1 + u) cosh s,

1
√

2
(1 + u) sinh s ±

cosφ
√

2
u,

1
√

2
(1 + u) sinh s ∓

cosφ
√

2
u
)
,
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where the points (s,−1) are its singular points for φ ∈ [0, π/2]. Moreover, F(
γ,Ñ[φ]nb

±

) is timelike (respectively,

lightlike) for φ ∈ (0, π/2] (respectively, φ = 0), where u , −1.

Example 6.7. Let γ(s) =
(

sin s,
√

2 sin s, cos s
)
, where 0 ≤ s < 2π. In this case, we have the following slant ruled

surface parametrized by

F(
γ,Ñ[φ]nb

±

)(s,u) =
(
(1 − u) sin s ±

√

2 cosφu,
√

2(1 − u) sin s ± cosφu, (1 − u) cos s
)
,

where the points (s, 1) are its singular points for φ ∈ [0, π/2]. Moreover, F(
γ,Ñ[φ]nb

±

) is spacelike (respectively,

lightlike) for φ ∈ (0, π/2] (respectively, φ = 0), where u , 1.

We can define the unit non-lightlike normal vector denoted by ñφ,nb
±

(s,u) of F(
γ,Ñ[φ]nb

±

) at any regular

(s,u) ∈ I × J as follows:

ñ
φ,nb
±

(s,u) =



u sin2 φτ(s)t(s) ± cosφ
(
1 − uk(s)

)
n(s) +

(
1 − uk(s)

)
b(s)

sinφ

√
u2 sin2 φτ2(s) −

(
1 − uk(s)

)2
if (2) is satisfied,

−u sin2 φτ(s)t(s) ± cosφ
(
1 + uk(s)

)
n(s) +

(
1 + uk(s)

)
b(s)

sinφ

√
u2 sin2 φτ2(s) +

(
1 + uk(s)

)2
if (5) is satisfied,

u sin2 φτ(s)t(s) ± cosφ
(
1 − uk(s)

)
n(s) +

(
1 − uk(s)

)
b(s)

sinφ

√
−

(
u2 sin2 φτ2(s) −

(
1 − uk(s)

)2) if (4) is satisfied.

By the considerations similar to the ones in Section 3, for the Gauss curvature denoted by K̃φ,nb
±

of a non-
lightlike (either timelike or spacelike) slant ruled surface F(

γ,Ñ[φ]nb
±

), we obtain the following classifications:

K̃φ,nb
±

(s,u) =



τ2(s)(
u2 sin2 φτ2(s) −

(
1 − uk(s)

)2)2 > 0 if (2) is satisfied,

τ2(s)(
u2 sin2 φτ2(s) +

(
1 + uk(s)

)2)2 ≥ 0 if (5) is satisfied,

−
τ2(s)(

u2 sin2 φτ2(s) −
(
1 − uk(s)

)2)2 ≤ 0 if (4) is satisfied.

As a result, for any non-lightlike slant ruled surface F(
γ,Ñ[φ]nb

±

), we can deduce that

K̃φ,nb
±

(s,u) = 0⇐⇒ τ(s) = 0.

Thus, we have the following proposition which is similar to Proposition 3.8.

Proposition 6.8. Singular points of a non-lightlike slant ruled surface F(
γ,Ñ[φ]nb

±

) are located on the line of striction

on which the Gauss curvature K̃φ,nb
±

is zero. At regular points of a timelike (respectively, spacelike) slant ruled surface
F(
γ,Ñ[φ]nb

±

), K̃φ,nb
±

satisfies K̃φ,nb
±
≥ 0 (respectively, K̃φ,nb

±
≤ 0) and K̃φ,nb

±
is zero only along the rulings which meet the

line of striction at a singular point.
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7. Singularities of non-lightlike and non-cylindrical slant developable surfaces with the director curve
Ñ[φ]nb

±

Following Section 4, for any fixed φ ∈ [0, π/2], we say that a non-lightlike slant ruled surface F(
γ,Ñ[φ]nb

±

)
is a non-lightlike slant developable surface if the Gauss curvature K̃φ,nb

±
of the regular part of F(

γ,Ñ[φ]nb
±

) is

identically zero. Moreover, we say that a slant developable surface F(
γ,Ñ[φ]nb

±

)(s,u) is a φ-de Sitter (respec-

tively, φ-hyperbolic) normal developable surface of γ(s) if n(s) is spacelike (respectively, timelike). Furthermore,
F(
γ,Ñ[0]nb

±

)(s,u) = γ(s) + u(n(s) ± b(s)) is said to be the lightcone developable surface of γ(s), where Ñ[0]nb
±
∈ LC∗.

Here, we note that this case was investigated in [14]. We also remark that since the proofs of our results in
this section are similar to the ones in Section 4, we omit them.

It can be easily verified that

det
(
γ′(s), Ñ[φ]nb

± (s),
(
Ñ[φ]nb

±

)′
(s)

)
= − sin2 φδ

(
γ(s)

)
τ(s).

So, taking into account [17], [36]-[38], [40] and [41], we have the following proposition which is similar to
Proposition 4.1:

Proposition 7.1. Let φ ∈ (0, π/2]. Then, a non-lightlike slant ruled surface F(
γ,Ñ[φ]nb

±

) is a non-lightlike slant

developable surface if and only if

det
(
γ′(s), Ñ[φ]nb

± (s),
(
Ñ[φ]nb

±

)′
(s)

)
= 0.

On the other hand, since

Ñ[φ]nb
± (s) ×

(
Ñ[φ]nb

±

)′
(s) = − sin2 φδ

(
γ(s)

)
τ(s)t(s) ± cosφδ

(
γ(s)

)
k(s)n(s) + δ

(
γ(s)

)
k(s)b(s),

we have the following proposition:

Proposition 7.2. A slant ruled surface F(
γ,Ñ[φ]nb

±

) is always non-cylindrical for φ ∈ [0, π/2].

As a result, the space of non-lightlike and non-cylindrical slant developable surfaces F(
γ,Ñ[φ]nb

±

) is given

by

D̃ev[φ]nb
±

(I,R3
1) = { γ : I→ R3

1 is a spacelike curve which
is parametrized by arc length s | k(s) , 0 and τ(s) = 0 for any s ∈ I},

where φ ∈ (0, π/2] (See [17] for the Euclidean case.).

Example 7.3. In Example 6.4, F(
γ,Ñ[φ]nb

±

) is a non-cylindrical and φ-de Sitter normal developable surface of γ.

Example 7.4. In Example 6.5, F(
γ,Ñ[φ]nb

±

) is a non-cylindrical and φ-hyperbolic normal developable surface of γ.

Example 7.5. In Example 6.6, F(
γ,Ñ[φ]nb

±

) is a non-cylindrical and φ-hyperbolic normal developable surface of γ.

Example 7.6. In Example 6.7, F(
γ,Ñ[φ]nb

±

) is a non-cylindrical and φ-de Sitter normal developable surface of γ.

Now, taking into account Section 4, we have the following lemma and corollary:
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Lemma 7.7. Let F(
γ,Ñ[φ]nb

±

) be a non-lightlike and non-cylindrical slant ruled surface, where φ ∈ (0, π/2]. Then,

F(
γ,Ñ[φ]nb

±

) is a non-lightlike slant developable surface if and only if

γ′(s) = −
1

δ
(
γ(s)

)
k(s)

(
Ñ[φ]nb

±

)′
(s).

Corollary 7.8. Let F(
γ,Ñ[φ]nb

±

) be a non-lightlike and non-cylindrical slant developable surface, where φ ∈ (0, π/2].

In this case, the set of the singular points of F(
γ,Ñ[φ]nb

±

) is a curve parametrized by

σ̃[φ]nb
± (s) = γ(s) +

1

δ
(
γ(s)

)
k(s)
Ñ[φ]nb

± (s).

If σ̃[φ]nb
±

is non-singular, then F(
γ,Ñ[φ]nb

±

) is the tangent developable surface of σ̃[φ]nb
±

.

Now, in a similar way to the one in Section 4, in terms of

det
(
Ñ[φ]nb

± (s),
(
Ñ[φ]nb

±

)′
(s),

(
Ñ[φ]nb

±

)′′
(s)

)
= sin2 φτ(s)k′(s) ± cosφ sin2 φ k(s)τ2(s)

∓ cosφδ
(
γ(s)

)
k3(s) − sin2 φ k(s)τ′(s)

and

det
(
Ñ[φ]nb

± (s),
(
Ñ[φ]nb

±

)′
(s),

(
Ñ[φ]nb

±

)′′′
(s)

)
= sin2 φτ(s)k′′(s) ± 2 cosφ sin2 φ k(s)τ(s)τ′(s)

± cosφ sin2 φτ2(s)k′(s) ∓ 3 cosφδ
(
γ(s)

)
k2(s)k′(s)

− sin2 φ k(s)τ′′(s),

we have the following theorem for the singularities of a non-lightlike and non-cylindrical slant developable
surface F(

γ,Ñ[φ]nb
±

), where φ ∈ (0, π/2]:

Theorem 7.9. Let F(
γ,Ñ[φ]nb

±

) be a non-lightlike and non-cylindrical slant developable surface, where φ ∈ (0, π/2].

Moreover, let (s0,u0) ∈ I × J be a singular point of F(
γ,Ñ[φ]nb

±

) and x0 = F(
γ,Ñ[φ]nb

±

)(s0,u0) = γ(s0) + u0

(
n(s0) ±

cosφ b(s0)
)
. Then, we have the following:

(1) Let φ ∈ (0, π/2). In this case,
(i) the germ of F(

γ,Ñ[φ]nb
±

)(I × J) at x0 is diffeomorphic to the cuspidal edge if u0 = 1
δ
(
γ(s0)

)
k(s0)

and k′(s0) , 0.

(ii) the germ of F(
γ,Ñ[φ]nb

±

)(I × J) at x0 is diffeomorphic to the swallowtail if u0 = 1
δ
(
γ(s0)

)
k(s0)

, k′(s0) = 0 and

k′′(s0) , 0.
(2) The cuspidal cross cap never appears as a singularity of F(

γ,Ñ[φ]nb
±

).

Example 7.10. Consider the curve given in Example 4.10. In this case, we have the following non-cylindrical slant
ruled surface parametrized by

F(
γ,Ñ[φ]nb

±

)(s,u) =
(

sinh(
√

2s) −
√

2s cosh(
√

2s) − u cosh(
√

2s),

− cosh(
√

2s) +
√

2s sinh(
√

2s) + u sinh(
√

2s),± cosφu
)
,
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where
(
s,−
√

2s) are its singular points and φ ∈ [0, π/2]. Moreover, it is timelike (respectively, lightlike) for

φ ∈ (0, π/2] (respectively, φ = 0), where u , −
√

2s. Furthermore, the germ of the slant developable surface
F(
γ,Ñ[φ]nb

±

)(I × J) at F(
γ,Ñ[φ]nb

±

)(s,−√2s
)

is diffeomorphic to the cuspidal edge for each s, where φ ∈ (0, π/2).

Example 7.11. Consider the curve given in Example 4.11. In this case, we have the following non-cylindrical slant
ruled surface parametrized by

F(
γ,Ñ[φ]nb

±

)(s,u) =

(
arccosh s −

s u
√

s2 − 1
,
√

s2 − 1 −
u

√

s2 − 1
,± cosφu

)
,

where (s, 1−s2) are its singular points andφ ∈ [0, π/2]. Moreover, it is timelike (respectively, lightlike) forφ ∈ (0, π/2]
(respectively, φ = 0), where u , 1 − s2. Furthermore, the germ of the slant developable surface F(

γ,Ñ[φ]nb
±

)(I × J) at

F(
γ,Ñ[φ]nb

±

)(s, 1 − s2) is diffeomorphic to the cuspidal edge for each s, where φ ∈ (0, π/2).

Example 7.12. Consider the curve given in Example 4.12. In this case, we have the following non-cylindrical slant
ruled surface parametrized by

F(
γ,Ñ[φ]nb

±

)(s,u) =
( s2

2
+
√

s2 + 1 u,
s
√

s2 + 1 + arcsinh s
2

+ s u,∓ cosφu
)
,

where
(
s,−
√

s2 + 1
)

are its singular points and φ ∈ [0, π/2]. Moreover, it is timelike (respectively, lightlike) for

φ ∈ (0, π/2] (respectively, φ = 0), where u , −
√

s2 + 1. Furthermore, the germ of the slant developable surface
F(
γ,Ñ[φ]nb

±

)(I× J) at F(
γ,Ñ[φ]nb

±

)(s,−√s2 + 1
)

is diffeomorphic to the cuspidal edge (respectively, the swallowtail) when

s , 0 (respectively, s = 0), where φ ∈ (0, π/2).

Example 7.13. Consider the curve given in Example 4.13. In this case, we have the following non-cylindrical slant
ruled surface parametrized by

F(
γ,Ñ[φ]nb

±

)(s,u) =
(
∓ cosφu, 2 arctan(es) − u tanh s, ln(2 cosh s) +

u
cosh s

)
,

where (s, cosh s) are its singular points and φ ∈ [0, π/2]. Moreover, it is spacelike (respectively, lightlike) for
φ ∈ (0, π/2] (respectively, φ = 0), where u , cosh s. Furthermore, the germ of the slant developable surface
F(
γ,Ñ[φ]nb

±

)(I × J) at F(
γ,Ñ[φ]nb

±

)(s, cosh s) is diffeomorphic to the cuspidal edge (respectively, the swallowtail) when

s , 0 (respectively, s = 0), where φ ∈ (0, π/2).

Example 7.14. Consider the curve given in Example 4.14. In this case, we have the following non-cylindrical slant
ruled surface parametrized by

F(
γ,Ñ[φ]nb

±

)(s,u) =

(
± cosφu,

1 − s2

2
−

√

1 − s2 u,
arccos s − s

√

1 − s2

2
+ s u

)
,

where
(
s,
√

1 − s2
)

are its singular points and φ ∈ [0, π/2]. Moreover, it is spacelike (respectively, lightlike) for

φ ∈ (0, π/2] (respectively, φ = 0), where u ,
√

1 − s2. Furthermore, the germ of the slant developable surface
F(
γ,Ñ[φ]nb

±

)(I × J) at F(
γ,Ñ[φ]nb

±

)(s, √1 − s2
)

is diffeomorphic to the cuspidal edge (respectively, the swallowtail) when

s , 0 (respectively, s = 0), where φ ∈ (0, π/2).
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Example 7.15. Consider the curve given in Example 4.15. In this case, we have the following non-cylindrical slant
ruled surface parametrized by

F(
γ,Ñ[φ]nb

±

)(s,u) =
(

ln(sec s) + u sec s, ln(sec s + tan s) + u tan s,∓ cosφu
)
,

where (s,− cos s) are its singular points and φ ∈ [0, π/2]. Moreover, it is timelike (respectively, lightlike) for
φ ∈ (0, π/2] (respectively, φ = 0), where u , − cos s. Furthermore, the germ of the slant developable surface
F(
γ,Ñ[φ]nb

±

)(I × J) at F(
γ,Ñ[φ]nb

±

)(s,− cos s) is diffeomorphic to the cuspidal edge (respectively, the swallowtail) when

s , 0 (respectively, s = 0), where φ ∈ (0, π/2).

Now, taking into account [33] and [39] (See also [24] and [34].), we have the following theorems when
φ = π/2, where k(s) , 0 and τ(s) = 0 for each s ∈ I:

Theorem 7.16. F(
γ,Ñ[π/2]nb

±

) at
(
s0, 1
δ
(
γ(s0)

)
k(s0)

)
is A -equivalent to

(1) the fold if and only if k′(s0) , 0.
(2) the cusp if and only if k′(s0) = 0 and k′′(s0) , 0.
(3) the swallowtail if and only if k′(s0) = k′′(s0) = 0 and k′′′(s0) , 0.

Proof. The proof is clear from the criteria given in the Fact 2 (See also [39]) and Theorem 3 in [33]. �

Theorem 7.17. The lips and the beaks never appear as singularities of F(
γ,Ñ[π/2]nb

±

).

Proof. The proof is clear from the criteria given in Theorem 3 in [33]. �

Example 7.18. In Example 7.10, F(
γ,Ñ[π/2]nb

±

) at (s,−
√

2s) is A -equivalent to the fold for each s.

Example 7.19. In Example 7.11, F(
γ,Ñ[π/2]nb

±

) at (s, 1 − s2) is A -equivalent to the fold for each s.

Example 7.20. In Example 7.12, F(
γ,Ñ[π/2]nb

±

) at (s,−
√

s2 + 1) is A -equivalent to the fold (respectively, cusp) when

s , 0 (respectively, s = 0).

Example 7.21. In Example 7.13, F(
γ,Ñ[π/2]nb

±

) at (s, cosh s) is A -equivalent to the fold (respectively, cusp) when

s , 0 (respectively, s = 0).

Example 7.22. In Example 7.14, F(
γ,Ñ[π/2]nb

±

) at (s,
√

1 − s2) is A -equivalent to the fold (respectively, cusp) when

s , 0 (respectively, s = 0).

Example 7.23. In Example 7.15, F(
γ,Ñ[π/2]nb

±

) at (s,− cos s) is A -equivalent to the fold (respectively, cusp) when

s , 0 (respectively, s = 0).
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8. Singularities of slant ruled surfaces with the director curve Ñ[φ]nb
±

In this section, following Section 5, we investigate the singularities of slant ruled surfaces F(
γ,Ñ[φ]nb

±

),

where φ ∈ (0, π/2]. Since the proof of the following theorem is similar to the proof of Theorem 5.1, we omit
it.

Theorem 8.1. Let φ ∈ (0, π/2]. For a spacelike curve γ : I → R3
1 which is parametrized by arc length s such that

k(s) , 0, the slant normal surface F(
γ,Ñ[φ]nb

±

) of γ is the cross cap at (s0,u0) ∈ I × J if and only if

u0 =
1

δ
(
γ(s0)

)
k(s0)

, τ(s0) = 0 and τ′(s0) , 0.

Example 8.2. Consider the curve given in Example 5.2. It is clear that
(
0, 1
√

a2−1

)
(respectively,

(
s, 1
√

a2−1 cosh(as)

)
) is

the singular point (are the singular points) of F(
γ,Ñ[φ]nb

±

) for φ ∈ (0, π/2] (respectively, φ = 0). Moreover, F(
γ,Ñ[φ]nb

±

)
is the cross cap at

(
0, 1
√

a2−1

)
for φ ∈ (0, π/2].

Example 8.3. Consider the curve given in Example 5.3. It is clear that
(
0, 1
√

3

)
(respectively,

(
s, 1
√

s2+3

)
) is the singular

point (respectively, are the singular points) of F(
γ,Ñ[φ]nb

±

) for φ ∈ (0, π/2] (respectively, φ = 0). Moreover, F(
γ,Ñ[φ]nb

±

)
is the cross cap at

(
0, 1
√

3

)
for φ ∈ (0, π/2].

Now, considering the generic conditions expressed in Section 5 for a space curve γ : S1
→ R3

1 which is
spacelike and parametrized by arc length s, we have the following corollary:

Corollary 8.4. For a ”generic” spacelike curve γ : S1
→ R3

1, the number of the singular points of F(
γ,Ñ[φ]nb

±

) is finite

and each singular point is the cross cap.
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