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Abstract. Let 0 < mI ≤ A ≤ m′I ≤M′I ≤ B ≤MI and p ≥ 1. Then for every positive unital linear map Φ,

Φ2p(A∇tB) ≤ ( K(h,2)

4
1
p −1

(1+Q(t)(log M′
m′ )2)

)2pΦ2p(A]tB)

and

Φ2p(A∇tB) ≤ ( K(h,2)

4
1
p −1

(1+Q(t)(log M′
m′ )2)

)2p(Φ(A)]tΦ(B))2p,

where t ∈ [0, 1], h = M
m , K(h, 2) = (h+1)2

4h , Q(t) = t2

2 ( 1−t
t )2t and Q(0) = Q(1) = 0. Moreover, we give an

improvement for the operator version of Wielandt inequality.

1. Introduction

Throughout this paper, let m,m′,M,M′ be scalars and I be the identity operator. Other capital letters
are used to denote the general elements of the C∗ algebra B(H) of all bounded linear operators acting on a
Hilbert space (H , 〈·, ·〉). We write A ≥ 0 to mean that the operator A is positive. If A − B ≥ 0 (A − B ≤ 0),
then we say that A ≥ B (A ≤ B). If A,B ∈ B(H) are two positive operators, then the weighted arithmetic and
geometric mean are respectively defined as:

A∇µB = (1 − µ)A + µB, A]µB = A
1
2 (A−

1
2 BA−

1
2 )µA

1
2 ,

where µ ∈ [0, 1]. When µ = 1
2 , we write A∇B and A]B for brevity, respectively, see [1] for more details. The

Kantorovich constant is defined by K(t, 2) =
(t+1)2

4t for t > 0.

A linear map Φ : B(H) → B(H) is called positive (strictly positive) if Φ(A) ≥ 0 (Φ(A) > 0) whenever
A ≥ 0 (A > 0), and Φ is said to be unital if Φ(I) = I.

It is well known that for any two positive operators A, B,
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A ≥ B; Ap
≥ Bp

for p > 1.

Lin [10] showed that a reverse version of the operator AM-GM inequality can be squared: for 0 < mI ≤
A,B ≤MI,

Φ2( A+B
2 ) ≤ K2(h, 2)Φ2(A]B) (1.1)

and

Φ2( A+B
2 ) ≤ K2(h, 2)(Φ(A)]Φ(B))2, (1.2)

where Φ is a unital positive linear map and K(h, 2) =
(h+1)2

4h with h = M
m .

Zhang [14] generalized (1.1) and (1.2) when p ≥ 2:

Φ2p( A+B
2 ) ≤ (K(h,2)(M2+m2))2p

16M2pm2p Φ2p(A]B) (1.3)

and

Φ2p( A+B
2 ) ≤ (K(h,2)(M2+m2))2p

16M2pm2p (Φ(A)]Φ(B))2p. (1.4)

Moradi et. al. [13] obtained a better bound than (1.1) and (1.2) as follows: for 0 < mI ≤ A ≤ m′I ≤M′I ≤
B ≤MI,

Φ2( A+B
2 ) ≤ K2(h,2)

(1+
(log M′

m′ )2

8 )2
Φ2(A]B) (1.5)

and

Φ2( A+B
2 ) ≤ K2(h,2)

(1+
(log M′

m′ )2

8 )2
(Φ(A)]Φ(B))2, (1.6)

where Φ is a unital positive linear map and K(h, 2) =
(h+1)2

4h with h = M
m .

Let 0 < mI ≤ A ≤ MI and Φ be a positive unital linear map. Lin [11] proved the following operator
inequalities:

|Φ(A−1)Φ(A) + Φ(A)Φ(A−1)| ≤ (M+m)2

2Mm I (1.7)

and

Φ(A−1)Φ(A) + Φ(A)Φ(A−1) ≤ (M+m)2

2Mm I. (1.8)

Fu [6] generalized (1.7) and (1.8) when p ≥ 1:

|Φp(A−1)Φp(A) + Φp(A)Φp(A−1)| ≤ (M+m)2p

2Mpmp I (1.9)

and

Φp(A−1)Φp(A) + Φp(A)Φp(A−1) ≤ (M+m)2p

2Mpmp I (1.10)

Bhatia and Davis [3] gave an operator version of Wielandt inequality and proved that if 0 < m ≤ A ≤M
and X, Y are two partial isometries on H whose final spaces are orthogonal to each other. Then for every
2-positive linear map Φ,
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Φ(X∗AY)Φ−1(Y∗AY)Φ(Y∗AX) ≤ ( M−m
M+m )2Φ(X∗AX).

Lin [11] conjectured that the following inequality could be true:

‖Φ(X∗AY)Φ−1(Y∗AY)Φ(Y∗AX)Φ−1(X∗AX)‖≤ ( M−m
M+m )2. (1.11)

Gumus [7] obtained a close upper bound to approximate the right side of (1.11) as follows:

‖Φ(X∗AY)Φ−1(Y∗AY)Φ(Y∗AX)Φ−1(X∗AX)‖≤ (M−m)2

2
√

Mm(M+m)
. (1.12)

Moradi et. al. [13] refined (1.12) as follows: for 0 < mI ≤ m′A−1
≤ A ≤MI and m′ > 1,

‖Φ(X∗AY)Φ−1(Y∗AY)Φ(Y∗AX)Φ−1(X∗AX)‖≤ (M−m)2

2
√

Mm(M+m)(1+
(log m′ )2

8 )
, (1.13)

where X and Y are two isometries such that X∗Y = 0, Φ is an arbitrary 2-positive linear map.

Liao et. al. [12] also gave a close upper bound to approximate the right side of (1.11) below:

‖(Φ(X∗AY)Φ−1(Y∗AY)Φ(Y∗AX))
p
2 Φ−

p
2 (X∗AX)‖≤ (M−m)p(Mα+mα)

p
α

22+
p
2 (Mm)

3
4 (M+m)

p
2

(1.14)

for 1 ≤ α ≤ 2 and p ≥ 2α.

Recently, Kórus [9] gave a scalar inequality as follows:

(1 + Q(t)(log a − log b)2)atb1−t
≤ ta + (1 − t)b, (1.15)

where t ∈ [0, 1], a, b > 0, Q(t) = t2

2 ( 1−t
t )2t and Q(0) = Q(1) = 0.

In this paper, we shall give some improvements of the inequalities mentioned above.

2. Main Results

Before we give the main results, let us present the following lemmas that will be useful later.

Lemma 2.1.( Choi inequality.) [4, p. 41] Let Φ be a unital positive linear map, then

(1) If A > 0 and −1 ≤ p ≤ 0, then Φ(A)p
≤ Φ(Ap), in particular, Φ(A)−1

≤ Φ(A−1);
(2) If A ≥ 0 and 0 ≤ p ≤ 1, then Φ(A)p

≥ Φ(Ap);
(3) If A ≥ 0 and 1 ≤ p ≤ 2, then Φ(A)p

≤ Φ(Ap).

Lemma 2.2. [2] Let Φ be a unital positive linear map and A,B be positive operators. Then for α ∈ [0, 1]

Φ(A]αB) ≤ Φ(A)]αΦ(B).

Lemma 2.3. [5] Let A,B ≥ 0. Then the following norm inequality holds:

‖AB‖≤ 1
4‖A + B‖2.
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Lemma 2.4. [4, p. 28] Let A,B ≥ 0. Then for 1 ≤ r < +∞,

‖Ar + Br
‖≤ ‖(A + B)r

‖.

Lemma 2.5. Let A,B ∈ B(H) be two positive operators such 1 < m < M with the property mA ≤ B ≤MA.
Then

(1 + Q(t)(log m)2)A]tB ≤ A∇tB

for t ∈ [0, 1] and Q(t) is from (1.15).

Proof. From the inequality (1.15), we know that for each a, b > 0 and t ∈ [0, 1],

(1 + Q(t)(log a − log b)2)atb1−t
≤ ta + (1 − t)b.

Note that if 0 < mb ≤ a ≤Mb with 1 < m < M, then by the monotonicity of logarithm function we obtain

(1 + Q(t)(log m)2)atb1−t
≤ ta + (1 − t)b.

Taking b = 1 in the above inequality, we have

(1 + Q(t)(log m)2)at
≤ ta + (1 − t).

As mI ≤ A−
1
2 BA−

1
2 ≤ MI, on choosing a with the positive operator A−

1
2 BA−

1
2 in the above inequality, we

obtain

(1 + Q(t)(log m)2)(A−
1
2 BA−

1
2 )t
≤ t(A−

1
2 BA−

1
2 ) + (1 − t)I.

Multiplying both side by A
1
2 yields the desired result.

Lemma 2.6. Let 0 < mI ≤ A ≤ m′I ≤M′I ≤ B ≤MI and t ∈ [0, 1]. Then

A∇tB + Mm(1 + Q(t)(log M′
m′ )

2)(A]tB)−1
≤ (M + m)I,

where Q(t) is from (1.15).

Proof. It is easy to see that

(1 − t)(MI − A)(mI − A)A−1
≤ 0,

which is equivalent to

(1 − t)A + (1 − t)MmA−1
≤ (1 − t)(M + m)I. (2.1)

Similarly, we have
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tB + tMmB−1
≤ t(M + m)I. (2.2)

Summing up (2.1) and (2.2), we have

A∇tB + MmA−1
∇tB−1

≤ (M + m)I.

By (A]tB)−1 = A−1]tB−1 and Lemma 2.5, we have

A∇tB + Mm(1 + Q(t)(log
M′

m′
)2)(A]tB)−1 = A∇tB + Mm(1 + Q(t)(log

M′

m′
)2)(A−1]tB−1)

≤ A∇tB + MmA−1
∇tB−1

≤ (M + m)I,

completing the proof.

Theorem 2.7. Let 0 < mI ≤ A ≤ m′I ≤ M′I ≤ B ≤ MI and p ≥ 1. Then for every positive unital linear
map Φ,

Φ2p(A∇tB) ≤ ( K(h,2)

4
1
p −1(1+Q(t)(log M′

m′ )2)
)2pΦ2p(A]tB) (2.3)

and

Φ2p(A∇tB) ≤ ( K(h,2)

4
1
p −1(1+Q(t)(log M′

m′ )2)
)2p(Φ(A)]tΦ(B))2p, (2.4)

where t ∈ [0, 1], h = M
m and Q(t) is from (1.15).

Proof. By computation, we can obtain

‖Φp(A∇tB)Mpmp(1 + Q(t)(log M′
m′ )

2)pΦ−p(A]tB)‖

≤
1
4‖Φ

p(A∇tB) + Mpmp(1 + Q(t)(log M′
m′ )

2)pΦ−p(A]tB)‖2 (by Lemma 2.3)

≤
1
4‖Φ(A∇tB) + Mm(1 + Q(t)(log M′

m′ )
2)Φ−1(A]tB)‖2p (by Lemma 2.4)

≤
1
4‖Φ(A∇tB) + Mm(1 + Q(t)(log M′

m′ )
2)Φ((A]tB)−1)‖2p (by Lemma 2.1)

≤
1
4 (M + m)2p. (by Lemma 2.6)

Thus we obtain

‖Φp(A∇tB)Φ−p(A]tB)‖≤ ( K(h,2)

4
1
p −1(1+Q(t)(log M′

m′ )2)
)p,

which is equivalent to (2.3).

Next we prove (2.4). Compute

‖Φp(A∇tB)Mpmp(1 + Q(t)(log M′
m′ )

2)p(Φ(A)]tΦ(B))−p
‖

≤
1
4‖Φ

p(A∇tB) + Mpmp(1 + Q(t)(log M′
m′ )

2)p(Φ(A)]tΦ(B))−p
‖

2

≤
1
4‖Φ(A∇tB) + Mm(1 + Q(t)(log M′

m′ )
2)(Φ(A)]tΦ(B))−1

‖
2p

≤
1
4‖Φ(A∇tB) + Mm(1 + Q(t)(log M′

m′ )
2)(Φ(A]tB))−1

‖
2p (by Lemma 2.2)

≤
1
4‖Φ(A∇tB) + Mm(1 + Q(t)(log M′

m′ )
2)Φ((A]tB)−1)‖2p

≤
1
4 (M + m)2p.

Thus we obtain
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‖Φp(A∇tB)(Φ(A)]tΦ(B))−p
‖≤ ( K(h,2)

4
1
p −1(1+Q(t)(log M′

m′ )2)
)p,

which completes the proof.

Remark 2.8. Letting p = 1 and t = 1
2 in Theorem 2.7, we thus get (1.5) and (1.6) by (2.3) and (2.4),

respectively.

Lemma 2.9. [8] For any bounded operator X,

|X| ≤ tI⇔ ‖X‖≤ t⇔
[

tI X
X∗ tI

]
≥ 0 (t ≥ 0)

Theorem 2.10. Let 0 < mI ≤ A ≤ m′I ≤ M′I ≤ B ≤ MI and p ≥ 1. Then for every positive unital linear
map Φ,

|Φp(A∇tB)Φp((A]tB)−1) + Φp((A]tB)−1)Φp(A∇tB)| ≤ 2( K(h,2)

4
1
p −1(1+Q(t)(log M′

m′ )2)
)pI (2.5)

and

Φp(A∇tB)Φp((A]tB)−1) + Φp((A]tB)−1)Φp(A∇tB) ≤ 2( K(h,2)

4
1
p −1(1+Q(t)(log M′

m′ )2)
)pI, (2.6)

where t ∈ [0, 1], h = M
m and Q(t) is from (1.15).

Proof. By computation, one can have

‖Φp(A∇tB)Mpmp(1 + Q(t)(log M′
m′ )

2)pΦp((A]tB)−1)‖

≤
1
4‖Φ

p(A∇tB) + Mpmp(1 + Q(t)(log M′
m′ )

2)pΦp((A]tB)−1)‖2 (by Lemma 2.3)

≤
1
4‖Φ(A∇tB) + Mm(1 + Q(t)(log M′

m′ )
2)Φ((A]tB)−1)‖2p (by Lemma 2.4)

≤
1
4 (M + m)2p, (by Lemma 2.6)

which is equivalent to

‖Φp(A∇tB)Φp((A]tB)−1)‖≤ ( K(h,2)

4
1
p −1(1+Q(t)(log M′

m′ )2)
)p. (2.7)

By (2.7) and Lemma 2.9 we obtain
( K(h,2)

4
1
p −1(1+Q(t)(log M′

m′ )2)
)pI Φp(A∇tB)Φp((A]tB)−1)

Φp((A]tB)−1)Φp(A∇tB) ( K(h,2)

4
1
p −1(1+Q(t)(log M′

m′ )2)
)pI

 ≥ 0

and 
( K(h,2)

4
1
p −1(1+Q(t)(log M′

m′ )2)
)pI Φp((A]tB)−1)Φp(A∇tB)

Φp(A∇tB)Φp((A]tB)−1) ( K(h,2)

4
1
p −1(1+Q(t)(log M′

m′ )2)
)pI

 ≥ 0.

Summing up the two operator matrices above, we get
2( K(h,2)

4
1
p −1(1+Q(t)(log M′

m′ )2)
)pI X

X∗ 2( K(h,2)

4
1
p −1(1+Q(t)(log M′

m′ )2)
)pI

 ≥ 0,



C. Yang, F. Lu / Filomat 32:12 (2018), 4333–4340 4339

where we denote that X = Φp(A∇tB)Φp((A]tB)−1) + Φp((A]tB)−1)Φp(A∇tB). It is easy to see that X is self-
adjoint. Utilizing Lemma 2.9 again, we thus obtain (2.5) and (2.6).

Remark 2.11. Putting t = 0 in Theorem 2.10, we obtain (1.9) and (1.10) by (2.5) and (2.6), respectively.

Next, we give improvements of (1.3) and (1.4).

Theorem 2.12. Let 0 < mI ≤ A ≤ m′I ≤ M′I ≤ B ≤ MI and p ≥ 2. Then for every positive unital linear
map Φ,

Φ2p(A∇tB) (K(h,2)(M2+m2))2p

16M2pm2p(1+Q(t)(log M′
m′ )2)2p Φ2p(A]tB) (2.8)

and

Φ2p(A∇tB) ≤ (K(h,2)(M2+m2))2p

16M2pm2p(1+Q(t)(log M′
m′ )2)2p (Φ(A)]tΦ(B))2p, (2.9)

where t ∈ [0, 1], h = M
m and Q(t) is from (1.15).

Proof. It is easy to to verify that

mI ≤ Φ(A∇tB) ≤MI.

Thus we obtain

m2I ≤ Φ2(A∇tB) ≤M2I.

Therefore
(M2I −Φ2(A∇tB))(m2

−Φ2(A∇tB))Φ−2(A∇tB) ≤ 0.

That is equivalent to

M2m2Φ−2(A∇tB) + Φ2(A∇tB) ≤ (M2 + m2)I. (2.10)

Taking p = 1 in (2.3), we have

Φ2(A∇tB) ≤ ( K(h,2)
(1+Q(t)(log M′

m′ )2)
)2Φ2(A]tB),

which is equivalent to

Φ−2(A]tB) ≤ ( K(h,2)
(1+Q(t)(log M′

m′ )2)
)2Φ−2(A∇tB). (2.11)

Thus we compute

‖Φp(A∇tB)MpmpΦ−p(A]tB)‖

≤
1
4‖

K
p
2 (h,2)

(1+Q(t)(log M′
m′ )2)

p
2
Φp(A∇tB) +

(1+Q(t)(log M′
m′ )2)

p
2 Mpmp

K
p
2 (h,2)

Φ−p(A]tB)‖2

≤
1
4‖

K(h,2)
(1+Q(t)(log M′

m′ )2)
Φ2(A∇tB) +

(1+Q(t)(log M′
m′ )2)M2m2

K(h,2) Φ−2(A]tB)‖p

≤
1
4‖

K(h,2)
(1+Q(t)(log M′

m′ )2)
Φ2(A∇tB) +

K(h,2)M2m2

(1+Q(t)(log M′
m′ )2)

Φ−2(A∇tB)‖p (by (2.11))

= 1
4‖

K(h,2)
(1+Q(t)(log M′

m′ )2)
(Φ2(A∇tB) + M2m2Φ−2(A∇tB))‖p

≤
1
4

(K(h,2)(M2+m2))p

(1+Q(t)(log M′
m′ )2)p , (by (2.10))
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which is equivalent to (2.8). The proof of (2.9) is similar, we omit the details.

Theorem 2.13. Let 0 < mI ≤ m′A−1
≤ A ≤ MI and m′ > 1 and let X and Y be two isometries such that

X∗Y = 0. For every 2-positive linear map Φ, we have

‖(Φ(X∗AY)Φ−1(Y∗AY)Φ(Y∗AX))
p
2 Φ−

p
2 (X∗AX)‖≤ (M−m)p(Mα+mα)

p
α

22+
p
2 (Mm)

3
4 (M+m)

p
2 (1+

(log m′ )2

8 )
p
2

(2.12)

for 1 ≤ α ≤ 2 and p ≥ 2α.

Proof. By (1.13), we obtain

(Φ(X∗AY)Φ−1(Y∗AY)Φ(Y∗AX))2
≤ ( (M−m)2

2
√

Mm(M+m)(1+
(log m′ )2

8 )
)2Φ2(X∗AX),

By L-H inequality [4, p. 112], we have

(Φ(X∗AY)Φ−1(Y∗AY)Φ(Y∗AX))α ≤ ( (M−m)2

2
√

Mm(M+m)(1+
(log m′ )2

8 )
)αΦα(X∗AX).

Thus we get

‖
(M−m)p

2
p
2 (M+m)

p
2 (1+

(log m′ )2

8 )
p
2

M
p
4 m

p
4 (Φ(X∗AY)Φ−1(Y∗AY)Φ(Y∗AX))

p
2 Φ−

p
2 (X∗AX)‖

≤
1
4‖(Φ(X∗AY)Φ−1(Y∗AY)Φ(Y∗AX))

p
2 + ( (M−m)2

2(M+m)(1+
(log m′ )2

8 )

√
MmΦ−1(X∗AX))

p
2 ‖

2

≤
1
4‖(Φ(X∗AY)Φ−1(Y∗AY)Φ(Y∗AX))α +

(M−m)2α

2α(M+m)α(1+
(log m′ )2

8 )α
M

α
2 m

α
2 Φ−α(X∗AX))‖

p
α

≤
1
4‖(

(M−m)2

2
√

Mm(M+m)(1+
(log m′ )2

8 )
)αΦα(X∗AX) +

(M−m)2α

2α(M+m)α(1+
(log m′ )2

8 )α
M

α
2 m

α
2 Φ−α(X∗AX))‖

p
α

=
(M−m)2p

22+pM
p
2 m

p
2 (M+m)p(1+

(log m′ )2

8 )p
‖Φα(X∗AX) + MαmαΦ−α(X∗AX))‖

p
α

≤
(M−m)2p(Mα+mα)

p
α

22+pM
p
2 m

p
2 (M+m)p(1+

(log m′ )2

8 )p
,

which completes the proof.

Based on (2.12), we thus get an improvement of (1.14).
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