Improving some Operator Inequalities for Positive Linear Maps

Chaojun Yang ${ }^{\text {a }}$, Fangyan Lu ${ }^{\text {a,* }}$
${ }^{a}$ Department of Mathematics, Soochow University, Suzhou 215006, P. R. China

Abstract

Let $0<m I \leq A \leq m^{\prime} I \leq M^{\prime} I \leq B \leq M I$ and $p \geq 1$. Then for every positive unital linear map Φ, $$
\Phi^{2 p}\left(A \nabla_{t} B\right) \leq\left(\frac{K(h, 2)}{4^{\frac{1}{p}-1}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)}\right)^{2 p} \Phi^{2 p}\left(A \sharp_{t} B\right)
$$ and $$
\Phi^{2 p}\left(A \nabla_{t} B\right) \leq\left(\frac{K(h, 2)}{4^{\frac{1}{p}-1}\left(1+Q(t)\left(\log \frac{\mu^{\prime}}{m^{\prime}}\right)^{2}\right)}\right)^{2 p}\left(\Phi(A) \#_{t} \Phi(B)\right)^{2 p}
$$ where $t \in[0,1], h=\frac{M}{m}, K(h, 2)=\frac{(h+1)^{2}}{4 h}, Q(t)=\frac{t^{2}}{2}\left(\frac{1-t}{t}\right)^{2 t}$ and $Q(0)=Q(1)=0$. Moreover, we give an improvement for the operator version of Wielandt inequality.

1. Introduction

Throughout this paper, let $m, m^{\prime}, M, M^{\prime}$ be scalars and I be the identity operator. Other capital letters are used to denote the general elements of the C^{*} algebra $B(\mathcal{H})$ of all bounded linear operators acting on a Hilbert space $(\mathcal{H},\langle\cdot, \cdot\rangle)$. We write $A \geq 0$ to mean that the operator A is positive. If $A-B \geq 0(A-B \leq 0)$, then we say that $A \geq B(A \leq B)$. If $A, B \in B(\mathcal{H})$ are two positive operators, then the weighted arithmetic and geometric mean are respectively defined as:

$$
A \nabla_{\mu} B=(1-\mu) A+\mu B, \quad A \not H_{\mu} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\mu} A^{\frac{1}{2}},
$$

where $\mu \in[0,1]$. When $\mu=\frac{1}{2}$, we write $A \nabla B$ and $A \sharp B$ for brevity, respectively, see [1] for more details. The Kantorovich constant is defined by $K(t, 2)=\frac{(t+1)^{2}}{4 t}$ for $t>0$.

A linear map $\Phi: B(\mathcal{H}) \rightarrow B(\mathcal{H})$ is called positive (strictly positive) if $\Phi(A) \geq 0(\Phi(A)>0)$ whenever $A \geq 0(A>0)$, and Φ is said to be unital if $\Phi(I)=I$.

It is well known that for any two positive operators A, B,

[^0]$$
A \geq B \nRightarrow A^{p} \geq B^{p}
$$
for $p>1$.
Lin [10] showed that a reverse version of the operator AM-GM inequality can be squared: for $0<m I \leq$ $A, B \leq M I$,
\[

$$
\begin{equation*}
\Phi^{2}\left(\frac{A+B}{2}\right) \leq K^{2}(h, 2) \Phi^{2}(A \sharp B) \tag{1.1}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\Phi^{2}\left(\frac{A+B}{2}\right) \leq K^{2}(h, 2)(\Phi(A) \sharp \Phi(B))^{2} \tag{1.2}
\end{equation*}
$$

where Φ is a unital positive linear map and $K(h, 2)=\frac{(h+1)^{2}}{4 h}$ with $h=\frac{M}{m}$.
Zhang [14] generalized (1.1) and (1.2) when $p \geq 2$:

$$
\begin{equation*}
\Phi^{2 p}\left(\frac{A+B}{2}\right) \leq \frac{\left(K(h, 2)\left(M^{2}+m^{2}\right)\right)^{2 p}}{16 M^{2 p} m^{2 p}} \Phi^{2 p}(A \sharp B) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi^{2 p}\left(\frac{A+B}{2}\right) \leq \frac{\left(K(h, 2)\left(M^{2}+m^{2}\right)\right)^{2 p}}{16 M^{2 p} m^{2 p}}(\Phi(A) \sharp \Phi(B))^{2 p} . \tag{1.4}
\end{equation*}
$$

Moradi et. al. [13] obtained a better bound than (1.1) and (1.2) as follows: for $0<m I \leq A \leq m^{\prime} I \leq M^{\prime} I \leq$ $B \leq M I$,

$$
\begin{equation*}
\Phi^{2}\left(\frac{A+B}{2}\right) \leq \frac{K^{2}(h, 2)}{\left(1+\frac{\left(\operatorname{cog} \frac{M^{\prime}}{M^{\prime}}\right)^{2}}{8}\right)^{2}} \Phi^{2}(A \sharp B) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi^{2}\left(\frac{A+B}{2}\right) \leq \frac{K^{2}(h, 2)}{\left(1+\frac{\left(\log \frac{\left.M^{\prime}\right)^{\prime}}{m^{\prime}}\right.}{8}\right)^{2}}(\Phi(A) \sharp \Phi(B))^{2}, \tag{1.6}
\end{equation*}
$$

where Φ is a unital positive linear map and $K(h, 2)=\frac{(h+1)^{2}}{4 h}$ with $h=\frac{M}{m}$.
Let $0<m I \leq A \leq M I$ and Φ be a positive unital linear map. Lin [11] proved the following operator inequalities:

$$
\begin{equation*}
\left|\Phi\left(A^{-1}\right) \Phi(A)+\Phi(A) \Phi\left(A^{-1}\right)\right| \leq \frac{(M+m)^{2}}{2 M m} I \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi\left(A^{-1}\right) \Phi(A)+\Phi(A) \Phi\left(A^{-1}\right) \leq \frac{(M+m)^{2}}{2 M m} I \tag{1.8}
\end{equation*}
$$

Fu [6] generalized (1.7) and (1.8) when $p \geq 1$:

$$
\begin{equation*}
\left|\Phi^{p}\left(A^{-1}\right) \Phi^{p}(A)+\Phi^{p}(A) \Phi^{p}\left(A^{-1}\right)\right| \leq \frac{(M+m)^{2 p}}{2 M^{p} m^{p}} I \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi^{p}\left(A^{-1}\right) \Phi^{p}(A)+\Phi^{p}(A) \Phi^{p}\left(A^{-1}\right) \leq \frac{(M+m)^{2 p}}{2 M^{p} m^{p}} I \tag{1.10}
\end{equation*}
$$

Bhatia and Davis [3] gave an operator version of Wielandt inequality and proved that if $0<m \leq A \leq M$ and X, Y are two partial isometries on \mathcal{H} whose final spaces are orthogonal to each other. Then for every 2-positive linear map Φ,

$$
\Phi\left(X^{*} A Y\right) \Phi^{-1}\left(Y^{*} A Y\right) \Phi\left(Y^{*} A X\right) \leq\left(\frac{M-m}{M+m}\right)^{2} \Phi\left(X^{*} A X\right)
$$

Lin [11] conjectured that the following inequality could be true:

$$
\begin{equation*}
\left\|\Phi\left(X^{*} A Y\right) \Phi^{-1}\left(Y^{*} A Y\right) \Phi\left(Y^{*} A X\right) \Phi^{-1}\left(X^{*} A X\right)\right\| \leq\left(\frac{M-m}{M+m}\right)^{2} \tag{1.11}
\end{equation*}
$$

Gumus [7] obtained a close upper bound to approximate the right side of (1.11) as follows:

$$
\begin{equation*}
\left\|\Phi\left(X^{*} A Y\right) \Phi^{-1}\left(Y^{*} A Y\right) \Phi\left(Y^{*} A X\right) \Phi^{-1}\left(X^{*} A X\right)\right\| \leq \frac{(M-m)^{2}}{2 \sqrt{M m}(M+m)} \tag{1.12}
\end{equation*}
$$

Moradi et. al. [13] refined (1.12) as follows: for $0<m I \leq m^{\prime} A^{-1} \leq A \leq M I$ and $m^{\prime}>1$,

$$
\begin{equation*}
\left\|\Phi\left(X^{*} A Y\right) \Phi^{-1}\left(Y^{*} A Y\right) \Phi\left(Y^{*} A X\right) \Phi^{-1}\left(X^{*} A X\right)\right\| \leq \frac{(M-m)^{2}}{2 \sqrt{M m}(M+m)\left(1+\frac{\left.\log m^{\prime}\right)^{2}}{8}\right)^{2}}, \tag{1.13}
\end{equation*}
$$

where X and Y are two isometries such that $X^{*} Y=0, \Phi$ is an arbitrary 2-positive linear map.
Liao et. al. [12] also gave a close upper bound to approximate the right side of (1.11) below:

$$
\begin{equation*}
\left\|\left(\Phi\left(X^{*} A Y\right) \Phi^{-1}\left(Y^{*} A Y\right) \Phi\left(Y^{*} A X\right)\right)^{\frac{p}{2}} \Phi^{-\frac{p}{2}}\left(X^{*} A X\right)\right\| \leq \frac{(M-m)^{p}\left(M^{\alpha}+m^{\alpha}\right)^{\frac{p}{\alpha}}}{2^{2+\frac{p}{2}}(M m)^{\frac{3}{4}}(M+m)^{\frac{p}{2}}} \tag{1.14}
\end{equation*}
$$

for $1 \leq \alpha \leq 2$ and $p \geq 2 \alpha$.
Recently, Kórus [9] gave a scalar inequality as follows:

$$
\begin{equation*}
\left(1+Q(t)(\log a-\log b)^{2}\right) a^{t} b^{1-t} \leq t a+(1-t) b, \tag{1.15}
\end{equation*}
$$

where $t \in[0,1], a, b>0, Q(t)=\frac{t^{2}}{2}\left(\frac{1-t}{t}\right)^{2 t}$ and $Q(0)=Q(1)=0$.
In this paper, we shall give some improvements of the inequalities mentioned above.

2. Main Results

Before we give the main results, let us present the following lemmas that will be useful later.
Lemma 2.1.(Choi inequality.) [4, p. 41] Let Φ be a unital positive linear map, then
(1) If $A>0$ and $-1 \leq p \leq 0$, then $\Phi(A)^{p} \leq \Phi\left(A^{p}\right)$, in particular, $\Phi(A)^{-1} \leq \Phi\left(A^{-1}\right)$;
(2) If $A \geq 0$ and $0 \leq p \leq 1$, then $\Phi(A)^{p} \geq \Phi\left(A^{p}\right)$;
(3) If $A \geq 0$ and $1 \leq p \leq 2$, then $\Phi(A)^{p} \leq \Phi\left(A^{p}\right)$.

Lemma 2.2. [2] Let Φ be a unital positive linear map and A, B be positive operators. Then for $\alpha \in[0,1]$

$$
\Phi\left(A \sharp_{\alpha} B\right) \leq \Phi(A) \nVdash_{\alpha} \Phi(B) .
$$

Lemma 2.3. [5] Let $A, B \geq 0$. Then the following norm inequality holds:

$$
\|A B\| \leq \frac{1}{4}\|A+B\|^{2}
$$

Lemma 2.4. [4, p. 28] Let $A, B \geq 0$. Then for $1 \leq r<+\infty$,

$$
\left\|A^{r}+B^{r}\right\| \leq\left\|(A+B)^{r}\right\| .
$$

Lemma 2.5. Let $A, B \in B(\mathcal{H})$ be two positive operators such $1<m<M$ with the property $m A \leq B \leq M A$. Then

$$
\left(1+Q(t)(\log m)^{2}\right) A \sharp_{t} B \leq A \nabla_{t} B
$$

for $t \in[0,1]$ and $Q(t)$ is from (1.15).
Proof. From the inequality (1.15), we know that for each $a, b>0$ and $t \in[0,1]$,

$$
\left(1+Q(t)(\log a-\log b)^{2}\right) a^{t} b^{1-t} \leq t a+(1-t) b
$$

Note that if $0<m b \leq a \leq M b$ with $1<m<M$, then by the monotonicity of logarithm function we obtain

$$
\left(1+Q(t)(\log m)^{2}\right) a^{t} b^{1-t} \leq t a+(1-t) b
$$

Taking $b=1$ in the above inequality, we have

$$
\left(1+Q(t)(\log m)^{2}\right) a^{t} \leq t a+(1-t)
$$

As $m I \leq A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \leq M I$, on choosing a with the positive operator $A^{-\frac{1}{2}} B A^{-\frac{1}{2}}$ in the above inequality, we obtain

$$
\left(1+Q(t)(\log m)^{2}\right)\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{t} \leq t\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)+(1-t) I
$$

Multiplying both side by $A^{\frac{1}{2}}$ yields the desired result.
Lemma 2.6. Let $0<m I \leq A \leq m^{\prime} I \leq M^{\prime} I \leq B \leq M I$ and $t \in[0,1]$. Then

$$
A \nabla_{t} B+M m\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)\left(A \sharp_{t} B\right)^{-1} \leq(M+m) I
$$

where $Q(t)$ is from (1.15).
Proof. It is easy to see that

$$
(1-t)(M I-A)(m I-A) A^{-1} \leq 0
$$

which is equivalent to

$$
\begin{equation*}
(1-t) A+(1-t) M m A^{-1} \leq(1-t)(M+m) I . \tag{2.1}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
t B+t M m B^{-1} \leq t(M+m) I \tag{2.2}
\end{equation*}
$$

Summing up (2.1) and (2.2), we have

$$
A \nabla_{t} B+M m A^{-1} \nabla_{t} B^{-1} \leq(M+m) I
$$

By $\left(A \not \sharp_{t} B\right)^{-1}=A^{-1} \sharp_{t} B^{-1}$ and Lemma 2.5, we have

$$
\begin{aligned}
A \nabla_{t} B+M m\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)\left(A \not \sharp_{t} B\right)^{-1} & =A \nabla_{t} B+M m\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)\left(A^{-1} \not \sharp_{t} B^{-1}\right) \\
& \leq A \nabla_{t} B+M m A^{-1} \nabla_{t} B^{-1} \\
& \leq(M+m) I,
\end{aligned}
$$

completing the proof.
Theorem 2.7. Let $0<m I \leq A \leq m^{\prime} I \leq M^{\prime} I \leq B \leq M I$ and $p \geq 1$. Then for every positive unital linear $\operatorname{map} \Phi$,

$$
\begin{equation*}
\Phi^{2 p}\left(A \nabla_{t} B\right) \leq\left(\frac{K(h, 2)}{4^{\frac{1}{p}-1}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)}\right)^{2 p} \Phi^{2 p}\left(A \not \sharp_{t} B\right) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi^{2 p}\left(A \nabla_{t} B\right) \leq\left(\frac{K(h, 2)}{4^{\frac{1}{p}-1}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)}\right)^{2 p}\left(\Phi(A) \#_{t} \Phi(B)\right)^{2 p} \tag{2.4}
\end{equation*}
$$

where $t \in[0,1], h=\frac{M}{m}$ and $Q(t)$ is from (1.15).
Proof. By computation, we can obtain

$$
\begin{aligned}
& \left\|\Phi^{p}\left(A \nabla_{t} B\right) M^{p} m^{p}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)^{p} \Phi^{-p}\left(A \sharp_{t} B\right)\right\| \\
& \leq \frac{1}{4}\left\|\Phi^{p}\left(A \nabla_{t} B\right)+M^{p} m^{p}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)^{p} \Phi^{-p}\left(A \sharp_{t} B\right)\right\|^{2} \quad \text { (by Lemma 2.3) } \\
& \leq \frac{1}{4}\left\|\Phi\left(A \nabla_{t} B\right)+M m\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right) \Phi^{-1}\left(A \sharp_{t} B\right)\right\|^{2 p} \quad(\text { by Lemma 2.4) } \\
& \leq \frac{1}{4}\left\|\Phi\left(A \nabla_{t} B\right)+M m\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right) \Phi\left(\left(A \sharp_{t} B\right)^{-1}\right)\right\|^{2 p} \quad \text { (by Lemma 2.1) } \\
& \leq \frac{1}{4}(M+m)^{2 p} . \quad(\text { by Lemma 2.6) }
\end{aligned}
$$

Thus we obtain

$$
\left\|\Phi^{p}\left(A \nabla_{t} B\right) \Phi^{-p}\left(A \sharp_{t} B\right)\right\| \leq\left(\frac{K(h, 2)}{4^{\frac{1}{p}-1}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)}\right)^{p},
$$

which is equivalent to (2.3).
Next we prove (2.4). Compute

$$
\begin{aligned}
& \left\|\Phi^{p}\left(A \nabla_{t} B\right) M^{p} m^{p}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)^{p}\left(\Phi(A) \sharp_{t} \Phi(B)\right)^{-p}\right\| \\
& \leq \frac{1}{4}\left\|\Phi^{p}\left(A \nabla_{t} B\right)+M^{p} m^{p}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)^{p}\left(\Phi(A) \sharp_{t} \Phi(B)\right)^{-p}\right\|^{2} \\
& \leq \frac{1}{4}\left\|\Phi\left(A \nabla_{t} B\right)+M m\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)\left(\Phi(A) \sharp_{t} \Phi(B)\right)^{-1}\right\|^{2 p} \\
& \leq \frac{1}{4}\left\|\Phi\left(A \nabla_{t} B\right)+M m\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)\left(\Phi\left(A \sharp_{t} B\right)\right)^{-1}\right\|^{2 p} \quad \text { (by Lemma 2.2) } \\
& \leq \frac{1}{4}\left\|\Phi\left(A \nabla_{t} B\right)+M m\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right) \Phi\left(\left(A \sharp_{t} B\right)^{-1}\right)\right\|^{2 p} \\
& \leq \frac{1}{4}(M+m)^{2 p} .
\end{aligned}
$$

Thus we obtain

$$
\left\|\Phi^{p}\left(A \nabla_{t} B\right)\left(\Phi(A) \#_{t} \Phi(B)\right)^{-p}\right\| \leq\left(\frac{K(h, 2)}{4^{\frac{1}{p}-1}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)}\right)^{p},
$$

which completes the proof.
Remark 2.8. Letting $p=1$ and $t=\frac{1}{2}$ in Theorem 2.7, we thus get (1.5) and (1.6) by (2.3) and (2.4), respectively.

Lemma 2.9. [8] For any bounded operator X,

$$
|X| \leq t I \Leftrightarrow\|X\| \leq t \Leftrightarrow\left[\begin{array}{cc}
t I & X \\
X^{*} & t I
\end{array}\right] \geq 0 \quad(t \geq 0)
$$

Theorem 2.10. Let $0<m I \leq A \leq m^{\prime} I \leq M^{\prime} I \leq B \leq M I$ and $p \geq 1$. Then for every positive unital linear $\operatorname{map} \Phi$,

$$
\begin{equation*}
\left|\Phi^{p}\left(A \nabla_{t} B\right) \Phi^{p}\left(\left(A \sharp_{t} B\right)^{-1}\right)+\Phi^{p}\left(\left(A \sharp_{t} B\right)^{-1}\right) \Phi^{p}\left(A \nabla_{t} B\right)\right| \leq 2\left(\frac{K(h, 2)}{4^{\frac{1}{p}-1}\left(1+Q(t)\left(\log \frac{\mu^{\prime}}{m^{\prime}}\right)^{2}\right)}\right)^{p} I \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi^{p}\left(A \nabla_{t} B\right) \Phi^{p}\left(\left(A \not \sharp_{t} B\right)^{-1}\right)+\Phi^{p}\left(\left(A \not \sharp_{t} B\right)^{-1}\right) \Phi^{p}\left(A \nabla_{t} B\right) \leq 2\left(\frac{K(h, 2)}{4^{\frac{1}{p}-1}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)}\right)^{p} I, \tag{2.6}
\end{equation*}
$$

where $t \in[0,1], h=\frac{M}{m}$ and $Q(t)$ is from (1.15).
Proof. By computation, one can have

$$
\begin{aligned}
& \left\|\Phi^{p}\left(A \nabla_{t} B\right) M^{p} m^{p}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)^{p} \Phi^{p}\left(\left(A \sharp_{t} B\right)^{-1}\right)\right\| \\
& \leq \frac{1}{4}\left\|\Phi^{p}\left(A \nabla_{t} B\right)+M^{p} m^{p}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)^{p} \Phi^{p}\left(\left(A \sharp_{t} B\right)^{-1}\right)\right\|^{2} \quad \text { (by Lemma 2.3) } \\
& \leq \frac{1}{4}\left\|\Phi\left(A \nabla_{t} B\right)+M m\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right) \Phi\left(\left(A \sharp_{t} B\right)^{-1}\right)\right\|^{2 p} \quad \text { (by Lemma 2.4) } \\
& \leq \frac{1}{4}(M+m)^{2 p}, \quad(\text { by Lemma 2.6) }
\end{aligned}
$$

which is equivalent to

$$
\begin{equation*}
\left\|\Phi^{p}\left(A \nabla_{t} B\right) \Phi^{p}\left(\left(A \not \sharp_{t} B\right)^{-1}\right)\right\| \leq\left(\frac{K(h, 2)}{4^{\frac{1}{p}-1}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right.}\right)^{p} . \tag{2.7}
\end{equation*}
$$

By (2.7) and Lemma 2.9 we obtain

$$
\left[\begin{array}{cc}
\left(\frac{K(h, 2)}{4^{\frac{1}{p}-1}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right.}\right)^{p} I & \Phi^{p}\left(A \nabla_{t} B\right) \Phi^{p}\left(\left(A \sharp_{t} B\right)^{-1}\right) \\
\Phi^{p}\left(\left(A \sharp_{t} B\right)^{-1}\right) \Phi^{p}\left(A \nabla_{t} B\right) & \left(\frac{K(h, 2)}{4^{\frac{1}{p}-1}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)}\right)^{p} I
\end{array}\right] \geq 0
$$

and

$$
\left[\begin{array}{cc}
\left(\frac{K(h, 2)}{4^{\frac{1}{p}-1}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)}\right)^{p} I & \Phi^{p}\left(\left(A \not \sharp_{t} B\right)^{-1}\right) \Phi^{p}\left(A \nabla_{t} B\right) \\
\Phi^{p}\left(A \nabla_{t} B\right) \Phi^{p}\left(\left(\left(\sharp_{t} B\right)^{-1}\right)\right. & \left(\frac{K(t, 2)}{4^{\frac{1}{p}-1}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)}\right)^{p} I
\end{array}\right] \geq 0 .
$$

Summing up the two operator matrices above, we get

$$
\left[\begin{array}{cc}
2\left(\frac{K(h, 2)}{4^{\frac{1}{p}-1}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)}\right)^{p} I & X \\
X^{*} & 2\left(\frac{K(h, 2)}{4^{\frac{1}{p}-1}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)}\right)^{p} I
\end{array}\right] \geq 0,
$$

where we denote that $X=\Phi^{p}\left(A \nabla_{t} B\right) \Phi^{p}\left(\left(A \sharp_{t} B\right)^{-1}\right)+\Phi^{p}\left(\left(A \not \sharp_{t} B\right)^{-1}\right) \Phi^{p}\left(A \nabla_{t} B\right)$. It is easy to see that X is selfadjoint. Utilizing Lemma 2.9 again, we thus obtain (2.5) and (2.6).

Remark 2.11. Putting $t=0$ in Theorem 2.10, we obtain (1.9) and (1.10) by (2.5) and (2.6), respectively.
Next, we give improvements of (1.3) and (1.4).
Theorem 2.12. Let $0<m I \leq A \leq m^{\prime} I \leq M^{\prime} I \leq B \leq M I$ and $p \geq 2$. Then for every positive unital linear $\operatorname{map} \Phi$,

$$
\begin{equation*}
\Phi^{2 p}\left(A \nabla_{t} B\right) \frac{\left(K(h, 2)\left(M^{2}+m^{2}\right)\right)^{2 p}}{16 M^{2 p} m^{2 p p}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)^{2 p}} \Phi^{2 p}\left(A \not \sharp_{t} B\right) \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi^{2 p}\left(A \nabla_{t} B\right) \leq \frac{\left(K(h, 2)\left(M^{2}+m^{2}\right)\right)^{2 p}}{16 M^{2 p} m^{2 p}\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)^{2 p}}\left(\Phi(A) \sharp_{t} \Phi(B)\right)^{2 p} \tag{2.9}
\end{equation*}
$$

where $t \in[0,1], h=\frac{M}{m}$ and $Q(t)$ is from (1.15).
Proof. It is easy to to verify that

$$
m I \leq \Phi\left(A \nabla_{t} B\right) \leq M I
$$

Thus we obtain

$$
m^{2} I \leq \Phi^{2}\left(A \nabla_{t} B\right) \leq M^{2} I
$$

Therefore

$$
\left(M^{2} I-\Phi^{2}\left(A \nabla_{t} B\right)\right)\left(m^{2}-\Phi^{2}\left(A \nabla_{t} B\right)\right) \Phi^{-2}\left(A \nabla_{t} B\right) \leq 0
$$

That is equivalent to

$$
\begin{equation*}
M^{2} m^{2} \Phi^{-2}\left(A \nabla_{t} B\right)+\Phi^{2}\left(A \nabla_{t} B\right) \leq\left(M^{2}+m^{2}\right) I . \tag{2.10}
\end{equation*}
$$

Taking $p=1$ in (2.3), we have

$$
\Phi^{2}\left(A \nabla_{t} B\right) \leq\left(\frac{K(h, 2)}{\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)}\right)^{2} \Phi^{2}\left(A \not \sharp_{t} B\right)
$$

which is equivalent to

$$
\begin{equation*}
\Phi^{-2}\left(A \sharp_{t} B\right) \leq\left(\frac{K(h, 2)}{\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right.}\right)^{2} \Phi^{-2}\left(A \nabla_{t} B\right) . \tag{2.11}
\end{equation*}
$$

Thus we compute
$\left\|\Phi^{p}\left(A \nabla_{t} B\right) M^{p} m^{p} \Phi^{-p}\left(A \sharp_{t} B\right)\right\|$

$$
\begin{aligned}
& \leq \frac{1}{4}\left\|\frac{K^{\frac{p}{2}}(h, 2)}{\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{\frac{p}{p}}\right)^{\frac{p}{2}}} \Phi^{p}\left(A \nabla_{t} B\right)+\frac{\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)^{\frac{p}{2}} M^{p} m^{p}}{K^{\frac{p}{2}}(h, 2)} \Phi^{-p}\left(A \sharp_{t} B\right)\right\|^{2} \\
& \leq \frac{1}{4}\left\|\frac{K(h, 2)}{\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)} \Phi^{2}\left(A \nabla_{t} B\right)+\frac{\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right) M^{2} m^{2}}{K(h, 2)} \Phi^{-2}\left(A \sharp_{t} B\right)\right\|^{p} \\
& \leq \frac{1}{4}\left\|\frac{K(h, 2)}{\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)} \Phi^{2}\left(A \nabla_{t} B\right)+\frac{K(h, 2) M^{2} m^{2}}{\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)} \Phi^{-2}\left(A \nabla_{t} B\right)\right\|^{p} \quad(\text { by }(2.11)) \\
& =\frac{1}{4}\left\|\frac{K(h, 2)}{\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)}\left(\Phi^{2}\left(A \nabla_{t} B\right)+M^{2} m^{2} \Phi^{-2}\left(A \nabla_{t} B\right)\right)\right\|^{p} \\
& \leq \frac{1}{4} \frac{\left(K(h, 2)\left(M^{2}+m^{2} 2\right)\right)^{p}}{\left.\left(1+Q(t)\left(\log \frac{M^{\prime}}{m^{\prime}}\right)^{2}\right)^{p}\right)^{p}}, \quad(b y(2.10))
\end{aligned}
$$

which is equivalent to (2.8). The proof of (2.9) is similar, we omit the details.
Theorem 2.13. Let $0<m I \leq m^{\prime} A^{-1} \leq A \leq M I$ and $m^{\prime}>1$ and let X and Y be two isometries such that $X^{*} Y=0$. For every 2-positive linear map Φ, we have

$$
\begin{equation*}
\left\|\left(\Phi\left(X^{*} A Y\right) \Phi^{-1}\left(Y^{*} A Y\right) \Phi\left(Y^{*} A X\right)\right)^{\frac{p}{2}} \Phi^{-\frac{p}{2}}\left(X^{*} A X\right)\right\| \leq \frac{(M-m)^{p}\left(M^{\alpha}+m^{\alpha}\right)^{\frac{p}{\alpha}}}{2^{2+\frac{p}{2}}(M m)^{\frac{3}{4}}(M+m)^{\frac{p}{2}}\left(1+\frac{\left(\log m^{\prime}\right)^{2}}{8}\right)^{\frac{p}{2}}} \tag{2.12}
\end{equation*}
$$

for $1 \leq \alpha \leq 2$ and $p \geq 2 \alpha$.
Proof. By (1.13), we obtain

$$
\left(\Phi\left(X^{*} A Y\right) \Phi^{-1}\left(Y^{*} A Y\right) \Phi\left(Y^{*} A X\right)\right)^{2} \leq\left(\frac{(M-m)^{2}}{2 \sqrt{M m}(M+m)\left(1+\frac{\left(\log m^{\prime}\right)^{2}}{8}\right)}\right)^{2} \Phi^{2}\left(X^{*} A X\right)
$$

By L-H inequality [4, p. 112], we have

$$
\left(\Phi\left(X^{*} A Y\right) \Phi^{-1}\left(Y^{*} A Y\right) \Phi\left(Y^{*} A X\right)\right)^{\alpha} \leq\left(\frac{(M-m)^{2}}{2 \sqrt{M m}(M+m)\left(1+\frac{\left(\log m^{\prime}\right)^{2}}{8}\right)}\right)^{\alpha} \Phi^{\alpha}\left(X^{*} A X\right)
$$

Thus we get

$$
\begin{aligned}
& \left\|\frac{(M-m)^{p}}{2^{\frac{p}{2}}(M+m)^{\frac{p}{2}}\left(1+\frac{\left.\log m^{\prime}\right)^{2}}{8}\right)^{\frac{p}{2}}} M^{\frac{p}{4}} m^{\frac{p}{4}}\left(\Phi\left(X^{*} A Y\right) \Phi^{-1}\left(Y^{*} A Y\right) \Phi\left(Y^{*} A X\right)\right)^{\frac{p}{2}} \Phi^{-\frac{p}{2}}\left(X^{*} A X\right)\right\| \\
& \leq \frac{1}{4}\left\|\left(\Phi\left(X^{*} A Y\right) \Phi^{-1}\left(Y^{*} A Y\right) \Phi\left(Y^{*} A X\right)\right)^{\frac{p}{2}}+\left(\frac{(M-m)^{2}}{2(M+m)\left(1+\frac{\left.\log m^{\prime}\right)^{2}}{8}\right)} \sqrt{M m} \Phi^{-1}\left(X^{*} A X\right)\right)^{\frac{p}{2}}\right\|^{2} \\
& \left.\leq \frac{1}{4} \|\left(\Phi\left(X^{*} A Y\right) \Phi^{-1}\left(Y^{*} A Y\right) \Phi\left(Y^{*} A X\right)\right)^{\alpha}+\frac{(M-m)^{\alpha}}{2^{\alpha}(M+m)^{\alpha}\left(1+\frac{\left.\left(\log m^{\prime}\right)^{2}\right)^{\alpha}}{8}\right)^{\alpha}} M^{\frac{\alpha}{2}} m^{\frac{\alpha}{2}} \Phi^{-\alpha}\left(X^{*} A X\right)\right) \|^{\frac{p}{\alpha}} \\
& \left.\left.\leq \frac{1}{4} \|\left(\frac{(M-m)^{2}}{2 \sqrt{M m}(M+m)\left(1+\frac{\left(\log m^{\prime}\right)^{2}}{8}\right.}\right)\right)^{\alpha} \Phi^{\alpha}\left(X^{*} A X\right)+\frac{(M-m)^{2 \alpha}}{2^{\alpha}(M+m)^{\alpha}\left(1+\frac{\left(\log m^{\prime}\right)^{2}}{8}\right)^{\alpha}} M^{\frac{\alpha}{2}} m^{\frac{\alpha}{2}} \Phi^{-\alpha}\left(X^{*} A X\right)\right) \|^{\frac{p}{\alpha}} \\
& \left.=\frac{(M-m)^{2 p}}{2^{2+p} M^{\frac{p}{2}} m^{\frac{p}{2}}(M+m)^{p}\left(1+\frac{\left(\log m^{\prime}\right)^{2}}{8}\right)^{p}} \| \Phi^{\alpha}\left(X^{*} A X\right)+M^{\alpha} m^{\alpha} \Phi^{-\alpha}\left(X^{*} A X\right)\right) \|^{\frac{p}{\alpha}} \\
& \leq \frac{(M-m)^{2 p}\left(M^{\alpha}+m^{\alpha}\right)^{\frac{p}{\alpha}}}{2^{2+p} M^{\frac{p}{2}} m^{\frac{p}{2}}(M+m)^{p}\left(1+\frac{\left(\log m^{\prime}\right)^{2}}{8}\right)^{p}},
\end{aligned}
$$

which completes the proof.
Based on (2.12), we thus get an improvement of (1.14).

References

[1] T. Ando, F. Kubo, Means of positive operators, Math. Ann. 264 (1980), 205-224.
[2] T. Ando, X. Zhan, Norm inequalities related to operator monotone functions, Math. Ann. 315 (1999), 771-780.
[3] R. Bhatia, C. Davis, More operator versions of the Schwarz inequality, Comm. Math. Phys. 215 (2000), 239-244.
[4] R. Bhatia, Positive definite matrices, Princeton (NJ): Princeton University Press, (2007).
[5] R. Bhatia, F. Kittaneh, Notes on matrix arithmetic-geometric mean inequalities, Linear Algebra Appl. 308 (2000), 203-211.
[6] X. Fu, Some generalizations of operator inequalities, J. Math. Inequal. 9 (2015), 101-105.
[7] I. H. Gumus, A note on a conjecture about Wielandt's inequality, Linear and Multilinear Algebra 63 (2015), 1909-1913.
[8] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, (1991).
[9] P. Kórus, A refinement of Young 's inequality, Acta Math. Hungar. DOI: 10.1007/s10474-017-0735-1 (2017).
[10] M. Lin, Squaring a reverse AM-GM inequality, Studia Math. 215 (2013) 187-194.
[11] M. Lin, On an operator Kantorovich inequality for positive linear maps, J. Math. Anal. Appl. 402 (2013) 127-132.
[12] W. Liao, J. Wu, Improved Kantorovich and Wielandt Operator Inequalities for Positive Linear Maps, Filomat 31 (2017) $871-876$.
[13] H. Moradi, M. Omidvar, Complementary inequalities to improved AM-GM inequality, Acta Math. Sin. 33 (2017) 1609-1616.
[14] P. Zhang, More operator inequalities for positive linear maps, Banach J. Math. Anal. 9 (2015) 166-172.

[^0]: 2010 Mathematics Subject Classification. Primary 47A63 ; Secondary 46B20
 Keywords. Wielandt inequality; positive linear map; Kantorovich constant; operator inequalities
 Received: 10 December 2017; Accepted: 25 February 2018
 Communicated by Fuad Kittaneh
 The research was supported by NNSFC (No. 11571247).
 Corresponding author: Fangyan Lu
 Email addresses: cjyangmath@163.com (Chaojun Yang), fylu@suda.edu.cn (Fangyan Lu)

