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EP Elements and the Solutions of Equation in Rings with Involution
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Abstract. The aim of this paper is to describe the elements in rings with involution which are EP. Especially,
contact is established between EP elements and the solutions of certain equations. In addition, we reduce
the preliminary requirements met in some existing results.

1. Introduction

Throughout this paper, R will denote a unital ring with involution, i.e., a ring R with a map a 7→ a∗

satisfying (a∗)∗ = a, (ab)∗ = b∗a∗ and (a + b)∗ = a∗ + b∗, for all a, b ∈ R. The notion of Moore-Penrose inverse
(or MP-inverse) has been investigated by many authors (see, for example, [6, 8, 9]). We say that b = a† is
the Moore-Penrose inverse (or MP-inverse) of a, if the following conditions hold: aba = a, bab = b, (ab)∗ = ab,
and (ba)∗ = ba. There is at most one b such that the above conditions hold. We write R† for the set of all
MP-inverses of R. a is said to be group invertible if there is a#

∈ R such that aa#a = a; a#aa# = a#; aa# = a#a. a#

is called a group inverse of a and it is uniquely determined by these equations. Denote by R# the set of all
group invertible elements of R.

An element a ∈ R is said to be an EP element if a ∈ R† ∩ R# and a† = a# [3]. The set of all EP elements of
R will be denoted by REP. Mosić et al. in [12, Theorem 2.1] gave several equivalent conditions under which
an element in R is an EP element. Patrćio and Puystjens in [14, Proposition 2] proved that for an element
a ∈ R, a is EP if and only if a ∈ R† (or a ∈ R#) and aR = a∗R if and only if a ∈ R† and aa† = a†a. It is known by
[10, Theorem 7.3] that a ∈ R is EP if and only if a is group invertible and aa# is symmetric. More results on
EP elements can also be found in [2, 4, 5, 7, 11, 15].

This paper considers the characterizations of EP elements, from the perspective of the solutions of
equations. Let a ∈ R#

∩R† and χa = {a, a∗, a†, a#, (a#)∗, (a†)∗}. It will be proved that the equation axa† = xa†a has
at least one solution in χa if and only if a ∈ REP. In Corollary 2.6, we reduce the condition aa† = a2(a†)2 in [1,
Proposition 2.3]. In Theorem 2.10, we change [16, Theorem 2.2] by using the condition x−ax2

∈ J(R)∩comm(a)
to replace the requirement x = ax2, where J(R) is the Jacobson radical of R. As we know, aa† = a2(a†)2 and
a†a = (a†)2a2 are equivalent [1], and so do aa† = (a†)2a2 and a†a = a2(a†)2 which is proved in Proposition
2.11. Finally, with the help of the results mentioned above, we show that even if the restrictive conditions
(a†)2a# = a#(a†)2 in [12, Conjecture 1] and a† ∈ R# in [1, Corollary 2.5] are reduced, the relevant conclusions
are still established.
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2. EP elements and the solutions of equation

In this section, we let R be a ring with involution ∗. For any a ∈ R, denote

comm(a) = {x ∈ R|xa = ax}, l(a) = {z ∈ R|za = 0}, and
comm2(a) = {y ∈ R|xy = yx, for all x ∈ comm(a)}.

Lemma 2.1. Let a, b ∈ R# and x ∈ R. Then ax = xb if and only if a#x = xb#.

Proof. ⇒ It follows from ax = xb that

a#x = (a#)2ax = (a#)2xb = (a#)2xb2b# = (a#)2axbb# = a#xbb#.

On the other hand, it is obvious that

xb# = xb(b#)2 = ax(b#)2 = a#a2x(b#)2 = a#axb(b#)2 = a#axb# = a#xbb#.

Hence, a#x = xb#.
⇐ Since a#x = xb#, we get

ax = a2a#x = a2xb# = a2x(b#)2b = a2a#xb#b = axb#b.

What is left is to show that xb = axb#b. In fact,

xb = xb#b2 = a#xb2 = a(a#)2xb2 = aa#xb#b2 = aa#xb = axb#b.

Hence ax = xb.

Especially, choosing a = b in Lemma 2.1, we have the following corollary.

Corollary 2.2. [13, P733] If a ∈ R#, then a#
∈ comm2(a) and a ∈ comm2(a#).

Let R be a ring and write ZE(R) = {x ∈ R|xe = ex, for all e ∈ E(R)}, where E(R) is the set of all idempotents
in R. Then ZE(R) is a subring of R.

Theorem 2.3. Let R be a ring and a ∈ R#. If a ∈ ZE(R), then a ∈ ZE(R)#.

Proof. Note that a ∈ R#. Then a# exists and a#
∈ R. For each e ∈ E(R), we have e ∈ comm(a) because a ∈ ZE(R).

By Corollary 2.2, ea# = a#e. Hence a#
∈ ZE(R), it follows that a ∈ ZE(R)#.

Lemma 2.4. Let a ∈ R#
∩ R†. Then a ∈ REP if and only if one of the following conditions holds:

(1) a†R ⊆ aR;
(2) Ra ⊆ Ra†.

Proof. It is well-known that a†R = a∗R and Ra∗ = Ra†. Consequently, Lemma 2.4 follows by [1, Theorem
3.6].

Let a ∈ R#
∩ R†. Write χa = {a, a∗, a†, a#, (a#)∗, (a†)∗}. Now, we consider the relations between EP elements

and the solutions of the equation axa† = xa†a in χa.

Theorem 2.5. Let a ∈ R#
∩ R†. If the equation axa† = xa†a has at least one solution in χa, then a ∈ REP.
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Proof. (1) When x = a, then a2a† = aa†a = a. It follows from [11, Theorem 2.1(xviii)] that a is an EP element.
(2) When x = a∗, then aa∗a† = a∗a†a = a∗(a†a)∗ = (a†a2)∗. By applying involution on the above equation,

we have a†a2 = (a†)∗aa∗. According to the last equation, we have

a†R = a†aR = a†a2a#R ⊆ a†a2R = (a†)∗aa∗R ⊆ (a†)∗R = aa†(a†)∗R ⊆ aR.

It follows from Lemma 2.4 that a is an EP element.
(3) When x = a#, then aa#a† = a#a†a. That a is an EP element follows from [12, Theorem 2.1(xix)].
(4) When x = (a#)∗, then a(a#)∗a† = (a#)∗a†a = (a†aa#)∗. Applying involution on the equation, we get

a†aa# = (a†)∗a#a∗. This means that

a†R = a†aR = a†aa#aR ⊆ a†aa#R = (a†)∗a#a∗R ⊆ (a†)∗R = aa†(a†)∗R ⊆ aR.

Hence a is an EP element by Lemma 2.4.
(5) When x = (a†)∗, then a(a†)∗a† = (a†)∗a†a = (a†aa†)∗ = (a†)∗. It follows that a† = (a†)∗a†a∗. This gives

a†R ⊆ (a†)∗R ⊆ aR. Therefore, a is an EP element by Lemma 2.4.
(6) When x = a†, then aa†a† = a†a†a. We deduce that

a∗a† = (aa†a)∗a† = a∗aa†a† = a∗a†a†a.

Applying involution on the last equation, (a†)∗a = (a†a)∗(a†)∗a = a†a(a†)∗a. Then

a†a2 = (a†a)∗a = a∗(a†)∗a = a∗a†a(a†)∗a = a∗(a†a)∗(a†)∗a = (a†a†aa)∗a.

Post-multiplying by a#, we get a†a = (a†a†aa)∗aa#. On the other hand, a†a = (a†a)∗. We assert that a†a =
(aa#)∗a†a†aa = (aa#)∗a2a†a†. Therefore, Ra = Ra†a = R(aa#)∗a2a†a† ⊆ Ra†. By Lemma 2.4, we obtain that a is an
EP element.

Let a ∈ R#
∩ R†. Then a#a†a† = a†a†a# if and only if aa†a† = a†a†a, by Corollary 2.2. Thus we have the

following corollary which illustrates that the condition aa† = a2(a†)2 in [1, Proposition 2.3] is superfluous.

Corollary 2.6. Let a ∈ R#
∩ R†. Then a ∈ REP if and only if a#a†a† = a†a†a#.

Since a is an EP element, we get a∗ ∈ REP. Take b = a∗. If axa† = xa†a for any x ∈ R, then bb†y = b†yb,
where y = x∗. By Theorem 2.5, we have the following theorem.

Theorem 2.7. Let a ∈ R#
∩ R†. If the equation aa†x = a†xa has at least one solution in χa, then a ∈ REP.

Next, we give an example in which a ∈ REP but a∗, (a#)∗ and (a†)∗ are not the solutions of equation
axa† = xa†a.

Example 2.8. Let ring S = M2(R) of which the involution ∗ is the transposition of a matrix in S. Write A =

(
1 0
1 1

)
.

We have

A∗ =

(
1 1
0 1

)
, and A−1 =

(
1 0
−1 1

)
.

This implies that A† = A# = A−1. However,(
1 0
1 1

) (
1 1
0 1

) (
1 0
−1 1

)
=

(
1 1
1 2

) (
1 0
−1 1

)
=

(
0 1
−1 2

)
,

and (
1 1
0 1

) (
1 0
−1 1

) (
1 0
1 1

)
=

(
1 1
0 1

) (
1 0
0 1

)
=

(
1 1
0 1

)
.
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That is, AA∗A† , A∗A†A. Similarly, we have

A(A#)∗A† =

(
2 −1
1 0

)
,

(
1 −1
0 1

)
= (A#)∗A†A.

The last inequation now leads to A(A†)∗A† , (A†)∗A†A.

Let χ
′

a = {b ∈ χa|aba† = ba†a}. Denote by |χ
′

a| the number of all elements in χ
′

a. By Example 2.8, we know
that a ∈ REP cannot imply |χ

′

a| = |χa|. In the following corollary, we show that {a, a†, a#
} ⊆ χ

′

a.

Corollary 2.9. Let a ∈ R#
∩ R†. Then a ∈ REP if and only if |χ′a| ≥ 3.

Proof. From Theorem 2.5, the sufficiency is obvious. Conversely, if a is an EP element, then a† = a#. It
follows that a2a† = a2a# = a = aa†a, aa†a† = aa#a# = a#a#a = a†a†a, and aa#a† = aa#a# = a#a#a = a#a†a. Thus
{a, a†, a#

} ⊆ χ
′

a. That is, |χ
′

a| ≥ 3.

As usual, we let J(R) be the Jacobson radical of R and U(R) be the set of all invertible elements of R. In
[16, Theorem 2.2], it is shown that a ∈ REP if and only if the system of equations a = xa2, (xa)∗ = xa, and
x = ax2 has at least one solution in R. Motivated by the result, we have the following theorem.

Theorem 2.10. a ∈ REP if and only if there exists x ∈ R such that

a = xa2, (xa)∗ = xa, and x − ax2
∈ J(R) ∩ comm(a).

Proof. If a is an EP element, then a† = a#. It is easy to show that a† satisfies the above three relations.
Conversely, writing t = x − ax2, we deduce that

a = xa2 = (ax2 + t)a2 = axxa2 + ta2 = axa + ta2.

That is, a − ta2 = axa. It follows from t ∈ J(R) ∩ comm(a) that a − a2t = axa. Thus, a(1 − at) = axa. Note that
1 − at ∈ U(R) ∩ comm(a) for at ∈ J(R). So (1 − at)−1a = a(1 − at)−1. The last equation but one, post-multiplied
by (1 − at)−1, we get

a = ax(1 − at)−1a = a(ax2 + t)(1 − at)−1a = a2x2(1 − at)−1a + at(1 − at)−1a.

This gives a(1 − t(1 − at)−1a) = a2x2(1 − at)−1a. Since t(1 − at)−1a ∈ J(R), we get 1 − t(1 − at)−1a ∈ U(R). It
follows immediately that

a = a2x2(1 − at)−1a(1 − t(1 − at)−1a)−1
∈ a2R.

On the other hand, a = xa2
∈ Ra2. Thus a ∈ R#. It is easy to verify that

aa# = xa2a# = xa = (xa)∗ = (xaa#a)∗ = (xa2a#)∗ = (aa#)∗.

It yields that a† = a#. This completes the proof.

Motivated by [12, Conjecture 1] and [1, Proposition 2.2, Corollary 2.5], we have the following results
about EP elements.

Proposition 2.11. Let a ∈ R#
∩ R†. Then the following conditions are equivalent:

(1) a ∈ REP;
(2) aa† = (a†)2a2;
(3) a†a = a2(a†)2.



R. Zhao et al. / Filomat 32:13 (2018), 4537–4542 4541

Proof. If a is an EP element, then it implies that aa† = (a†)2a2. Suppose the condition (2) hold. Then we have
aa† = (a†)2a2. Post-multiplying by a#a†, we claim that

a#a† = a(a#)2a† = aa†a(a#)2a† = aa†a#a† = (a†)2a2a#a† = (a†)2aa† = (a†)2.

Indeed, pre-multiplying by a, we get a#aa† = aa#a† = a(a†)2. Finally, post-multiplying by a, we obtain

a#a = a#aa†a = a(a†)2a = (aa†)a†a = (a†)2a2a†a = (a†)2a2 = aa†.

This means that a is an EP element. We thus get

a2(a†)2 = a2(a#)2 = aa# = a#a = a†a.

The implication (3)⇒ (1) is similar to (2)⇒ (3).

Theorem 2.12. Let a ∈ R#
∩ R† and m ≥ 2 be a positive integer. Then the following conditions are equivalent:

(1) a ∈ REP;
(2) aa† = ak(a†)mam−k, for 0 ≤ k < m;
(3) aa† = (a†)kam(a†)m−k, for 1 ≤ k ≤ m.

Proof. If a is an EP element, then a† = a#. It is clear that the conditions (2) and (3) hold. Conversely,
assume that aa† = ak(a†)mam−k, for 0 ≤ k < m. Then a = aa†a = ak(a†)mam−ka = ak(a†)mam−k+1, for 0 ≤ k < m.
Post-multiplying by a#, we get

aa# = ak(a†)mam−k+1a# = ak(a†)mam−k = aa†.

Hence, a is an EP element.
Suppose that aa† = (a†)kam(a†)m−k, for 1 ≤ k ≤ m. Then we have

aR = aa†R = (a†)kam(a†)m−kR ⊆ a†R.

It follows from Lemma 2.4 that a is an EP element.

Particularly, taking m = 2, k = 0, 1 in (2) and k = 1 in (3), we have the following corollary.

Corollary 2.13. a ∈ REP if and only if a ∈ R#
∩ R† and one of the following conditions holds:

(1) aa† = a(a†)2a;
(2) aa† = a†a2a†.

Corollary 2.14. a ∈ REP if and only if a ∈ R#
∩ R† and one of the following conditions holds:

(1) a(a†)2a = a†a2a†;
(2) a† = (a†)2a;
(3) a† = a(a†)2;
(4) a = an+1(a†)n, for n ≥ 1.

Proof. If a is an EP element, then the conditions (1)-(4) are clearly satisfied. Conversely, if the condition (1)
hold, then a(a†)2a = a†a2a†. Pre-multiplying by a, we have a2(a†)2a = a(a(a†)2a) = a(a†a2a†) = a2a†. Then

a(a†)2a = (a#a2)(a†)2a = a#(a2(a†)2a) = a#(a2a†) = aa†.

From Corollary 2.13, we see that a is an EP element.
Assume that the condition (2) hold. Then we have aa† = a((a†)2a) = a(a†)2a. It follows from Corollary

2.13 that a is an EP element.
Suppose that a† = a(a†)2. Then we get a = aa†a = a2(a†)2a. Pre-multiplying by a#, we obtain

a#a = a#a2(a†)2a = a(a†)2a = a†a.

It yields that a is an EP element.
If the condition (4) hold, then we get

a#a = a#(an+1(a†)n) = a#a2(an−1(a†)n) = an(a†)n = an(a†)naa† = aa#aa† = aa†.

It follows that a is an EP element.
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[11] D. Mosić, D. S. Djordjević, New characterizations of EP, generalized normal and generalized Hermitian elements in rings, Appl.

Math. Comput 218 (2012) 6702–6710.
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