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On Sherman-Steffensen Type Inequalities
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Abstract. In this work, Sherman-Steffensen type inequalities for convex functions with not necessarily
non-negative coefficients are established by using Steffensen’s conditions. The Brunk, Bellman and Olkin
type inequalities are derived as special cases of the Sherman-Steffensen inequality. The superadditivity of
the Jensen-Steffensen functional is investigated via Steffensen’s condition for the sequence of the total sums
of all entries of the involved vectors of coefficients. Some results of Barić et al. [2] and of Krnić et al. [11] on
the monotonicity of the functional are recovered. Finally, a Sherman-Steffensen type inequality is shown
for a row graded matrix.

1. Preliminaries and motivation

The celebrated weighted Jensen’s inequality [5, 14, 18] claims that if f is a real convex function defined on
an interval I ⊂ R, and real coefficients p1, p2, . . . , pn are such that

pi ≥ 0, i = 1, 2, . . . ,n, and Pn = p1 + p2 + . . . + pn > 0 (1)

then, for any x1, x2, . . . , xn ∈ I,

f

 1
Pn

n∑
i=1

pixi

 ≤ 1
Pn

n∑
i=1

pi f (xi). (2)

Theorem A. (Steffensen [21].) Assume that f is a real convex function defined on an interval I ⊂ R. Let
w1,w2, . . . ,wn ∈ R. Denote Wi = w1 + w2 + . . . + wi for i = 1, 2, . . . ,n.

If

Wn ≥Wi ≥ 0, i = 1, 2, . . . ,n, and Wn > 0 (Steffensen’s condition), (3)

then, for any monotonic n-tuple x = (x1, x2, . . . , xn) ∈ In,

f

 1
Wn

n∑
i=1

wixi

 ≤ 1
Wn

n∑
i=1

wi f (xi). (4)

Inequality (4) admitting (not necessarily non-negative) weights wi and satisfying Steffensen’s condi-
tion (3) is called Jensen-Steffensen inequality [1].
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Example 1.1. Suppose that f : I → R is convex on an interval I = [0, x1] with f (0) ≤ 0, and x1 ≥ x2 ≥ . . . ≥
xn ≥ 0.

Brunk inequality [6] asserts that for

1 ≥ h1 ≥ h2 ≥ . . . ≥ hn ≥ 0, (5)

it holds that

f

 n∑
i=1

(−1)i−1hixi

 ≤ n∑
i=1

(−1)i−1hi f (xi). (6)

A special case of inequality (6) for h1 = h2 = . . . = hn = 1 is Bellman’s inequality (see [3, p. 462]).
In fact, by considering the (n + 1)-vector (x1, . . . , xn, 0) and the (n + 1)-sequence of weightsh1,−h2, h3,−h4, . . . (−1)n−1hn, 1 −

n∑
i=1

(−1)i−1hi

 ,
we see from (3) that Steffensen’s condition is fulfilled. So, it now follows from inequality (4) in Theorem A
that

f

 n∑
i=1

(−1)i−1hixi +

1 −
n∑

i=1

(−1)i−1hi

 · 0


≤

n∑
i=1

(−1)i−1hi f (xi) +

1 −
n∑

i=1

(−1)i−1hi

 f (0)

≤

n∑
i=1

(−1)i−1hi f (xi),

since f (0) ≤ 0 and 1 −
n∑

i=1
(−1)i−1hi ≥ 0 (see (5)).

We finish this example by the remark that resignation from the assumption f (0) ≤ 0 leads to the first
above inequality only, which is a result due to Olkin [17].

We return to relevant notation, definitions and theorems.
Let f : I→ R be a function on an interval I ⊂ R, x = (x1, x2, . . . , xn) ∈ In and p ∈ P0

n, where

P
0
n = {p = (p1, p2, . . . , pn) ∈ Rn : pi ≥ 0, Pn > 0} with Pn =

n∑
i=1

pi.

The Jensen functional is defined by (see [8])

J( f , x,p) =

n∑
i=1

pi f (xi) − Pn f

 1
Pn

n∑
i=1

pixi

 . (7)

Equivalently,

J( f , x,p) = 〈p, f (x)〉 − 〈p, e〉 f
(
〈p, x〉
〈p, e〉

)
, (8)

where 〈·, ·〉 is the standard inner product on Rn, e = (1, 1, . . . , 1) ∈ Rn, x = (x1, x2, . . . , xn) ∈ In and f (x) =
( f (x1), f (x2), . . . , f (xn)).
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By Jensen’s inequality,
J( f , x,p) ≥ 0 for a convex function f .

Theorem B. [8] If f : I → R is a convex function then the function p→ J( f , x,p), p ∈ P0
n, is superadditive for

any x ∈ In, i.e.,

J( f , x,p + q) ≥ J( f , x,p) + J( f , x,q) for p,q ∈ P0
n. (9)

In consequence, the function p→ J( f , x,p), p ∈ P0
n, is monotone for any x ∈ In, i.e.,

q ≤ p implies J( f , x,q) ≤ J( f , x,p) for q,p − q ∈ P0
n. (10)

See [12] for some refinements and converses of the Jensen inequality obtained with the help of Theo-
rem B [8].

We say that a vector y = (y1, y2, . . . , yn) ∈ Rn is majorized by a vector x = (x1, x2, . . . , xn) ∈ Rn, written as
y ≺ x, if

k∑
i=1

y[i] ≤

k∑
i=1

x[i] for k = 1, 2, . . . ,n

with equality for k = n, where the symbols x[i] and y[i] denote the ith largest entry of x and y, respectively
(see [13, p. 8]).

An n ×m real matrix S = (si j) is called column stochastic if si j ≥ 0 for i = 1, 2, . . . ,n, j = 1, 2, . . . ,m, and all

column sums of S are equal to 1, i.e.,
n∑

i=1
si j = 1 for j = 1, 2, . . . ,m. If in addition m = n and the transpose

ST = (s ji) of S = (si j) is column stochastic, then S is called doubly stochastic.
An important relationship between majorization and double stochasticity is the following (see [13,

p. 33]): for x,y ∈ Rn,

y ≺ x if and only if y = xS for some doubly stochastic n × n matrix S. (11)

The next result is called Majorization Theorem (see [13, pp. 92-93]).
Theorem C. (Schur [20], Hardy-Littlewood-Pólya [9] and Karamata [10].) Assume that f is a real convex

function defined on an interval I ⊂ R.
Then, for x = (x1, x2, . . . , xn) ∈ In and y = (y1, y2, . . . , yn) ∈ In,

y ≺ x implies
n∑

i=1

f (yi) ≤
n∑

i=1

f (xi). (12)

In [15] the author showed Sherman - Steffensen inequality (15) with non-negative coefficients b j and
with not necessarily non-negative matrix S.

Theorem D. (Niezgoda [15].) Let f : I → R be a convex function defined on an interval I ⊂ R. Let
x = (x1, x2, . . . , xn) ∈ In, y = (y1, y2, . . . , ym) ∈ Im, a = (a1, a2, . . . , an) ∈ Rn and b = (b1, b2, . . . , bm) ∈ Rm

+ . Assume
that x is monotonic.

If

y = xS and a = bST (13)

for some n ×m matrix S = (si j) such that for each j = 1, . . . ,m,

0 ≤ Si j ≤ Snj = 1 for i = 1, . . . ,n, (14)
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where Si j =
i∑

k=1
skj, then

m∑
j=1

b j f (y j) ≤
n∑

i=1

ai f (xi). (15)

In the case of non-negative entries of S with total sums Snj = 1, j = 1, . . . ,m, condition (14) can be
removed and then Theorem D becomes Sherman’s Theorem [19].

Some applications of Sherman’s Theorem can be found in [4, 7, 15, 16].

Remark 1.2. It is not hard to check that Jensen - Steffensen’s inequality (4) is a special form of Sherman -
Steffensen’s inequality (15) with m = 1 and b1 = 1.

For b = (1, 1, . . . , 1) ∈ Rm
+ , inequality (15) yields

m∑
j=1

f (y j) ≤
n∑

i=1

ai f (xi),

where ai =
m∑

j=1
si j is the ith row sum of S, i = 1, . . . ,n.

For instance, if ai =
m∑

j=1
si j = 1 for i = 1, . . . ,n, then m = n and the last inequality takes the form of HLPK

inequality (12).

Example 1.3. Suppose that f : I→ R is convex on an interval I = [0, x1] with f (0) ≤ 0, and x = (x1, x2, . . . , xn)
with x1 ≥ x2 ≥ . . . ≥ xn ≥ 0, and b1, . . . , bm are non-negative coefficients.

Let

H =


h11 h12 · · · h1m
h21 h22 · · · h2m
...

... · · ·
...

hn1 hn2 · · · hnm


be an n ×m real matrix such that

1 ≥ h1 j ≥ h2 j ≥ . . . ≥ hnj ≥ 0 for j = 1, . . . ,m. (16)

Consider the (n + 1) ×m matrix

S =



h11 h12 · · · h1m
−h21 −h22 · · · −h2m
h31 h32 · · · h3m
−h41 −h42 · · · −h4m
...

... · · ·
...

(−1)n−1hn1 (−1)n−1hn2 · · · (−1)n−1hnm

1 −
n∑

i=1
(−1)i−1hi1 1 −

n∑
i=1

(−1)i−1hi2 · · · 1 −
n∑

i=1
(−1)i−1him


,

It is not hard to verify by (16) that Steffensen’s condition (14) is satisfied for each column of S.
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It is obvious that

ST =



h11 −h21 h31 −h41 · · · (−1)n−1hn1 1 −
n∑

i=1
(−1)i−1hi1

h12 −h22 h32 −h42 · · · (−1)n−1hn2 1 −
n∑

i=1
(−1)i−1hi2

...
...

...
... · · ·

...
...

h1m −h2m h3m −h4m · · · (−1)n−1hnm 1 −
n∑

i=1
(−1)i−1him


.

It now follows from Theorem D applied to the 1 × (n + 1) monotonic vector (x1, . . . , xn, 0) that

m∑
j=1

b j f

 n∑
i=1

(−1)i−1hi jxi


≤

n∑
i=1

m∑
j=1

b j(−1)i−1hi j f (xi) +

m∑
j=1

b j

1 −
n∑

i=1

(−1)i−1hi j

 f (0) (17)

with

ai =

m∑
j=1

b j(−1)i−1hi j for i = 1, . . . ,n, and an+1 =

m∑
j=1

b j

1 −
n∑

i=1

(−1)i−1hi j

 .
Since b j ≥ 0 for j = 1, . . . ,m, f (0) ≤ 0 and 1 −

n∑
i=1

(−1)i−1hi j ≥ 0 (see (5)), we get

m∑
j=1

b j

1 −
n∑

i=1

(−1)i−1hi j

 f (0) ≤ 0.

Therefore the right hand side of inequality (17) is estimated by upper bound

n∑
i=1

m∑
j=1

b j(−1)i−1hi j f (xi).

Thus we obtain a generalization of Brunk inequality (cf. Example 1.1):

m∑
j=1

b j f

 n∑
i=1

(−1)i−1hi jxi

 ≤ n∑
i=1

m∑
j=1

b j(−1)i−1hi j f (xi). (18)

In particular, when H is the matrix of ones, that is, hi j = 1 for i = 1, . . . ,n and j = 1, . . . ,m, then we get a
Bellman like inequality:

m∑
j=1

b j f

 n∑
i=1

(−1)i−1xi

 ≤ n∑
i=1

m∑
j=1

b j(−1)i−1 f (xi) (19)

with

ai =

m∑
j=1

b j(−1)i−1 for i = 1, . . . ,n.

We also conclude that the resignation from the assumption f (0) ≤ 0 leads to inequality (17), only, which
corresponds to an Olkin’s result [17] (see Example 1.1).
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Note that one of the main assumptions of Theorem D is the non-negativity of the weights b j. The
purpose of the present paper is to extend this theorem to some other classes of weights by employing the
above-mentioned Steffensen’s condition (3).

The paper is arranged in the folowing way. In Section 1 we collect some needed terminology, definitions
and facts. In Example 1.1, Brunk, Olkin and Bellman’s inequalities are also presented. In Theorem D
we demonstrate a Sherman-Steffensen type inequality with non-negative coefficients b j, j = 1, . . . ,m. As
consequence, we show a multivariate Brunk like inequality (see Example 1.3).

In Section 2 we establish the property of superadditivity of the Jensen-Steffensen functional (see Theo-
rem 2.1). Here the main assumption is Steffensen’s condition for some real l-tuple prepared by total sums
of all entries of the involved coefficient vectors p1,p2, . . . ,pl in Rn. The case l = 2 leads to some resuls due
to Barić et al. [2] and to Krnić et al. [11], and gives the monotonicity of the functional (see Corollary 2.4).

In Section 3 we investigate the Sherman-Steffensen type inequality for possibly negative coefficients b js.
To do so, we employ the property of monotonicity of the Jensen-Steffensen functional. Again, the basic
assumptions in Theorem 3.1 are Steffensen’s conditions:
(i) for the last column of the matrix,
(ii) for the pairs of the total sums of entries of any column and of its difference with the next column of the
matrix,
(iii) for the difference of any two successive columns of the matrix.
Finally, we also apply n × m row graded matrices in order to simplify conditions ensuring the validity of
the inequality.

2. Superadditivity of the Jensen-Steffensen functional

For a function f : I → R on an interval I ⊂ R, x ∈ In and p ∈ Rn with Pn = 〈p, e〉 , 0, we define the
Jensen-Steffensen functional by

J( f , x,p) = 〈p, f (x)〉 − 〈p, e〉 f
(
〈p, x〉
〈p, e〉

)
. (20)

Here we do not assume that p is non-negative n-tuple.
We begin this section with a complement to Theorem B, which also extends a result of Krnić et al. [11,

Theorem 2.1]. A consequence of Theorem 2.1 is Corollary 2.4 that will be used in the proofs of Theorems 3.1-
3.2.

Theorem 2.1. Let f : I → R be a convex function on an interval I ⊂ R. Let e = (1, 1, . . . , 1) ∈ Rn and
p1,p2, . . . ,pl ∈ Rn be such that 〈p j, e〉 , 0 for j = 1, . . . , l, and

l∑
j=1

〈p j, e〉 > 0 and
l∑

j=1

〈p j, e〉 ≥
i∑

j=1

〈p j, e〉 ≥ 0 for i = 1, . . . , l. (21)

Then for any monotonic n-tuple x ∈ In,

〈

l∑
i=1

pi, e〉 f


〈

l∑
i=1

pi, x〉

〈

l∑
i=1

pi, e〉

 ≤
l∑

i=1

〈pi, e〉 f
(
〈pi, x〉
〈pi, e〉

)
. (22)

Moreover, the Jensen-Steffensen functional, under Steffensen’s condition (21), is superadditive, i.e., (22) takes the
equivalent form

J

 f , x,
l∑

i=1

pi

 ≥ l∑
i=1

J( f , x,pi). (23)
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Proof. The following identity holds

〈

l∑
i=1

pi, x〉

〈

l∑
i=1

pi, e〉
=

l∑
i=1

wi
〈pi, x〉
〈pi, e〉

, (24)

where

wi =
〈pi, e〉
l∑

j=1
〈p j, e〉

for i = 1, . . . , l. (25)

Since f : I→ R is convex on I, and 1 = Wl ≥Wi ≥ 0 for i = 1, . . . , l (see (21)), where

Wi =

i∑
j=1

w j =

i∑
j=1

〈p j, e〉
l∑

j=1
〈p j, e〉

for i = 1, . . . , l,

by Jensen-Steffensen’s inequality (see Theorem A) one has

f


〈

l∑
i=1

pi, x〉

〈

l∑
i=1

pi, e〉

 = f

 l∑
i=1

wi
〈pi, x〉
〈pi, e〉

 ≤ l∑
i=1

wi f
(
〈pi, x〉
〈pi, e〉

)

=

l∑
i=1

〈pi, e〉
l∑

j=1
〈p j, e〉

f
(
〈pi, x〉
〈pi, e〉

)
=

1
l∑

j=1
〈p j, e〉

l∑
i=1

〈pi, e〉 f
(
〈pi, x〉
〈pi, e〉

)
. (26)

Now, it is not hard to see that (26) implies (22).
By using the notation (20) for the Jensen-Steffensen functional, we have

l∑
i=1

J( f , x,pi) =

l∑
i=1

〈pi, f (x)〉 −
l∑

i=1

〈pi, e〉 f
(
〈pi, x〉
〈pi, e〉

)
and

J

 f , x,
l∑

i=1

pi

 = 〈

l∑
i=1

pi, f (x)〉 − 〈
l∑

i=1

pi, e〉 f


〈

l∑
i=1

pi, x〉

〈

l∑
i=1

pi, e〉

 .
Therefore (22) can be restated as

J

 f , x,
l∑

i=1

pi

 ≥ l∑
i=1

J( f , x,pi),

as claimed.

Remark 2.2. In context of Theorem 2.1, if the coefficient vectors p1,p2, . . . ,pl ∈ Rn have non-negative
entries with positive sums, then the requirement (21) holds valid. Thus Theorem 2.1 is a generalization of
Theorem B.
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Remark 2.3. Observe that the requirement (21) can be viewed as the Steffensen’s condition related to the
l-tuple

(〈p1, e〉, 〈p2, e〉, . . . , 〈pl, e〉).

The next discussion concerns the monotonicity property (30) of the Jensen-Steffensen functional p →
J
(

f , x,p
)
. To this end, a sufficient condition is (27), which relaxes the standard requirement p ≥ q with

〈p, e〉 > 0, 〈q, e〉 > 0 and pi, qi ≥ 0 (cf. [2, 11]).

Corollary 2.4 (Cf. Barić et al. [2], Krnić et al. [11, Theorem 2.1]). Let f : I → R be a convex function on an
interval I ⊂ R. Let e = (1, 1, . . . , 1) ∈ Rn and p,q ∈ Rn be such that

Pn = 〈p, e〉 > 0, Qn = 〈q, e〉 > 0 and Pn −Qn = 〈p − q, e〉 > 0. (27)

Then for any monotonic n-tuple x ∈ In,

J
(

f , x,p
)
≥ J( f , x,p − q) + J( f , x,q). (28)

If in addition the entries of p − q fulfill the Steffensen’s condition, that is,

Pn −Qn > 0 and Pn −Qn ≥ Pi −Qi ≥ 0 for i = 1, . . . ,n, (29)

then for any monotonic n-tuple x ∈ In,

J
(

f , x,p
)
≥ J( f , x,q). (30)

Proof. We denote
p1 = p − q and p2 = q.

Then via (27) we have
〈p1 + p2, e〉 > 0 and 〈p1 + p2, e〉 ≥ 〈p1, e〉 ≥ 0.

It now follows from Theorem 2.1 for l = 2 that

J
(

f , x,p1 + p2
)
≥ J( f , x,p1) + J( f , x,p2), (31)

i.e.,
J
(

f , x,p
)
≥ J( f , x,p − q) + J( f , x,q),

as was to be proved.
Assume in addition that (29) holds, that is, the entries of p1 = p − q fulfill the Steffensen’s condition.

Then we get J( f , x,p1) ≥ 0 (see Theorem A). For this reason, (31) gives

J
(

f , x,p1 + p2
)
≥ J( f , x,p2).

In other words,
J
(

f , x,p
)
≥ J( f , x,q),

completing the proof.

Remark 2.5. Likewise in Remark 2.3, the restriction (27) is the Steffensen’s condition related to the pair
(〈p − q, e〉, 〈q, e〉).
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3. Sherman - Steffensen like inequalities with possibly negative coefficients b j

We now give another result of Sherman-Steffensen type, where the non-negativity of the coefficients bi
is relaxed at the expense of restricting the matrix G.

For an n × m matrix G = (1i j) we denote the ith sum of the jth column by Gi j =
i∑

k=1
1kj for i = 1, 2, . . . ,n,

j = 1, 2, . . . ,m. The jth column sum of G is denoted by Gnj =
n∑

k=1
1kj. The symbol g j stands for the jth column

of G for j = 1, 2, . . . ,m.

Theorem 3.1. Let f : I → R be a convex function on an interval I ⊂ R. Let x = (x1, x2, . . . , xn) ∈ In, y =
(y1, y2, . . . , ym) ∈ Im, a = (a1, a2, . . . , an) ∈ Rn and b = (b1, b2, . . . , bm) ∈ Rm. Denote B j = b1 + b2 + . . . + b j for
j = 1, 2, . . . ,m.

If

B j ≥ 0, j = 1, 2, . . . ,m, (32)

x is monotonic, (33)

and

y = xG and a = bGT (34)

for some n ×m matrix G = (1i j) satisfying

Gnm > 0 and Gnm ≥ Gim ≥ 0, i = 1, . . . ,n, (35)

Gnj > 0 and Gn, j+1 > 0, j = 1, . . . ,m − 1, (36)

Gnj − Gn, j+1 > 0 and Gnj − Gn, j+1 ≥ Gi j − Gi, j+1 ≥ 0, i = 1, . . . ,n, j = 1, . . . ,m − 1, (37)

then
m∑

j=1

b jGnj f
(

y j

Gnj

)
≤

n∑
i=1

ai f (xi). (38)

Proof. Remind that the Jensen-Steffensen functional corresponding to the jth column g j of G is given by

J( f , x,g j) =

n∑
i=1

1i j f (xi) − Gnj f

 1
Gnj

n∑
i=1

1i jxi

 for j = 1, 2, . . . ,m. (39)

We shall prove with the aid of condition (32) that

m∑
j=1

b j J( f , x,g j) ≥ 0. (40)

To see this we invoke to Abel’s identity

m∑
j=1

b j J( f , x,g j) =

m−1∑
j=1

(
J( f , x,g j) − J( f , x,g j+1)

)
B j + J( f , x,gm)Bm. (41)

By using (35) and Jensen-Steffensen’s inequality (see Theorem A), we obtain

Gnm f

 n∑
i=1

1im

Gnm
xi

 ≤ n∑
i=1

1im f (xi).
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In other words, we have

J( f , x,gm) ≥ 0. (42)

Furthermore, by (32) and (42) we have

J( f , x,gm)Bm ≥ 0. (43)

By (36)-(37) we have

Gnj > 0, Gn, j+1 > 0 and Gnj − Gn, j+1 > 0, j = 1, . . . ,m − 1. (44)

In light of (37), (44) and Corollary 2.4 applied to g j and g j+1, we see that

J( f , x,g j) ≥ J( f , x,g j+1) for j = 1, 2, . . . ,m − 1. (45)

By combining (32), (41), (43) and (45), we deduce that (40) is satisfied, as claimed.
We now deduce from (39) and (40) that

m∑
j=1

b jGnj f

 1
Gnj

n∑
i=1

1i jxi

 ≤ m∑
j=1

b j

n∑
i=1

1i j f (xi) =

n∑
i=1

m∑
j=1

b j1i j f (xi). (46)

It follows from the first equality of (34) that (y1, y2, . . . , ym) = (x1, x2, . . . , xn)G. That is, y j =
n∑

i=1
1i jxi,

j = 1, 2, . . . ,m. The second equality of (34) gives ai =
m∑

j=1
b j1i j, i = 1, 2, . . . ,n. So, we find from (46) that

m∑
j=1

b jGnj f
(

y j

Gnj

)
≤

n∑
i=1

ai f (xi),

which completes the proof of inequality (38).
We now discuss some simplifications of the assumptions in Theorem 3.1.

Theorem 3.2. Under the assumptions of Theorem 3.1 with the condition (37) replaced by

Gnj − Gn, j+1 > 0, j = 1, . . . ,m − 1, (47)

then

m−1∑
j=1

B j J( f , x,g j − g j+1) +

m∑
j=1

b jGnj f
(

y j

Gnj

)
≤

n∑
i=1

ai f (xi). (48)

Proof. We proceed as in the proof of Theorem 3.1. We apply the Abel’s identity

m∑
j=1

b j J( f , x,g j) =

m−1∑
j=1

(
J( f , x,g j) − J( f , x,g j+1)

)
B j + J( f , x,gm)Bm. (49)

By virtue of (35) and of Jensen-Steffensen inequality (see Theorem A), we obtain

J( f , x,gm) =

n∑
i=1

1im f (xi) − Gnm f

 1
Gnm

n∑
i=1

1imxi

 ≥ 0. (50)
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By (32) and (50),

J( f , x,gm)Bm ≥ 0. (51)

From (35) and (47) we have

Gnj > 0, Gn, j+1 > 0 and Gnj − Gn, j+1 > 0, j = 1, . . . ,m − 1. (52)

It now follows from (52) and Corollary 2.4 that

J( f , x,g j) ≥ J( f , x,g j+1) + J( f , x,g j − g j+1) for j = 1, 2, . . . ,m − 1. (53)

By making use of (32), (49), (51) and (53) we infer that

m∑
j=1

b j J( f , x,g j) ≥
m−1∑
j=1

(
J( f , x,g j) − J( f , x,g j+1)

)
B j ≥

m−1∑
j=1

J( f , x,g j − g j+1)B j. (54)

Therefore,
m−1∑
j=1

J( f , x,g j − g j+1)B j +

m∑
j=1

b jGnj f

 1
Gnj

n∑
i=1

1i jxi


≤

m∑
j=1

b j

n∑
i=1

1i j f (xi) =

n∑
i=1

m∑
j=1

b j1i j f (xi). (55)

Moreover, by (34) we have y j =
n∑

i=1
1i jxi, j = 1, . . . ,m, and ai =

m∑
j=1

b j1i j, i = 1, . . . ,n. Finally, from (55) we get

m−1∑
j=1

J( f , x,g j − g j+1)B j +

m∑
j=1

b jGnj f
(

y j

Gnj

)
≤

n∑
i=1

ai f (xi),

completing the proof of (48).

Remark 3.3. Under the full condition (37), the Jensen-Steffensen functionals

J( f , x,g j − g j+1), j = 1, . . . ,m − 1

are non-negative (see Theorem A). Then (48) in Theorem 3.2 is a refinement of inequality (38) in Theorem 3.1.
Conversely, with (47) in place of (37), the Jensen-Steffensen functionals can be negative in (48).

To give further simplifications of Theorem 3.2, we introduce row graded matrices, as follows.
A real n ×m matrix G = (1i j) is said to be row graded if

1i j ≥ 1i, j+1 for i = 1, 2, . . .n, j = 1, 2, . . . ,m − 1. (56)

For a row graded matrix G = (1i j), the vector g j − g j+1 for j = 1, . . . ,m − 1, has non-negative entries. As
a result, condition (47) implies (37), so the Jensen-Steffensen functional J( f , x,g j − g j+1) ≥ 0 is non-negative.

Therefore we obtain

Corollary 3.4. Under the assumptions of Theorem 3.1 with the condition (37) replaced by

Gnj − Gn, j+1 > 0, j = 1, . . . ,m − 1, (57)

for a row graded matrix G, then

m∑
j=1

b jGnj f
(

y j

Gnj

)
≤

m−1∑
j=1

B j J( f , x,g j − g j+1) +

m∑
j=1

b jGnj f
(

y j

Gnj

)
≤

n∑
i=1

ai f (xi). (58)
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