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Available at: http://www.pmf.ni.ac.rs/filomat

A Fixed Point Method to Solve the Nonlinear Complementarity
Problem for a Class of Monotone Operators

Dinu Teodorescua, Mohammad Saeed Khanb

aDepartment of Mathematics, Valahia University of Targoviste, Boulevard Unirii 18, Targoviste, 130024, Romania
bDepartment of Mathematics & Statistics, Sultan Qaboos University, P. O. Box 36, Al-Khoud 123, Muscat, Sultanate of Oman

Abstract. In this paper, using the classic Banach fixed point theorem, we study the nonlinear complemen-
tarity problem for a class of monotone operators in real Hilbert space.

1. Introduction

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the corresponding norm denoted by ‖·‖.
Let C ⊂ H be a closed convex cone with the vertex at 0 and let C∗ be the dual cone of C defined by

C∗ =
{
y ∈ H /

〈
x, y
〉
≥ 0 for all x ∈ C

}
.

Let A : C→ H be a nonlinear operator. To solve the nonlinear complementarity problem for A is to find
an element u ∈ H so that

u ∈ C, Au ∈ C∗ and 〈u,Au〉 = 0.

Solving the nonlinear complementarity problem for certain classes of nonlinear operators provides
strong tools in the approach of some problems from optimization theory. Also, the nonlinear complemen-
tarity problem has applications in mechanics and economics(see [3]).

The complementarity problem for linear operators was proposed by R. W. Cottle and G. B. Dantzig in
1968(see [2]). More exactly Cottle and Dantzig studied the complementarity problem for n× n matrices, i.e.
for linear operators from the euclidian space Rn into itself. An approach of the nonlinear complementarity
problem for nonlinear mappings between finite dimensional spaces was proposed by S. Karamardian in [5].
In the paper [6], Sribatsa Nanda and Sudarsan Nanda established the existence and uniqueness of solution
of the nonlinear complementarity problem for Lipschitz strongly monotone operators in Hilbert space.

In this paper we prove an existence and uniqueness result for the nonlinear complementarity problem
for a strongly monotone operator satisfying simultaneous the inverse strong monotonicity condition. Our
proof uses a similar technique as in [6], based on the Banach fixed point theorem, but in a more clear and
elegant style.
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2. Preliminaries

In the following H denotes a real Hilbert space with the inner product 〈·, ·〉 and the corresponding norm
denoted by ‖·‖.

Definition 2.1. Let A : D(A) ⊂ H→ H be an operator and α, β > 0. A is said to be
1) α-strongly monotone if

〈
Ax − Ay, x − y

〉
≥ α
∥∥∥x − y

∥∥∥2 for all x, y ∈ D(A);

2) β-inverse strongly monotone if
〈
Ax − Ay, x − y

〉
≥ β
∥∥∥Ax − Ay

∥∥∥2 for all x, y ∈ D(A);
3) nonexpansive if

∥∥∥Ax − Ay
∥∥∥ ≤ ∥∥∥x − y

∥∥∥ for all x, y ∈ D(A);

4) firmly nonexpansive if
〈
Ax − Ay, x − y

〉
≥

∥∥∥Ax − Ay
∥∥∥2 for all x, y ∈ D(A).

Clearly, due to the Schwartz inequality, every firmly nonexpansive operator is nonexpansive.
The definition of monotone operator was first given by Kachurovski[4] and iterative methods for strongly

monotone operators in Hilbert space satisfying a Lipschitz condition were first given by Zarantonello [8] and
Vainberg [7].(see Browder and Petryshyn[1]). The notion of inverse strongly monotone operator appears
firstly in 1967(Browder and Petryshyn[1]).

To prove our main result we apply a technique used in the study of some variational inequalities and
we need the notion of metric projection.

Let K be a closed convex nonempty subset of H and PK be the metric projection onto K. The projection
operator PK is characterized by

PKx ∈ K :
〈
PKx − x, y − PKx

〉
≥ 0 for all y ∈ K.

It follows from this characterization that for x, y ∈ H〈
PKx − PK y, x − y

〉
=
〈
PKx − PK y, x − PKx

〉
+
∥∥∥PKx − PK y

∥∥∥2 + 〈PKx − PK y,PK y − y
〉

≥

∥∥∥PKx − PK y
∥∥∥2 ,

so PK is a firmly nonexpansive operator, thus PK is nonexpansive. Also ‖x − PKx‖ = d(x; K) = inf{
∥∥∥x − y

∥∥∥ /
y ∈ K}.

3. Main Result

In the paper [6] the authors prove the following result:
Theorem 3.1. Let C ⊂ H be a closed convex cone with the vertex at 0, F : C→ H be a c-strongly monotone and

k-lipschitzian operator(c, k > 0). If k2 < 2c < k2 + 1, then the nonlinear complementarity problem for F has a unique
solution.

If F satisfies the conditions from the above theorem, using the Schwartz inequality we obtain

c
∥∥∥x − y

∥∥∥2 ≤ 〈Fx − Fy, x − y
〉
≤

∥∥∥Fx − Fy
∥∥∥ · ∥∥∥x − y

∥∥∥
≤ k
∥∥∥x − y

∥∥∥2 for all x, y ∈ C,

thus c ≤ k. Then c2 < 2c, so c ∈ (0, 2). Now k2 < 2c < 4 and we have necessarily k ∈ (0, 2).
If for example c = 1, from the condition k2 < 2c < k2 + 1, we have necessarily k ≥ 1 and k2 < 2, so we

obtain that k ∈ [1,
√

2).
Clearly the result obtained in [6] is not so general as it seems, because the authors ignore the necessary

condition c ≤ k.
Our result, presented below, relate to an operator satisfying simultaneous the α-strong monotonicity

condition and the β-inverse strong monotonicity condition, so the constants α and β satisfy α ≤ 1
β .

Now we are in position to give the main result of this paper:
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Theorem 3.2. Let C ⊂ H be a closed convex cone with the vertex at 0, C∗ be the dual cone of C and α ∈ (0, 1
2 ],

β ∈ [1, 2]. If A : C→ H is α-strongly monotone and β-inverse strongly monotone, then there exists a unique u ∈ C
such that

u ∈ C, Au ∈ C∗ and 〈u,Au〉 = 0.

Proof . Let T : C→ C be the operator defined by

Tx = PC(x − Ax),

where PC is the projection operator onto C. From the properties of the projection operator we obtain:∥∥∥Tx − Ty
∥∥∥ = ∥∥∥PC(x − Ax) − PC(y − Ay)

∥∥∥
≤

∥∥∥(x − Ax) − (y − Ay)
∥∥∥

=
∥∥∥x − y − (Ax − Ay)

∥∥∥ .
It results that∥∥∥Tx − Ty

∥∥∥2 ≤ ∥∥∥x − y − (Ax − Ay)
∥∥∥2

=
∥∥∥x − y

∥∥∥2 + ∥∥∥Ax − Ay
∥∥∥2 − 2

〈
Ax − Ay, x − y

〉
.

Now it follows from the assumptions from the hypothesis that∥∥∥Tx − Ty
∥∥∥2

≤

∥∥∥x − y
∥∥∥2 + ∥∥∥Ax − Ay

∥∥∥2 − 〈Ax − Ay, x − y
〉
−
〈
Ax − Ay, x − y

〉
≤

∥∥∥x − y
∥∥∥2 + ∥∥∥Ax − Ay

∥∥∥2 − α ∥∥∥x − y
∥∥∥2 − β ∥∥∥Ax − Ay

∥∥∥2
= (1 − α)

∥∥∥x − y
∥∥∥2 + (1 − β)

∥∥∥Ax − Ay
∥∥∥2 .

Necessarily α ≤ 1
β , because the operator A satisfies simultaneous the α-strong monotonicity condition

and the β-inverse strong monotonicity condition.
If α ∈ (0, 1

2 ], β ∈ [1, 2], clearly we have α ≤ 1
β , 1 − α ∈ (0, 1) and 1 − β ≤ 0.

Consequently we obtain∥∥∥Tx − Ty
∥∥∥2 ≤ (1 − α)

∥∥∥x − y
∥∥∥2 ,

thus∥∥∥Tx − Ty
∥∥∥ ≤ √1 − α

∥∥∥x − y
∥∥∥

for all x, y ∈ C.
So T : C→ C is a contraction(

√
1 − α ∈ (0, 1) for α ∈ (0, 1

2 ]) and, due to the Banach fixed point theorem,
we conclude that T has a unique fixed point u ∈ C.

It follows from Tu = u = PC(u − Au) that

0 ≤
〈
PC(u − Au) − u + Au, y − PC(u − Au)

〉
=
〈
Au, y − u

〉
for all y ∈ C.

Now we take y = 0 ∈ C and y = 2u ∈ C and we have

〈Au,−u〉 ≥ 0 and 〈Au,u〉 ≥ 0,
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so 〈Au,u〉 = 0.
Since

〈
Au, y − u

〉
≥ 0 for all y ∈ C, it results that

〈
Au, y

〉
−〈Au,u〉 =

〈
Au, y

〉
≥ 0 for all y ∈ C, then Au ∈ C∗.

If v ∈ C satisfies 〈Av, v〉 = 0 and Av ∈ C∗, then we have〈
v − (v − Av), y − v

〉
=
〈
Av, y − v

〉
=
〈
Av, y

〉
≥ 0 for all y ∈ C,

and, using the properties of the projection operator, it results that v = PC(v − Av) = Tv.
Consequently v is a fixed point of T, therefore v = u.
Thus the uniqueness of the point u ∈ C satisfying the conditions from the conclusion of our theorem is

proved and the proof of Theorem 3.2. is complete.�
The unique solution u ∈ C of the nonlinear complementarity problem for the operator A, obtained by

Theorem 3.2, can be approximated using the Picard iteration associated to the contraction T.
The values of α and β from the statement of Theorem 3.2 can be changed in many ways, the result still

remaining true. Indeed, for example, the following result holds:
Theorem 3.3. Let C ⊂ H be a closed convex cone with the vertex at 0, C∗ be the dual cone of C and α ∈ (0, 1),

β = 1. If A : C→ H is α-strongly monotone and β-inverse strongly monotone(in other words the operator A is firmly
nonexpansive, satisfying simultaneous a strong monotonicity condition), then there exists a unique u ∈ C such that

u ∈ C, Au ∈ C∗ and 〈u,Au〉 = 0.

Proof . We construct the operator T : C→ C as in the proof of Theorem 3.1 and we have

∥∥∥Tx − Ty
∥∥∥2

≤

∥∥∥x − y
∥∥∥2 + ∥∥∥Ax − Ay

∥∥∥2 − 2
〈
Ax − Ay, x − y

〉
=
∥∥∥x − y

∥∥∥2 + ∥∥∥Ax − Ay
∥∥∥2 − 〈Ax − Ay, x − y

〉
−
〈
Ax − Ay, x − y

〉
≤

∥∥∥x − y
∥∥∥2 + ∥∥∥Ax − Ay

∥∥∥2 − α ∥∥∥x − y
∥∥∥2 − ∥∥∥Ax − Ay

∥∥∥2
= (1 − α)

∥∥∥x − y
∥∥∥2 .

Clearly T is a contraction and the proof continues similarly to the proof of Theorem 3.2.�
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