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On Contact CR-Submanifolds of a Cosymplectic Manifold
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aDepartment of Statistics, University of Amasya, 05250, Amasya, TURKEY

Abstract. In this paper, we study the differential geometry of contact CR-submanifolds of a cosymplectic
manifold. Necessary and sufficient conditions are given for a submanifold to be a contact CR-submanifold
in cosymplectic manifolds and cosymplectic space forms. Finally, the induced structures on submanifolds
are investigated, these structures are categorized and we discuss these results.

1. Introduction

The study of the differential geometry of contact CR-submanifolds, as a generalization of invari-
ant(holomorphic) and anti-invariant(totally real) submanifolds of an almost contact metric manifold was
initiated by A. Bejancu [1] and was followed by several researchers. Some authors studied contact CR-
submanifolds of different classes of almost contact metric manifolds given in the references of this paper.
Recently, in different studies M. Atçeken et al. [11], [12], [13], [14] and S. Uddin et al. [18], [19], [20] studied
contact CR-submanifold and warped product CR-submanifolds in various type manifolds.

The contact CR-submanifolds are rich and interesting subject. Therefore it was continued to work in
this subject matter. This study the present paper is organized as follows.

In this paper, contact CR-submanifolds of a cosymplectic manifold were studied. In Section 2, basic
formulas and definitions for a cosymplectic manifold and their submanifolds were reviewed. In Section 3,
the definition and some basic results of a contact CR-submanifold of a cosymplectic manifold was recalled.
In Section 4, some new results for contact CR-submanifolds in a cosymplectic manifold and a cosymplectic
space form M̃(c) was given.

2. Preliminaries

Let M̃ be a (2n+1)-dimensional almost contact metric manifold together with an almost contact structure
(φ, ξ, η), i.e., ξ is a global vector field φ is a (1, 1)−type tensor field and η is a 1-form on M̃ such that

φ2X = −X + η(X)ξ, φξ = 0, η(φX) = 0, η(ξ) = 1 (1)

for any X,Y ∈ Γ(M̃), where Γ(M̃) denotes the set differentiable vector fields on M̃.
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The almost contact manifold is called an almost contact metric manifold if there exists a Riemannian
metric 1 satisfying;

1(φX, φY) = 1(X,Y) − η(X)η(Y), 1(φX,Y) = −1(X, φY) (2)

for any X,Y ∈ Γ(M̃). Clearly, in this case, η is dual of ξ,i.e., η(X) = 1(X, ξ),for any X,Y ∈ Γ(M̃).
The fundamental 2−form Φ is defined by Φ(X,Y) = 1(X, φY), for any X,Y ∈ Γ(M̃). The M̃ is called an

almost cosymplectic manifold η and Φ are closed, i.e., dη = 0 and dΦ = 0, where d is exterior differentiable
operator [4]. Also, an almost contact metric manifold is called normal if

[
φ,φ

]
+ 2dη ⊗ ξ = 0, where

[
φ,φ

]
is Nijenhuis tensor field which is defined by

[
φ,φ

]
(X,Y) = φ2 [X,Y] +

[
φX, φY

]
− φ

[
φX,Y

]
− φ

[
X, φY

]
.

If M̃ is almost contact metric manifold is normal, M̃ is said to be cosymplectic manifold. It is well know
that an almost contact metric manifold is cosymplectic if and only if

(∇̃Xφ)Y = 0 (3)

for any vector fields X,Y on M̃, where ∇̃ is the Levi-Civita connection on M̃. Then manifolds are locally a
product of a Kaehler manifold and real line a circle.

If a cosymplectic manifold M̃ has constant φ- sectional curvature, then it is called a cosymplectic space
form M̃(c). Then Riemannian curvature tensor R̃ of M̃(c) is given by

R̃(X,Y)Z =
c
4
{1(Y,Z)X − 1(X,Z)Y + η(X)η(Z)Y − η(Y)η(Z)X + η(Y)1(X,Z)ξ

−η(X)1(Y,Z)ξ + 1(φY,Z)φX + 1(X, φZ)φY + 21(X, φY)φZ} (4)

for any vector fields X,Y,Z tangent to M̃[15].

Now, let M be an isometrically immersed submanifold in a cosymplectic manifold M̃. Then the formulas
Gauss and Weingarten for M in M̃ given by

∇̃XY = ∇XY + σ(X,Y) (5)

and

∇̃XV = −AVX + ∇
⊥

XV, (6)

for any vector fields X,Y tangent to M and V normal to M, where, ∇ denotes the induced Levi-Civita
connection on M, ∇⊥ is the normal connection , AV is the shape operator of M with respect to V and σ is
second fundamental form of M in M̃. The second fundamental form σ and shape operator AV are related
by

1(AVX,Y) = 1(σ(X,Y),V) (7)

for all X,Y ∈ Γ(TM) and V ∈ Γ(T⊥M).

The mean curvature vector H of M is given by H = 1
m

m∑
i=1
σ(ei, ei), where m is the dimension of M and

{e1, e2, ..., em} is a local orthonormal frame of M. A submanifold M of an contact metric manifold M̃ is said
to be totally umbilical if

σ(X,Y) = 1(X,Y)H, (8)

for any X,Y ∈ Γ(TM). A submanifold M is said to be totally geodesic if σ = 0 and M is said to be minimal
if H = 0. For any submanifold M of a Riemannian manifold M̃, the equation of Gauss is given by

R̃(X,Y)Z = R(X,Y)Z + Aσ(X,Z)Y − Aσ(Y,Z)X + (∇̃Xσ)(Y,Z) − (∇̃Yσ)(X,Z), (9)
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for any X,Y,Z ∈ Γ(TM), where R̃ and R denote the Riemannian curvature tensor of M̃ and M, respectively.
The covariant derivative ∇̃σ of σ is defined by

(∇̃Xσ)(Y,Z) = ∇
⊥

Xσ(Y,Z) − σ(∇XY,Z) − σ(∇XZ,Y) (10)

for any X,Y,Z ∈ Γ(TM).

Then the Gauss and the Codazzi equations are, respectively, given by

(R̃(X,Y)Z)
T

= R(X,Y)Z + Aσ(X,Z)Y − Aσ(Y,Z)X (11)

and

(R̃(X,Y)Z)
⊥

= (∇̃Xσ)(Y,Z) − (∇̃Yσ)(X,Z), (12)

where (R̃(X,Y)Z)
⊥

denotes the normal part of R̃(X,Y)Z. If (R̃(X,Y)Z)
⊥

= 0, then M is said to be curvature-
invariant submanifold of M̃. The Ricci equation is given by

1( R̃(X,Y)V,U) = 1(R̃
⊥

(X,Y)V,U) + 1([AU,AV] X,Y), (13)

for any X,Y,∈ Γ(TM) and V,U ∈ Γ(T⊥M), where R̃
⊥

denotes the Riemannian curvature tensor of the normal
T⊥M and if R̃

⊥

= 0, then the normal connection of M is called flat.

Now, let M be a submanifold of an almost contact metric manifold M̃. Then for any X ∈ Γ(TM), we can
write

φX = TX + NX, (14)

where TX is the tangential component and NX is the normal component of φX. Similarly for V ∈ Γ(T⊥M),
we can write

φV = tV + nV, (15)

where tV is the tangential component and nV is also the normal component of φV.
Furthermore, for any X,Y ∈ Γ(TM), we have 1(TX,Y) = −1(X,TY) and V,U ∈ Γ(T⊥M), we get 1(U,nV) =
−1(nU,V). These show that T and n are also skew-symmetric tensor fields. Moreover, for any X ∈ Γ(TM)
and V ∈ Γ(T⊥M), we have

1(NX,V) = −1(X, tV), (16)

which gives the relation between N and t.

Now, applying φ to (14) and (15), we respectively, obtain

T2X = −X + η(X)ξ − tNX, NTX + nNX = 0 (17)

and

TtV + tnV = 0, NtV + n2V = −V. (18)

for any vector fields X tangent to M and V normal to M.

We define the covariant derivatives of the tensor field T, N, t and n by (∇XT)Y = ∇XTY − T∇XY,
(∇XN)Y = ∇⊥XNY −N∇XY, (∇Xt)V = ∇XtV − t∇⊥XV and (∇Xn)V = ∇⊥XnV − n∇⊥XV respectively.
Since M is tangent to ξ, making use of (5), ( 7) and (14), we obtain

∇Xξ = 0, σ(X, ξ) = 0, AVξ = 0 (19)
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for all V ∈ Γ(T⊥M) and X ∈ Γ(TM).

Let X and Y be vector fields tangent to M. Then we obtain

(∇XT)Y = ANYX + tσ(X,Y) (20)

and

(∇XN)Y = nσ(X,Y) − σ(X,TY). (21)

Similarly, for any vector field X tangent to M and any vector field V normal to M. Then we have

(∇Xt)V = AnVX − TAVX (22)

and

(∇Xn)V = −σ(tV,X) −NAVX. (23)

Taking into account (4) and (13), we have

1(R̃
⊥

(X,Y)V,U) + 1([AU,AV] X,Y) =
c
4
{1(X, tV)1(U,NY) − 1(Y, tV)1(NX,U)

+21(X,TY)1(nV,U)} (24)

for any X,Y ∈ Γ(TM) and V,U ∈ Γ(T⊥M). By using ( 4) and (9), the Riemanian curvature tensor R of an
immersed submanifold M of a cosymplectic space form M̃(c) is given by

R(X,Y)Z =
c
4
{1(Y,Z)X − 1(X,Z)Y + η(X)η(Z)Y − η(Y)η(Z)X + η(Y)1(X,Z)ξ

−η(X)1(Y,Z)ξ + 1(X, φZ)φY + 1(φY,Z)φX + 21(X, φY)φZ}

+Aσ(Y,Z)X − Aσ(X,Z)Y + (∇̃Yσ)(X,Z) − (∇̃Xσ)(Y,Z). (25)

Comparing the tangential and normal parts of the both sides of this equation, we have, following
equations of Gauss and Codazzi equation respectively:

R(X,Y)Z =
c
4
{1(Y,Z)X − 1(X,Z)Y + η(X)η(Z)Y − η(Y)η(Z)X

+η(Y)1(X,Z)ξ − η(X)1(Y,Z)ξ + 1(X,TZ)TY
+1(TY,Z)TX + 21(X,TY)TZ} + Aσ(Y,Z)X − Aσ(X,Z)Y. (26)

and

(∇̃Xσ)(Y,Z) − (∇̃Yσ)(X,Z) =
c
4
{1(X,TZ)NY + 1(TY,Z)NX + 21(X,TY)NZ}. (27)

3. Contact CR-Submanifold of a Cosymplectic Manifold

In this section, we shall define contact CR-submanifolds in a cosymplectic manifold and research fun-
damental properties of their from theory of submanifold.

Let M be submanifold of an almost contact metric manifold M̃, then M is called invariant submanifold
if φ(TxM) ⊆ TxM, ∀x ∈ M. Further, M is said to be anti-invariant submanifold if φ(TxM) ⊆ T⊥x M, ∀x ∈ M.
Similarly, it can be easily seen that a submanifold M of an almost contact metric manifolds M̃ is said to
be invariant(anti-invariant), if N (or T) are identically zero in (14). Now we give definition of contact
CR-submanifold which is a generalization of invariant and anti-invariant submanifolds.
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Definition 3.1. [10]. A submanifold M of a cosymplectic manifold. M̃ is called contact CR-submanifold if there
exists on M a differentiable invariant distribution D whose orthogonal complementary φD⊥ is anti-invariant, i.e.,

i) TM = D ⊕D⊥, ξ ∈ Γ(D)
ii) φDx = Dx
iii) φD⊥x ⊆ T⊥x M, for each x ∈M.
A contact CR-submanifold is called anti-invariant(or, totally real) if Dx = 0 and invariant(or, holomorphic) if

D⊥x = 0, respectively, for any x ∈M. It is called proper contact CR-submanifold if neither Dx = 0 nor D⊥x = 0.

Anti-invariant and invariant submanifolds are the special case of contact CR-submanifolds.
If we denote dimensions of the distributions D and D⊥ by d1 and d2, respectively. Then M is called

anti-invariant (resp. invariant) if d1 = 0(resp.d2 = 0).

Let us denote the orthogonal projections on D and D⊥ by ω1 : Γ(TM) → D and ω2 : Γ(TM) → D⊥

respectively. Then we have

X = ω1X + ω2X + η(X)ξ

for any X ∈ Γ(TM), where ω1X ∈ Γ(D) and ω2X ∈ Γ(D⊥). From (14) and (15), we have
and

φX = TX + NX = φω1X + φω2X = Tω1X + Nω1X + Tω2X + Nω2X

it is clear that

Nω1 = 0 and Tω2 = 0,

N = Nω2 and T = Tω1.

Proposition 3.2. Let M be an isometrically immersed submanifold of a cosymplectic manifold M̃. Then the invariant
distribution D has an almost contact metric structure (T, ξ, η, 1) and so dım(Dp) =odd for each p∈M.

We denote the orthogonal subbundle φD⊥ in T⊥M by υ, then we have direct sum

T⊥M = φD⊥ ⊕ ν and φD⊥ ⊥ ν.

Here we note that ν is an invariant subbundle with respect to φ and so dim(ν)=even.
Also,

t(T⊥M) = D⊥ and n(T⊥M) ⊂ ν.

Example 3.3. Thus (R9, ϕ, ξ, η, 1) is an almost contact metric structure on R9. We call the usual contact metric
structure of R9. Then we have

η =
1
2

(dz −
4∑

i=1

yidxi), ξ = 2
∂
∂z

1 = η ⊗ η +
1
4

4∑
i=1

(dxi ⊗ dxi + dyi ⊗ dyi)

φ(
4∑

i=1

(Xi
∂
∂xi

+ Yi
∂
∂yi

) + Z
∂
∂z

) =

4∑
i=1

(Yi
∂
∂xi
− Xi

∂
∂yi

),
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where (xi, yi, z), i = 1, 2, 3, 4 are the cartesian coordinates.
Now, let M be a submanifold of R9 defined by the following equation

χ(u,w, v, s, z) = (2(u, 0,w, 0, v, 0, 0, s, z).

We can easily to see that the tangent bundle of M is spanned by the tangent vectors

E1 = 2(
∂
∂x1

+ yi
∂
∂z

), E2 = 2
∂
∂y1

, E3 = 2(
∂
∂x3

+ y3
∂
∂z

), E4 = 2
∂
∂y4

,E5 = 2
∂
∂z

= ξ.

For the almost contact structure φ of R9. We obtain,

φE1 = −E2, φE2 = E1, φE3 = −2
∂
∂y3

, φE4 = 2
∂
∂x4

, φE5 = 2
∂
∂z

= 0.

By direct calculations, we can infer D = span {E1,E2,E5} is invariant distribution. Since 1(φE3,Ei) = 0, i = 1, 2, 4, 5
and 1(φE4,E j) = 0, j = 1, 2, 3, 5, φE3,φE4 are orthogonal to M, D⊥ = span{E3,E4} is an anti-invariant distribution.
Thus M is a 5-dimensional proper contact CR-submanifold of R9 with it’s usual almost contact metric structure.

Proposition 3.4. Let M be a Contact CR-submanifold of a cosymplectic manifold M̃. For any vector fields X tangent
to D (resp.D⊥ is necessary and sufficient that NX = 0 (resp.TX = 0).

Furthermore, taking account of (1) and proposition 3.2, we have

T2X = −X + η(X)ξ (28)

for any vector field X in D. Moreover

1(TX,TY) = 1(X,Y) − η(X)η(Y)

for any vector fields X, Y in D.

Proposition 3.5. Let M be a contact CR-submanifold of a cosymplectic manifold M̃. Then, we have

∇
⊥

WφZ − ∇⊥ZφW ∈ φ(D⊥)

for any Z,W ∈ Γ(D⊥).

Proof. For any Z,W ∈ Γ(D⊥),V ∈ Γ(ν). Then (3), Gauss and Weingarten formulas, we have

1(∇⊥WφZ − ∇⊥ZφW,V) = 1(AφZW + ∇̃WφZ − AφWZ − ∇̃ZφW,V)

= 1(∇̃WφZ − ∇̃ZφW,V)

= 1((∇̃Wφ)Z + φ∇̃WZ − (∇̃Zφ)W − φ∇̃ZW,V)

= 1(φ∇̃WZ − φ∇̃ZW,V) = 1(∇̃ZW − ∇̃WZ, φV)
= 1(σ(Z,W) − σ(Z,W), φV) = 0.

Thus the proof is complete.

Let M be a contact CR-submanifold of a cosymplectic manifold M̃. Then for any Z,W ∈ Γ(D⊥) and
U ∈ Γ(TM), also by using (3), (5) and (7), we have

1(ANZW − ANWZ,U) = 1(σ(W,U),NZ) − 1(σ(Z,U),NW)

= 1(∇̃UW, φZ) − 1(∇̃UZ, φW)
= 1(φ∇̄UZ,W) − 1(φ∇̄UW,Z)
= −1(ANZU,W) + 1(ANWU,Z)
= 1(ANWZ − ANZW,U).
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It follows that

ANZW = ANWZ, (29)

for any Z,W ∈ Γ(D⊥).

Theorem 3.6. Let M be a contact CR-submanifold of a cosymplectic manifold M̃. Then the tensor n is parallel if and
only if the shape operator AV of M satisfies the condition

AVtW = AWtV, (30)

for all W,V ∈ Γ(T⊥M).

Proof. For all W,V ∈ Γ(T⊥M), from (7), (16) and (23), we have

1((∇Xn)V,W) = −1(σ(tV,X),W) − 1(NAVX,W)
= −1(AWtV,X) + 1(AVX, tW)
= 1(AVtW − AWtV,X),

for all X ∈ Γ(TM). The proof is complete.

Theorem 3.7. Let M be a contact CR-submanifold of a cosymplectic manifold M̃. Then the anti-invariant distribution
D⊥ is completely integrable and its maximal integral submanifold is an anti-invariant submanifold of M̃.

Proof. For any Z,W ∈ Γ(D⊥) and X ∈ Γ(D), By using (2) and (3), we have

1([Z,W] ,X) = 1(∇̃ZW,X) − 1(∇̃WZ,X)

= 1(∇̃WX,Z) − 1(∇̃ZX,W)

= 1(φ∇̃WX, φZ) − 1(φ∇̃ZX, φW)

= 1(∇̃WφX − (∇̃Wφ)X, φZ) − 1(∇̃ZφX − (∇̃Zφ)X, φW)

Here, By using (5), (7) and (29), we obtain

1([Z,W] ,X) = 1(∇̃WφX, φZ) − 1(∇̃ZφX, φW)
= 1(σ(φX,W), φZ) − 1(σ(φX,Z), φW)
= 1(AφZW − AφZW, φX) = 0.

Thus [Z,W] ∈ Γ(D⊥) for any Z,W ∈ Γ(D⊥), that is, D⊥ is integrable. Thus the proof is complete.

Theorem 3.8. Let M be a contact CR-submanifold of a cosymplectic manifold M̃. Then the invariant distribution D
is integrable if and only if the second fundamental form of M satisfies

σ(X, φY) = σ(φX,Y) (31)

for any X,Y ∈ Γ(D).

Proof. For any vector field X, Y in D, making use of (3), we have

φ [X,Y] = φ(∇XY − ∇YX) = φ(∇̃XY − ∇̃YX)

= ∇̃XφY − ∇̃YφX + (∇̃Yφ)X − (∇̃Xφ)Y

Here, by using (5), we have

φ [X,Y] = ∇̃XφY − ∇̃YφX
= ∇XφY − ∇YφX + σ(X, φY) − σ(φX,Y) (32)
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From the normal components of (32), we conclude

N [X,Y] = σ(X, φY) − σ(φX,Y).

Thus D is integrable if and only if (31) is satisfied.

Theorem 3.9. Let M be a contact CR-submanifold of a cosymplectic manifold M̃. Then the invariant distribution
D is completely integrable and its maximal integral submanifold is an invariant submanifold ofM̃ if and only if the
shape operator AV of M satisfies

AVT + TAV ∈ Γ(D⊥), (33)

for any V ∈ Γ(T⊥M).

Proof. For any vector field X, Y in D and V ∈ Γ(T⊥M) by using (31), we have

1(σ(X, φY),V) − 1(σ(φX,Y),V) = 1(AVX, φY) − 1(AVφX,Y)
= −1(TAVX,Y) − 1(AVTX,Y) = 0.

Hence

TAVX + AVTX ∈ Γ(D⊥)

Thus D is integrable if and only if (33) is satisfied.

Definition 3.10. A contact CR-submanifold M of cosymplectic manifold M̃ is said to be D-geodesic (resp. D⊥-
geodesic) if σ(X,Y) = 0 for X,Y ∈ Γ(D) (resp. σ(Z,W) = 0 for Z,W ∈ Γ(D⊥)). If σ(X,Z) = 0, the M is called mixed
geodesic submanifold, for any X ∈ Γ(D) and Z ∈ Γ(D⊥).

Theorem 3.11. Let M be a contact CR-submanifold of a cosymplectic manifold M̃. Then the anti-invariant distribu-
tion D⊥ is totally geodesic in M if and only if σ(Z,X) ∈ Γ(ν) for any Z ∈ Γ(D⊥) and X ∈ Γ(D).

Proof. For any Z,W ∈ Γ(D⊥) and X ∈ Γ(D), we have

1(∇ZW, φX) = −1(∇̃ZφX,W)

= −1((∇̃Zφ)X + φ∇̃ZX,W)

= 1(∇̃ZX, φW) = 1(σ(Z,X), φW)

Thus ∇ZW ∈ Γ(D⊥) if and only if σ(Z,X) ∈ Γ(ν).

Theorem 3.12. Let M be a contact CR-submanifold of a cosymplectic manifold M̃. Then the invariant distribution
D is totally geodesic in M if and only if σ(Z,W) ∈ Γ(ν) for any Z,W ∈ Γ(D).

Proof. For any Z,W ∈ Γ(D) and X ∈ Γ(D⊥), we have

1(∇ZφW,X) = 1((∇̃Zφ)W + φ∇̃ZW,X)

= −1(∇̃ZW, φX) = −1(σ(Z,W), φX),

thus ∇ZW ∈ Γ(D) if and only if σ(Z,W) ∈ Γ(ν). This completes of the prof.
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Let e1, e2, ..., ep, ep+1 = φe1, ep+2 = φe2, ..., e2p = φep, e2p+1 = ξ, e2p+2, e2p+3, e2p+4, ..., e2p+q+1 be an orthonormal
basis of Γ(TM) such that e1, e2, ..., ep, ep+1, .., e2p, e2p+1 = ξ are tangent to Γ(D) and e2p+2, e2p+3, e2p+4, ..., e2p+q+1
are tangent to Γ(D⊥).

The mean curvature vector field H of M in M̃ is defined by

H =
1

2p + q + 1

2p+q+1∑
i, j=1

σ(ei, e j).

If H = 0, then M is said to be minimal. Now we shall define

HD =
1

2p + 1

2p+1∑
i=1

σ(ei, ei), HD⊥ =
1
q

2p+q+1∑
j=2p+2

σ(e j, e j).

If HD = 0, then the contact CR−submanifold M is said to be D− minimal and If HD⊥ = 0, then the contact
CR−submanifold M is said to be D⊥−minimal.

Theorem 3.13. Let M be a contact CR-submanifold of a cosymplectic manifold M̃. If D is integrable, then M is
DH-minimal submanifold in M̃.

Proof. Let {e1, e2, ..., ep, ep+1 = φe1, ep+2 = φe2, ..., e2p = φep, e2p+1 = ξ} be an orthonormal frame of Γ(D) and
we denote the second fundamental form of M in M̃ by σ. Then the mean curvature tensor H of M can be
written as

HD =
1

2p + 1

2p+1∑
i=1

{
σ(ei, ei) + σ(φei, φei) + σ(ξ, ξ)

}
,

By using (28)and (31) we mean that σ(ξ, ξ) = 0, we have

HD =
1

2p + 1

2p+1∑
i=1

{
σ(ei, ei) + σ(φ2ei, ei)

}
=

1
2p + 1

2p+1∑
i=1

{
σ(ei, ei) + σ(T2ei, ei)

}
=

1
2p + 1

2p+1∑
i=1

{
σ(ei, ei) + σ(−ei + η(ei)ξ, ei)

}
=

1
2p + 1

2p+1∑
i=1

{σ(ei, ei) − σ(ei, ei)} = 0.

This proves our assertion.

Theorem 3.14. Let M be a proper contact CR-submanifold of a cosymplectic manifold M̃. If N is parallel on D, then
either M is a D−geodesic submanifold or σ(X,Y) is an eigenvector of n2 with eigenvalue −1, for any X,Y∈ Γ(D).

Proof. Since (∇XN)Y = 0, for any X,Y ∈ Γ(D), from (21) we have

nσ(X,Y) = σ(X,TY). (34)

On the other hand, since D is a invariant distribution and Tξ = 0, we obtain

nσ(X,−Y + η(Y)ξ) = σ(X,T(−Y + η(Y)ξ)) (35)

that is,

nσ(X,Y − η(Y)ξ) = σ(X,TY). (36)

Now, applying n to (36), we have

n2σ(X,Y − η(Y)ξ) = nσ(X,TY).
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By interchanging of Y and TY in (34) , we have

nσ(X,TY) = σ(X,T2Y). (37)

Hence, by using (28), (36) and (37), we obtain

n2σ(X,Y − η(Y)ξ) = nσ(X,TY) = σ(X,T2Y) = −σ(X,Y − η(Y)ξ).

This implies that either σ vanishes on D or σ is an eigenvector of n2 with eigenvalue −1.

Theorem 3.15. Let M be a totally umbilical non-trivial contact CR-submanifold of cosymplectic manifold M̃. If
dim(D⊥) > 1, then M is totally geodesic submanifold in M̃.

Proof. We first prove that tH = 0, where H is the mean curvature vector of M. Since (29) holds for any
X ∈ Γ(D⊥), we have

ANXtH = ANtHX. (38)

Taking into account of M being totally umbilical submanifold, we obtain from (8)

1(ANXtH,X) = 1(ANtHX,X)
1(σ(tH,X),NX) = 1(σ(X,X),NtH)
1(tH,X)1(H,NX) = 1(X,X)1(H,NtH)

by equation (16), we have

1(H,NX)1(H,NX) = 1(X,X) ‖tH‖2 . (39)

Since dim(D⊥) > 1, we can choose X in such that, furthermore, because of X ∈ Γ(D), NX = 0 is already zero.
On the other hand, from (22) we have

1((∇Xt)H,Y) = −1(t∇XH,Y) = 1(AnHX,Y) − 1(TAHX,Y)
= 1(σ(X,Y),nH) + 1(AHX,TY)
1(X,Y)1(nH,H) + 1(σ(X,TY),H)

= 1(X,TY) ‖H‖2

for any vector fields X and Y tangent to M. Putting Y = TX in this equation, we have

1(X,T2X) ‖H‖2 = 0,

from which

1(X,−X + η(X)ξ + tNX) ‖H‖2 = 0{
−1(X,X) + η(X)η(X) − 1(NX,NX)

}
‖H‖2 = 0.

Since M is non-trivial, we can choose an X in D such that NX = 0. Hence,
1(TX,TX) ‖H‖2 = 0, then we have H = 0, we hence M is totally geodesic submanifold.

For a contact CR-submanifold M, if the invariant distribution D andD⊥ are totally geodesic in M, then
M is called contact CR-product. The following theorems characterize contact CR-products in cosymplectic
manifolds.

Theorem 3.16. Let M be a contact CR-submanifold of a cosymplectic manifold M̃. Then M is contact CR-product if
and only if the shape operator A of M satisfies the condition

AφWφX = 0, (40)

for all X ∈ Γ(D) and W ∈ Γ(D⊥).
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Proof. Let us assume that M is a contact CR-submanifold of M̃. Then by using(2), (3) and(5), we obtain

1(AφWφX,Y) = 1(σ(φX,Y), φW) = 1(∇̃YφX, φW) = 1((∇̃Yφ)X + φ∇̃YX, φW)

= 1(φ∇̃YX, φW) = 1(∇̃YX,W) = 1(∇YX,W)

and

1(AφWφX,Z) = 1(σ(φX,Z), φW) = 1(∇̃ZφX, φW) = 1((∇̃Yφ)X + φ∇̃ZX, φW)

= 1(φ∇̃ZX, φW) = 1(∇̃ZX,W) = −1(∇ZW,X)

for all X,Y ∈ Γ(D) and Z,W ∈ Γ(D⊥). So ∇YX ∈ Γ(D) and ∇ZW ∈ Γ(D⊥) if and only if (40) is satisfied. This
proves our assertion.

Theorem 3.16 can be expressed in a different way as shown as Theorem 3.17 below.

Theorem 3.17. Let M be a contact CR-submanifold of a cosymplectic manifold M̃. Then M is contact CR-product if
and if only if

tσ(X,U) = 0, (41)

for any U ∈ Γ(M) and X ∈ Γ(D).

Proof. For contact CR-product M in[12], it was proved that AφWX = 0, for any X ∈ Γ(D) and W ∈ Γ(D⊥).
This condition implies (41).

Conversely, we suppose that (41) is satisfied. Then we have

1(∇XY,W) = 1(φ∇̃XY, φW) = 1(∇̃XφY, φW) − 1((∇̃Xφ)Y, φW)
= 1(σ(X,TY), φW) = −1(tσ(X,TY),W)

and

1(∇ZW, φX) = −1(∇̃ZφX,W) = −1((∇̃Zφ)X,W) − 1(φ∇̃ZX,W)

= 1(∇̃ZX, φW) = −1(tσ(X,Z),W),

for any X,Y ∈ Γ(D) and Z,W ∈ Γ(D⊥). This proves our assertion.

4. Contact CR-Submanifolds in Cosymplectic Space Forms

In section, some new results for contact CR-submanifolds in a cosymplectic manifold and a cosymplectic
space form M̃(c) was given.

Theorem 4.1. Let M be a contact CR-submanifold of a cosymplectic space form M̃(c) such that c , 0. If M is a
curvature-invariant contact CR-submanifold, then either M is invariant or anti-invariant submanifold.

Proof. We suppose that M is a curvature-invariant contact CR-submanifold of a cosymplectic space form
M̃(c) such that c , 0. Then from (27), we have

c
4
{1(X,TZ)NY + 1(TY,Z)NX + 21(X,TY)NZ} = 0, (42)

for any X,Y,Z ∈ Γ(TM). Taking Z = X in equation (42), we have

1(TY,X)NX = 0.

This implies that T = 0 or N = 0, that is, either M is a invariant or an anti-invariant submanifold. Thus the
proof is complete.
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Thus we have the following corollary.

Corollary 4.2. There is not any curvature-invariant proper contact CR-submanifold of cosymplectic space form M̃(c)
such that c , 0.

Theorem 4.3. Let M be a contact CR-submanifold of a cosymplectic space form M̃(c) with flat normal connection
such that c , 0. If TAV = AVT for any vector V normal to M, then M is either an anti-invariant or it is a generic
submanifold of M̃(c).

Proof. If the normal connection of M is flat, then from (24), we have

1([AU,AV]X,Y) =
c
4
{1(X, φV)1(U, φY) − 1(Y, φV)1(φX,U)

+21(X, φY)1(φV,U)}

for any X,Y ∈ Γ(TM) and U,V ∈ Γ(T⊥M). Here, choosing U = nV and Y = TX, by direct calculations, we
can state

1([AV,AnV]X,TX) = −
c
2
{1(TX,TX)1(nV,nV)},

that is,

1(AnVAVTX − AVAnVTX,X) = −
c
2
{
1(TX,TX)1(nV,nV)

}
, (43)

from which

tr(AnVAVT) − tr(AVAnVT) =
c
2

tr(T2)1(nV,nV).

If TAV = AVT, then we conclude that tr(AnVAVT) = tr(AVAnVT) and thus

tr(T2)1(nV,nV) = 0,

This tells us that which proves our assertion. T = 0 or n = 0, that is, either M an anti-invariant or generic
submanifold of M̃(c).

Now, let M be a contact CR− product of cosymplectic space forms M̃(c), we shall calculate bisectional
curvature of cosymplectic manifold M̃. By using (11) and (12) and considering Theorem3.11 and Theorem
3.12, we have

−Ht(X,Z) = 1(R(X, φX)Z, φZ) = 1((∇̃Xσ)(φX,Z) − (∇̃φXσ)(X,Z), φZ)
= 1((∇⊥Xσ)(φX,Z) − σ(∇XφX,Z) − σ(∇XZ, φX), φZ)
−1((∇⊥φXσ)(X,Z) − σ(∇φXX,Z) − σ(∇φXZ,X), φZ)

= X1(σ(φX,Z), φZ) − 1(∇̃XφZ, σ(φX,Z))

−φX1(σ(X,Z), φZ) + 1(∇̃φXZ, σ(X,Z))

= −1((∇̃Xφ)Z + φ∇̃XZ, σ(φX,Z)) + 1((∇̃φXφ)Z + φ∇̃φXZ, σ(X,Z))

= −1((φ∇̃XZ, σ(φX,Z)) + 1(φ∇̃φXZ, σ(X,Z))
= −1((φσ(X,Z), σ(φX,Z)) + 1(φσ(φX,Z), σ(X,Z))

= 21(φσ(φX,Z), σ(X,Z)) = −21((∇̃Zφ)X + φ∇̃ZX, φσ(X,Z))

= −21(φ∇̃ZX, φσ(X,Z)) = −21(φσ(X,Z), φσ(X,Z))
= 21(σ(X,Z), φ2σ(X,Z)) = −21(σ(X,Z), σ(X,Z))

= −2 ‖σ(X,Z)‖2 ,
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for any X ∈ Γ(D) and Z ∈ Γ(D⊥). So we get

Ht(X,Z) = 2 ‖σ(X,Z)‖2 . (44)

Thus we have following the Theorem.

Theorem 4.4. Let M be a contact CR-submanifold of a cosymplectic space form M̃(c) with constant φ−holomorphic
sectional curvature c. Then there do not exist contact CR-product in a cosymplectic space form M̃(c) such that c < 0.

Proof. We suppose that M is a contact CR-product in a cosymplectic space form M̃(c). Then from (5) and (6),
we know σ(Z, ξ) = 0. By using (4) and (44), we have

1(R(X, φX)φZ,Z) =
c
2

{
1(X,X) − η2(X)

}
1(Z,Z)

2 ‖σ(X,Z)‖2 =
c
2

{
1(φX, φX)

}
1(Z,Z),

for any X ∈ Γ(D) and Z ∈ Γ(D⊥). So we have

‖σ(X,Z)‖2 =
c
4

{
1(φX, φX)

}
1(Z,Z) (45)

This equality is impossible for c < 0. This proves our assertion.

Theorem 4.5. Let M be a contact CR-submanifold of a cosymplectic space form M̃(c) such that c < 0. Then we have

‖σ‖2 ≥
c
2

pq,

where dim D = 2p + 1 and dim(D⊥) = q.

Proof. Let
{
e1, e2, ..., ep, ep+1 = φe1, ep+2 = φe2, ..., e2p = φep, e2p+1 = ξ, e2p+2, e2p+3, e2p+4, ..., e2p+q+1

}
be an orthonor-

mal basis of Γ(TM) such that
{
e1, e2, e3, ..., e2p, e2p+1 = ξ

}
is tangent to D distribution and

{
e2p+2, e2p+3, e2p+4, ..., e2p+q+1

}
is tangent to D⊥ distribution. Then norm of the second fundamental form ‖σ‖2 is defined by,

‖σ‖2 =

2p∑
i, j=1

1(σ(ei, e j), σ(ei, e j)) +

2p+q+1∑
r, s=2p+2

1(σ(er, es), σ(er, es))

+2
2p∑
i=1

2p+q+1∑
r=2p+2

1(σ(ei, er), σ(ei, er))

Taking X = e1, e2, ..., ep, ep+1 = φe1, ep+2 = φe2, ..., e2p = φep, e2p+1 = ξ and Z = e2p+2, e2p+3, e2p+4, ..., e2p+q+1 in (45),
then we obtain

‖σ‖2 ≥
c
2

pq.

Theorem 4.6. Let M be a contact CR-submanifold of a cosymplectic space form M̃(c). Then the Ricci tensor S of M
is given by

S(X,W) =
c
4
{
(2p + q + 4)1(X,W) − (2p + q + 2)η(X)η(W)

}
+(2p + q)1(σ(X,W),H) −

2p+q∑
m=1

1(σ(em,W), σ(X, em)) (46)

for any X,W ∈ Γ(TM).
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Proof. For any X,Y,Z,W ∈ Γ(TM), by using (25), we have

1(R(X,Y)Z,W) =
c
4
{1(Y,Z)1(X,W) − 1(X,Z)1(Y,W) + η(X)η(Z)1(Y,W) − η(Y)η(Z)1(X,W)

+η(Y)η(W)1(X,Z) − η(X)η(W)1(Y,Z) + 1(X,TZ)1(TY,W) − 1(Y,TZ)1(TX,W)
+21(X,TY)1(TZ,W)} + 1(σ(X,W), σ(Y,Z)) − 1(σ(Y,W), σ(X,Z)).

Now, let e1, e2, ..., ep, ep+1 = φe1, ep+2 = φe2, ..., e2p = φep, e2p+1 = ξ, e2p+2, e2p+3, e2p+4, ..., e2p+q+1 be an orthonormal
basis of Γ(TM) such that e1, e2, ..., ep, ep+1, .., e2p, e2p+1 = ξ are tangent to Γ(D) and e2p+2, e2p+3, e2p+4, ..., e2p+q+1
are tangent to Γ(D⊥). Hence, taking Y = Z = ei, e j and 1 ≤ i ≤ 2p + 1, 2p + 2 ≤ j ≤ 2p + q + 1 then we obtain

S(X,W) =

p∑
i=1

1(R(X, ei)ei,W) +

2p∑
i=p+1

1(R(X, φei)φei,W) + 1(R(X, ξ)ξ,W) +

2p+q+1∑
j=2p+2

1(R(X, e j)e j,W).

It follows that

S(X,W) =
c
4
{
(2p + q + 4)1(X,W) − (2p + q + 2)η(X)η(W)

}
+ (2p + q)1(σ(X,W),H)

−

p∑
i=1

1(σ(ei,W), σ(X, ei)) +

2p∑
i=p+1

1(σ(φei,W), σ(X, φei))

−1(σ(ξ,W), σ(X, ξ)) −
2p+q+1∑
j=2p+2

1(σ(e j,W), σ(X, e j)). (47)

Hence, the proof follows from the above relation.

Theorem 4.7. Let M be a contact CR-submanifold of a cosymplectic space form M̃(c). Then the scalar curvature
tensor τ of M is given by

τ =
c
4

{
(2p + q)2 + 3(2p + q)

}
+ (2p + q)2

‖H‖2 − ‖σ‖2 (48)

Proof. By using (46), we have

τ =

p∑
i=1

S(ei, ei) +

2p∑
i=p+1

S(φei, φei) + S(ξ, ξ) +

2p+q+1∑
j=2p+2

S(e j, e j)

which gives (48). Thus the proof is complete.

Thus we have the following corollary.

Corollary 4.8. Let M be a minimal contact CR-submanifold of a cosymplectic space form M̃(c). Then the scalar
curvature tensor τ of M is given by

τ =
c
4

(2p + q)2 + 3(2p + q) − ‖σ‖2 (49)

Theorem 4.9. Let M be a totally umbilical contact CR-submanifold of a cosymplectic space form M̃(c). Then the
Ricci tensor S of M is given by

S(X,W) =
c
4
{
(2p + q + 4)1(X,W) − (2p + q + 2)η(X)η(W)

}
(50)

for any X,W ∈ Γ(TM).
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Proof. From (46) by using (8), we obtain

S(X,W) =
c
4
{
(2p + q + 4)1(X,W) − (2p + q + 2)η(X)η(W)

}
+(2p + q)1(σ(X,W),H) −

2p+q∑
m=1

1(σ(em,W), σ(X, em)) (51)

Thus, the proof follows from the above relations, which proves the theorem completely.

Thus we have the following corollary.

Corollary 4.10. Every totally umbilical contact CR-submanifold M of a cosymplectic space form M̃(c) is anη-Einstein
submanifold.

Theorem 4.11. Let M be a totally umbilical contact CR-submanifold of a cosymplectic space form M̃(c). Then the
scalar curvature tensor τ of M is given by

τ =
c
4

{
(2p + q)2 + 3(2p + q)

}
(52)

Proof. By using (50), we have

τ =

p∑
i=1

S(ei, ei) +

2p∑
i=p+1

S(φei, φei) + S(ξ, ξ) +

2p+q+1∑
j=2p+2

S(e j, e j)

which gives (52). Thus the proof is complete.
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