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Abstract. In this paper, we will study a second-order nonlinear elliptic problem generated by an operator
of divergence type (or type leray-Lion) :

(P1)
{

A(u) = f in M
u = 0 on Γ

(1)

on (M, 1) a compact Riemannian manifold et Γ its border.

1. Introduction

Let (M, 1) be a compact Riemannian manifold of dimension n (n ≥ 2) and Γ its border, we consider the
nonlinear elliptic problem of the following Dirichlet type (1)

with

A(u) = −div1(a(x,u,∇u)) = −

N∑
i, j=1

∂ai

∂xi
+ a jΓ

i
i j

where Γi
i j represents the symbol of Christoffel and

a =

N∑
i=1

ai(
∂
∂xi

)

is a family of functions defined on M ×R ×RN has value in R.
The goal of this work is to show that the Dirichlet type problem (P1) admits at least one solution in the

variational case (ie, when the second member f is in a dual space).
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The main interest of Sobolev space theory lies in the existence of continuous embeddings of Sobolev,
Poincare inequalities, and in the existence of the embedding We add to this list the existence of the regularity
theorems very important and particularly important in the study of the equations to the partial linear and
nonlinear partial defects, edge problems, calculation of the variations. The importance of these spaces is
broader, including questions of differential geometry, analytic topology, complex analysis and probability
theory. The Sobolev space theory classics on the Euclidean space has become integrated into other geometric
frameworks.

The first understanding of the Sobolev spaces on the Riemannian manifolds is due to Thierry Aubin in
1976[1],[4][5][6]. He used his results in connection with the non-linear EDPs on the manifolds. Sobolev
spaces on compact manifolds have been used for a long time (Ebin works). They do not essentially differ
from the Sobolev spaces on a ball of Rn. The case of the complete non-compact Riemannian manifolds is
more delicate. Equations to partial derivatives allow to approach from a mathematical point of view the
phenomena observed, for example in the fields of physics and chemistry. The situations of time depend
more particularly on evolution equations taking into account the possible interactions between objects and
events.

In Euclidean domains, the theory of Lebesgue−Sobolev spaces has applications in non-linear elastic
mechanics [2], electrorheological uids[3] . The study of equations with elliptic partial equations is one of
the research topics of great importance in the analysis of variability and development of these models. last
years in many works [8] [9][10][11][12][13]. The resolution of elliptic partial differential equations and the
problems related to conformal geometry led to the development of tools non-linear analysis, such as the
”variational method” for solving the problem of Yamabe, the problem of scalar curvature.

The work presented in this paper concerns an equation with partial derivatives of the elliptic type
involving the divergence operator A(u) = −div(a(x,u,∇u)), where a = (ai)1≤i≤N is a family of functions
defined on M ×R ×RN has value in R. is a verifying field of hypotheses of the Leray-Lions type.

2. Fundamental theorems of existence

Theorem 2.1. See,[14][15] Let X be a Banach Reflexive space and let A : X → X′ an operator having the following
properties:

(P1) A is bounded hemicontinuous .

(P2) A is monotone .

(P3) A is coercive ,e.i,<A(v),v>
||v|| →∞ if ||v|| → ∞

Then A is surjective of X→ X′ , i.e, for everything f ∈ X′ , it exists u ∈ X such as:

(Pv)
{

A(u)=f

Theorem 2.2. let X be a reflexive Banach space and let A : X→ X′ an operator having the following properties :

(P1) A is pseudo-monotone .

(P2) A is coercive ,e.i,<A(v),v>
||v|| →∞ if ||v|| → ∞.

Then A is surjective of X→ X′ ,i.e , for everything f ∈ X′ , it exists u ∈ X such as:

(Pv)
{

A(u)=f

3. Preliminaries

This section devoted to the presentation of sobolev spaces on the Riemannian manifolds.
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3.1. First definitions
Let (M, 1) a Riemannian manifold, for an integer k and u ∈ C∞(M) , ∇ku represents the k − th of the

covariant derivative of u (with the Convention ∇0u = u ) . and the norm of k− th of covariant derivative on
a local map is given by the following formula :

|∇
ku| = 1i1 j1 .......1ik jk (∇ku)i1....ik (∇

ku) j1.... jk

where the Einstein summons is adopted.

3.2. Space of lebesgue and sobolev on the Riemennian manifolds
See[18]
Let be p ≥ 1 a real, and k a positive integer.

Lp(M) = {u : M→ R measurable /
∫

M
|u|pdσ1 < ∞}

Cp
k(M) functions space u ∈ C∞ such as |∇ ju| ∈ Lp(M) for j = 0, ...., k

Cp
k(M) = {u ∈ C∞ /∀ j = 0, ...., k

∫
M
|∇

ju|pdσ1 < ∞}

Definition 3.1. The Sobolev space Wk,p(M)is the complete space Cp
k(M) for the norm

‖u‖Wk,p(M) =

k∑
j=0

‖∇
ju‖Lp(M)

‖u‖W1,p(M) = ‖∇u‖p + ‖u‖p

Definition 3.2. We must recall the notion of the geodesic distance for every curve :

Υ : [a, b ]→M

We define the length of Υ by :

l(Υ) =

∫ b

a

√
1(Υ(t))(

dΥ
dt
,

dΥ
dt

)dt

Remark 3.3. For x, y ∈M defining a distance d1 by :

d1(x, y) = in f {l(Υ) : Υ : [0, 1]→M . Υ(0) = x , Υ(1) = y}

By the theorem of Hopf-Rinow, we obtain that if M a Riemannian manifold then compact for all x, y in M can be
joined by a courbe minimisant Υ i.e l(Υ) = d1(x, y)

Proposition 3.4. If p = 2, space Wk,2(M) is a Hilbert space for the following scalar product

(u, v)Hk =

k∑
j=0

(
∇

ju,∇ jv
)

L2
.

Proposition 3.5. If p > 1 then Wk,p(M) is reflexive.

Proposition 3.6. Any reflex normalized space is a Banach space. Then if p > 1 then Wk,p(M) is Banach.

Definition 3.7. The Sobolev space Wk,p
0 (M) is the closure ofD(M) in Wk,p(M) .

Theorem 3.8. If (M, 1) is complete, then for all p ≥ 1 W1,p
0 (M) = W1,p(M).
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3.3. Embeddings of Sobolev:

See[18].

Lemma 3.9. Let (M, 1) a complete Riemannian manifold of dimension n. Suppose that inclusion W1,1(M) ⊂ L
n

(n−1) (M)
is valid. Then, for a whole real number 1 ≤ q < p and an integer 0 ≤ m < k which verify 1

p = 1
q −

(k−m)
n ,

Wk,q(M) ⊂Wm,p(M).

Proof. It is shown that if W1,1(M) ⊂ Ln/(n−1)(M) then, for all 1 ≤ q < n and 1/p = 1/q − 1/n, W1,q(M) ⊂ Lp(M).
Let A ∈ R such as ∀ u ∈W1,1(M) we have,(∫

M
|u|n/(n−1)dσ1

)(n−1)/n

≤ A
∫

M
(|∇u| + |u|) dσ1.)

let φ = |u|p(n−1)/n. We apply the Holder inequality, we have(∫
M
|u|pdσ1

)(n−1)/n

=

(∫
M
|φ|n/(n−1)dσ1

)(n−1)/n

≤ A
∫

M

(
|∇φ| + |φ|

)
dσ1

=
Ap(n − 1)

n

∫
M
|u|p

′

|∇u|dσ1 + A
∫

M
|u|p(n−1)dσ1

≤
Ap(n − 1)

n

(∫
M
|u|p

′q′dσ1

)1/q′ (∫
M
|∇u|qdσ1

)1/q

+ A
(∫

M
|u|p

′q′dx
)1/q′

(∫
M
|u|qdσ1

)1/q

.

Where 1/q + 1/q′ = 1 and p′ = p(n− 1)/n− 1. But p′q′ = p since 1/p = 1/q− 1/n. Therefore, for all u ∈ D(M),(∫
M
|u|pdσ1

)1/p

≤
Ap(n − 1)

n


(∫

M
|∇u|qdσ1

)1/q

+

(∫
M
|u|qdσ1

)1/q


According to Theorem 3.8, which ends the

Remark 3.10. Note that the proof of the Lemma 3.9 shows that if A ∈ R is such that ∀ u ∈W1,1(M),(∫
M
|u|n/(n−1)dσ1

)(n−1)/n

≤ A
∫

M
(|∇u| + |u|) dσ1)

So, for all 1 ≤ q < n and all u ∈W1,q(M),(∫
M
|u|pdσ1

)1/p

≤
Ap(n − 1)

n


(∫

M
|∇u|qdσ1

)1/q

+

(∫
M
|u|qdσ1

)1/q


Where 1/p = 1/q − 1/n.

Theorem 3.11. Let (M, 1) a compact Riemannian manifold of dimension n. For a real number 1 ≤ q < p and an
integer 0 ≤ m < k which verify 1

p = 1
q −

(k−m)
n , Wk,q(M) ⊂Wm,p(M).
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Theorem 3.12. (Rellich-Kondrakov’s Theorem): Let (M, 1) a compact Riemannian manifold of n dimension ,
j ≥ 0 and m ≥ 1 two integers, q ≥ 1 and p two real numbers that verify 1 ≤ p < nq/(n − mq), the inclusion
W j+m,q(M) ⊂W j,p(M) is compact

Corollary 3.13. Let (M, 1) a compact Riemannian manifold of n dimension. For everything 1 ≤ q < n and p ≥ 1
such as 1

p >
1
q −

1
n , the inclusion W1,q(M) ⊂ Lp(M) is compact.

Lemma 3.14. (Inequality of Poincare): Let D a regular domain is bounded in a Riemannian manifold M and
1 ≤ p < ∞. Then there is a constant A such as:(∫

D
|u − uD|

pdσ1

) 1
p

≤ A
(∫

D
|∇u|pdσ1

) 1
p

,

for everything u ∈W1,p
loc (M), where uD = 1

vol(D)

∫
D udσ1 is the mean value of u on D

Proof. Let us first suppose that p > 1. In order to show the lemma, it suffices to show that

inf
u∈H

∫
D
|∇u|p dσ1 > 0

Where

H =

{
u ∈W1,p

loc (M) tel que
∫

D
|u|p dσ1 = 1 et

∫
d

udσ1 = 0
}

Let (uk) ∈ H such as

lim
k→∞

∫
D
|∇uk|

pdσ1 = inf
u∈H

∫
D
|∇u|pdσ1

Combining the fact that W1,p
loc (M) is reflexive for p > 1 and the Theorem of Rellich-Kondrachov, there exists

a sub-sequence (uk) of (uk) which converges weakly in W1,p
loc (M) and strongly in Lp(M) ∩ L1(M).

Note v its limit, the strong convergence in Lp(M) ∩ L1(M) implies that v ∈ H , and weak convergence
implies that ∫

D
|∇v|pdσ1 ≤ lim

k→∞

∫
D
|∇uk|

pdσ1

Therefore ,

inf
u∈H

∫
D
|∇u|pdσ1 > 0

This shows the inequality of Poincare for p > 1. When p = 1 (see Lemma 3.8 )

By combining this lemma with the Holder inequality, we obtain:

Corollary 3.15. There exists a constant c = cD such that∫
D
|u − uD|dσ1 ≤ cD

(∫
M
|∇u|pdσ1

) 1
p

∀ u ∈W1,p
loc (M)

Proof. We apply the inequality of Hölder, we will have∫
D

1.|u − uD|dσ1 ≤
(∫

D
1p′dσ1

) 1
p′

(∫
D
|u − uD|

pdσ1

) 1
p

≤ Avol(D)
1
p′

(∫
M
|∇u|pdσ1

) 1
p
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4. Formulation of the problem

Let (M, 1) be a compact Riemannian manifold of dimension n (n ≥ 2) et Γ its border . We consider the
nonlinear elliptic problem of the following Dirichlet type :

(P1)
{

A(u) = f on Mu = 0 on Γ

with

A(u) = −div1(a(x,u,∇u)) = −

N∑
i, j=1

∂ai

∂xi
+ a jΓ

i
i j

where

a =

N∑
i=1

ai(
∂
∂xi

)

is a family of functions defined on M ×R ×RN to value in R.
The goal of this work is to show that the Dirichlet type problem (P1) allows at least one solution in the
variational case (i.e, when the second member f is in a dual space).

4.1. Hypotheses
H1 : Growth Condition:

Each ai(x, η, ξ) a caratheodory function, i.e x for everything (η, ξ)fixed in R × RN and continues in
(η, ξ)for everything x fixed in M.

For some p > 1 there is a constant C1 > 0 and a function K ∈ Lp′ (M) such as :

|ai(x, η, ξ| ≤ C1(K(x) + |η|p−1 + |ξ|
q

p′ )

For almost everywhere x ∈M , all (η, ξ) ∈ R ×RN , all i = 1, 2, ....,Net Where{
1 ≤ q < NP

N−p i f p < N
1 ≤ q < ∞ i f p = N

Where, respectively,
|ai(x, η, ξ| ≤ h(|η|)(K(x) + |ξ|p

p−1
)

Where h : R+
→ R+ is a continuous function , if p > N.

H2 : Large monotony condition :

For almost everywhere.x ∈M and all (η, ξ) ∈ R ×RN we suppose that

N∑
i=1

(ai(x,u, ξ) − ai(x,u, ξ∗))(ξi − ξ
∗

i ) ≥ 0

H3 : Elipticity condition :

It exists a constant C0 > 0 and a function K0 ∈ L1(M) such as

N∑
i=1

(ai(x,u, ξ∗)ξ∗i ) ≥ C0|ξ|
p
− K0(x)

For almost everywhere x ∈M and all (η, ξ) ∈ R ×RN.
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Remark 4.1. We can associate to the operator A the semi-linear form of Dirichlet defined by :

(4.1) b(u, v) =

N∑
i=1

∫
M

(ai(x,u,∇u))ωiv(x)dσ1 ∀u, v ∈W1,p
0 (M)

Where

ωiv =

N∑
i=1

1i j ∂v
∂xi

With 1i j represents the inverse matrix of 1i j, and σ1 volume measurement on M induced by the metric 1 .

Proposition 4.2. If the hypothesis (H1) is satisfied then the semi-linear form b(., .) is bounded in W1,p
0 (M).

Proof. According to the inequality of Holder, we can write

|b(u, v)| ≤
N∑

i=1

||(ai(x,u,∇u))||p′ ||ωiv(x)||p

with
|(ai(x,u,∇u))|p

′

≤ C(|k(x)|p
′

+ |u(x)|q + |∇u(x)|p), i f p ≤ N

≤ Ch(|u(x)|)p′ (|k(x|p
′

+ |∇u(x)|p) i f p > N

using the Sobolev embedding , we obtain :(∫
M
|u(x)|qdσ1

) 1
q

≤ C||u||1,p i f p ≤ N

and
sup
x∈M
|u(x)| ≤ C||u||1,p i f p ≤ N

and
sup
x∈M
|u(x)| ≤ C||u||1,p i f p > N

Therefore ; |(ai(x,u,∇u))|p′ is bounded if ||u||1,p is bounded .

Hence, the operator A induces a bounded T function defined by W1,p
0 (M) to its dual W−1,p′ (M) by :

< T(u, v) >= b(u, v),∀u, v ∈W1,p
0 (M)

Proposition 4.3. If the hypothesis (H1) is satisfied, then the functional T is continuous .

4.2. Result of existence
We show the problem of Dirichlet (P1) admits at least one weak solution in the following sense :

Definition 4.4. We say that u ∈W1,p
0 (M) is a weak solution of Dirichlet problem (P1) if

N∑
i=1

∫
M

(ai(x,u,∇u))Div(x)dx =

∫
M

f (x)v(x)dx ∀u, v ∈W1,p
0 (M).

Theorem 4.5. Let (M, 1) be a compact Riemannian manifold of n dimension. suppose that the hypotheses (H1), (H2), (H3)
are satisfied. Then for any f ∈W−1,p′ (M), the problem (P1) allows at least a weak solution u ∈W1,p

0 (M).
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4.3. Proof
We show the result for p ≤ N and the same approach applies for p > N using the corresponding Sobolev

embedding.
Let T the functional associated with the operator A defined by the functional (4.2) .i.e ,

(4.3) < T(u), v >=

N∑
i=1

∫
M

(ai(x,u,∇u))ωiv(x)dσ1 ∀u, v ∈W1,p
0 (M)

Step 1:
We show that the functional T associated to A is peudo-monotone .
indeed , Let (Un) a sequence of elements of the space W1,p

0 (M) such that{
(4.4) Un ⇀ u in W1,p

0 (M)
(4.5) lim sup < T(Un),Un − u >≤ 0

Assertion 1:
It is asserted that T(Un) ⇀ T(u) in W−1,p′ (M). According to the (4.4) hypothesis and the compact

embedding W1,p
0 (M) ↪→↪→ Lq(M)

We have :
(4.6) ωi(Un) ⇀ ωi(u) in Lq(M) ∀i ∈ {0; 1; ....,N}
(4.7) Un −→ u in Lq(M)
(4.8) Un(x) −→ u(x) almost all in M

We note that the last two convergences are for a subsequence of (Un) not again (Un).
Since T is bounded, then one can write for a subsequence denoted by (Un)

(4.9) T(Un) ⇀ S in W−1,p′ (M)

(4.10) ai(.,Un,∇Un) ⇀ Si Lp′ (M) ∀i ∈ {1; ....,N}.

Where the action of S is given by :

< S, v >=

N∑
i=1

∫
M

Si(x)div(x)dσ1 ∀u, v ∈W1,p
0 (M)

Moreover, by virtue (2.6) and (2.10) we obtain :

(4, 11) lim sup < T(Un),Un > ≤ < S,u >

as the condition of large monotony (H1) allows to write

N∑
i=1

∫
M

(ai(x,Un,∇v) − ai(x,Un,∇Un))(ωiv − ωiUn)dσ1 ≥ 0 Pour tout v ∈W1,p
0 (M)

So ,

(4, 12)
N∑

i=1

∫
M

ai(x,Un,∇Un)ωiUndσ1

≥

N∑
i=1

∫
M

ai(x,Un,∇Un)ωiv(x)dσ1 +

N∑
i=1

∫
M

ai(x,Un,∇v)ωiUndσ1
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−

N∑
i=1

∫
M

ai(x,Un,∇v)ωiv(x)dσ1

Thus, by applying (4.7); (4.10) and (4.11) where will have

N∑
i=1

∫
M

Si(x)ωiu(x)dσ1 ≥ limsup
N∑

i=1

∫
M

ai(x,Un,∇Un)ωiUndσ1

≥

N∑
i=1

∫
M

Si(x)ωiv(x)dσ1 +

N∑
i=1

∫
M

(ai(x,u,∇v)ωiu(x)dσ1 −
N∑

i=1

∫
M

(ai(x,u,∇v)ωiv(x)dσ1

Therefore,we will have:

N∑
i=1

∫
M

(ai(x,u,∇v) − Si)(ωiv(x) − ωiu(x)dσ1 ≥ 0 ∀v ∈W1,p
0 (M)

take v = u + tw with t > 0 and w ∈W1,p
0 (M)

We will have :
N∑

i=1

∫
M

(ai(x,u,∇u + t∇w) − Si)ωiw(x)dσ1 ≥ 0 ∀w ∈W1,p
0 (M)

make tender t to 0+ , we conclude that for all i = {1, ...,N}
We have ai(x,u(x),∇u(x) = Si(x) almost everywhere in M .
Therefore T(x) = S and then the assertion T(Un) ⇀ T(u) is proved.
Assertion 2:
it is asserted that < T(Un),Un >−→< T(u),u >since it has already been shown that

lim sup < T(Un),Un > ≤ < S,u > = < T(u),u >

it is enough to show that
lim in f < T(Un),Un > ≥ < T(u),u >

Indeed , by taking v = u in the inequality (2.13) we obtain from the above,

lim in f < T(Un),Un > = lim in f
N∑

i=1

∫
M

ai(x,Un,∇Un)diUndσ1

≥

N∑
i=1

∫
M

Si(x)ωi(u(x))dσ1 +

N∑
i=1

∫
M

ai(x,u,∇u)ωi(u(x))dσ1 −
N∑

i=1

∫
M

ai(x,u,∇v)ωi(v(x))dσ1

=< T(u),u >

So assertion 2 is proved.
2nd step :
We show that the functional T is coercive,
Indeed, by virtue of the condition of ellipticity e (H3) and the inequality of the poincare we can write:

< T(u),u > =

N∑
i=1

∫
M

ai(x,u,∇u)ωi(u(x))dσ1
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≥ C0

∫
M
|∇u|pdσ1 −

∫
M

k(x)dσ1 ≥ C1||u||1,p − C2.

which gives directly the coercivity of the functional T .
And by applying the existence theorems we deduce that the problem (P1) admits at least one solution
u ∈W1,p

0 (M).

Remark 4.6. It should be noted that in the demonstration of the pseudo-monotone of T, we have used only the
hypotheses (H1); (H2) and not (H3).
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