Filomat 32:12 (2018), 4319–4332 https://doi.org/10.2298/FIL1812319M

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On Pseudo-Valuations on BCK-Algebras

S. Mehrshad^a, N. Kouhestani^b

^aDepartment of Mathematics, University of zabol, Zabol, Iran ^bDepartment of Mathematics, University of sistan and baluchestan, Zahedan, Iran

Abstract. In this paper, we study some properties of pseudo-valuations and their induced quasi metrics. The continuity of operation of a BCK-algebra was studied with topology induced by a pseudo-valuation. Moreover, we show that product of finite number of this pseudo metric spaces is a pseudo metric space. Also, we prove that if a BCK-algebra *X* has a pseudo-valuation, then every quotient space of *X* has a pseudo metric. The completion of this spaces has been investigated in the present study.

1. Introduction

A BCK-algebra is one of important of logical algebras introduced by Y. Imai and K. Iseki in 1966 [8]. This notation is originated from two different ways: one of them is based on set theory, the other is from classical and non-classical propositional calculi. The BCK-operator * is an analogue of the set theoretical difference. As is well known, there is a close relation between the notions of the set difference in set theory and the implication functor in logical systems. Busneag in [2] defined a pesudo-valuation on a Hilbert algebra, and proved that every pseudo-valuation induces a pseudo-metric on a Hilbert algebra. Doh and Kang [3] by using the model of Hilbert algebra introduced the notion of pseudo-valuation on a BCK/BCI-algebra and provided several theorems of pseudo-valuations. In this paper, in section 3, we study some properties of pseudo-valuations on BCK-algebrs and completion ($\tilde{X}, \tilde{d}_{\varphi}$) of pseudo metric space (X, d_{φ}). In section 4, we introduced some pseudo-valuations on quotient BCK-algebra X/I_{φ} and study the induced pseudo metric by this pseudo-valuations. Moreover, we show that for each pseudo-valuation on a BCK-algebra X there is an ideal J different with I_{φ} such that X/J is pseudo metrizable.

2. Preliminaries

2.1. BCK-algebras

An algebra (X, *, 0) of type (2, 0) is called a *BCK-algebra* if it satisfies the following axioms: for any x, y, $z \in X$,

- (1) ((x * y) * (x * z)) * (z * y) = 0,
- (2) (x * (x * y)) * y = 0,

²⁰¹⁰ Mathematics Subject Classification. Primary 06F35; Secondary 03G25 Keywords. BCK-algebra, Pseudo-Valuation, Ideal, Quotient BCK-algebra

Received: 08 December 2017; Accepted: 19 April 2018

Communicated by Dijana Mosić

Email addresses: saeedmehrshad@gmail.com (S. Mehrshad), Kouhestani@math.usb.ac.ir (N. Kouhestani)

- (3) x * x = 0,
- (4) $x * y = y * x = 0 \Rightarrow x = y$,
- (5) 0 * x = 0.[See,[4]]

In BCK-algebra X if we define \leq by $x \leq y$ if and only if x * y = 0, then \leq is a partial order and the following conclusions hold:

- (6) $(x * y) * (x * z) \le (z * y)$ and $(y * x) * (z * x) \le (y * z)$,
- (7) x * (x * (x * y)) = x * y,
- (8) (x * y) * z = (x * z) * y,
- (9) x * 0 = x,
- (10) $x * y \le x$,
- (11) $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$,
- (12) $(x * y) * z \le x * z \le x * (z * u)$.

Let (X, *, 0) be a BCK-algebra and $x \land y = y * (y * x)$. Then X is called *commutative BCK-algebra* if $x \land y = y \land x$. If X is commutative BCK-algebra, then $\inf\{x, y\} = x \land y$.

If there is an element 1 of a BCK-algebra (X, *, 0) such that $x \le 1$ for all $x \in X$, then (X, *, 0) is said to be *bounded* BCK-algebra. [See, [4]]

Definition 2.1. [4] Let X be a BCK-algebra. An ideal is a nonempty set $I \subseteq X$ such that

- (a) $0 \in I$,
- (b) $x * y \in I, y \in I \Rightarrow x \in I$.

Proposition 2.2. [4] Let I be an ideal in a BCK-algebra (X, *, 0). Then:

- (*i*) If $x \leq y$ and $y \in I$, then $x \in I$.
- (ii) the relation

$$x \equiv^{l} y \Leftrightarrow x * y, \ y * x \in I$$

is a congruence relation on X, i.e. it is an equivalence relation on X such that for each $a, b, c, d \in X$, if $a \equiv^{I} b$ and $c \equiv^{I} d$, then $a * c \equiv^{I} b * d$,

(iii) if $\frac{x}{T} = \{y \in X : x \equiv^{I} y\}$ and $\frac{X}{T} = \{\frac{x}{T} : x \in X\}$, then $\frac{X}{T}$ is a BCK-algebra under the binary operation

$$\frac{x}{I} * \frac{y}{I} = \frac{x * y}{I}.$$

In this case $\frac{X}{T}$ is said to be a quotient BCK-algebra,

(iv) the mapping $\pi_I : X \hookrightarrow \frac{X}{I}$ by $\pi_I(x) = x/I$ is an epimorphism and for each $S \subseteq X$,

$$(\pi_I^{-1} \circ \pi_I)(S) = \bigcup_{x \in S} \frac{x}{I}$$

 π_I *is also called a* canonical epimorphism.

2.2. Pseudo-valuations

Definition 2.3. [3] A real-valued function φ on a BCK-algebra X is called a weak pseudo-valuation on X if for all $x, y \in X$,

$$\varphi(x * y) \le \varphi(x) + \varphi(y). \quad (15)$$

Definition 2.4. [3] A real-valued function φ on a BCK-algebra X is called a pseudo-valuation on X if

- (*i*) $\varphi(0) = 0$,
- (*ii*) $\varphi(x) \varphi(y) \le \varphi(x * y)$, for all $x, y \in X$.

A pseudo-valuation φ on a BCK-algebra *X* is said to be *valuation* if

$$\varphi(x) = 0 \Longrightarrow x = 0$$

Let φ be a pseudo-valuation on a BCK-algebra X. Then for all $x, y, z \in X$,

(16) $\varphi(x) \ge 0$,

(17)
$$x \le y \Rightarrow \varphi(x) \le \varphi(y)$$
,

(18) $\varphi(x * z) \leq \varphi(x * y) + \varphi(y * z).$

In a BCK-algebra, every pseudo-valuation is a weak pseudo-valuation.[See, [3]]

Proposition 2.5. Let φ be a pseudo-valuation on X. Then $I_{\varphi} = \{x \in X : \varphi(x) = 0\}$ is an ideal of X.

Theorem 2.6. [3] Let φ be a pseudo-valuation on a BCK-algebra X. Define $d_{\varphi} : X \times X \to X$ by

$$d_{\varphi}(x, y) = \varphi(x * y) + \varphi(y * x)$$

for all $(x, y) \in X \times X$. Then d_{φ} is a pseudo-metric, i.e. for every $x, y, z \in X$ we have:

- (*i*) $d_{\varphi}(x, x) = 0$,
- (ii) $d_{\varphi}(x, y) = d_{\varphi}(y, x)$,
- (iii) $d_{\varphi}(x, y) \leq d_{\varphi}(x, z) + d_{\varphi}(z, y).$

If (X, d) is a pseudo-metric space, then:

(*i*) for each $x \in X$ and $\varepsilon > 0$, the set $B_{\varepsilon}(x) = \{y \in X : d(y, x) < \varepsilon\}$ is called a *ball of radius* ε *with center at* x, (*ii*) the set $U \subseteq X$ is open in (*X*, *d*) if for each $x \in U$, there is an $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq U$, (*iii*) the topology τ_d induced by *d* is the collection of all open sets in (*X*, *d*).

Theorem 2.7. [3] Let φ be a pseudo-valuation on a BCK-algebra X. Then a map $\varphi : X \to \mathbb{R}$ is a valuation if and only if (X, d_{φ}) is a metric space.

Proposition 2.8. [3] Let φ be a pseudo-valuation on a BCK-algebra X. Then:

(19) $d_{\varphi}(x, y) \ge d_{\varphi}(z * x, z * y),$ (20) $d_{\varphi}(x, y) \ge d_{\varphi}(x * z, y * z),$ (21) $d_{\varphi}(x * y, z * w) \le d_{\varphi}(x * y, z * y) + d_{\varphi}(z * y, z * w),$

for all $x, y, z, w \in X$.

3. Pseudo-valuations on BCK-algebras

Proposition 3.1. Let φ and ψ be pseudo-valuations on BCK-algebra X. Then

- (i) $d_{\varphi}((x \wedge z), (y \wedge z)) \leq d_{\varphi}(x, y),$
- (*ii*) $|\varphi(x) \varphi(y)| \le d_{\varphi}(x, y)$,
- (iii) $\varphi: X \to \mathbb{R}$ is continuous,
- (iv) I_{φ} is a closed subset of X,
- (v) for each $x \in X$, $\varphi + \psi : X \to \mathbb{R}$ defined by $(\varphi + \psi)(x) = \varphi(x) + \psi(x)$ is a pseudo-valuation on X. Moreover, $(t\varphi)(x) = t(\varphi(x))$ is a pseudo-valuation on X for any $t \in \mathbb{R}^+$ and $x \in X$.

Proof. (*i*) We have $d_{\varphi}((x \land z), (y \land z)) = \varphi((x \land z) * (y \land z)) + \varphi((y \land z) * (x \land z))$. By (6),

$$(x \land z) * (y \land z) = (z * (z * x)) * (z * (z * y)) \le (z * y) * (z * x) \le (x * z)$$

Similarly, we have $(y \land z) * (x \land z) \le (y * x)$. By (17), $\varphi((z * y) * (z * x)) \le \varphi(x * z)$ and $\varphi((y \land z) * (x \land z)) \le \varphi(y * x)$. Hence

$$d_{\varphi}((x \wedge z), (y \wedge z)) = \varphi((x \wedge z) * (y \wedge z)) + \varphi((y \wedge z) * (x \wedge z)) \le \varphi(x * y) + \varphi(y * x) = d_{\varphi}(x, y).$$

(*ii*) Let $x, y \in X$. Then:

$$\varphi(y) - \varphi(x) \le \varphi(y * x)) \le \varphi(y * x) + \varphi(x * y) = d_{\varphi}(x, y).$$

and

$$\varphi(x) - \varphi(y) \le \varphi(x * y) \le \varphi(x * y) + \varphi(y * x) = d_{\varphi}(x, y).$$

Hence $-d_{\varphi}(x, y) \leq \varphi(x) - \varphi(y) \leq d_{\varphi}(x, y)$. Thus $|\varphi(x) - \varphi(y)| \leq d_{\varphi}(x, y)$. (*iii*) Let $\{x_n\}$ be a sequence in *X* such that $x_n \longrightarrow x \in X$. Then $d_{\varphi}(x_n, x) \longrightarrow 0$ in \mathbb{R} . The desired result follows by part (*ii*). (*iii*) Constant $|x_n| = (x \in X, x_n(x), y)| = (x + 1)^{-1} ||y|| = (x + 1)^{-1} ||x|| = (x + 1)^{-1} ||y|| = (x$

(*iv*) Since $I_{\varphi} = \{x \in X : \varphi(x) = 0\} = \varphi^{-1}(\{0\})$, by part (*iii*) the proof is clear. (*v*) By definition, $(\varphi + \psi)(0) = \varphi(0) + \psi(0) = 0 + 0 = 0$. Suppose that $x, y \in X$. Then:

$$\begin{aligned} (\varphi + \psi)(x * y) &= \varphi(x * y) + \psi(x * y), \\ &\geq (\varphi(x) - \varphi(y)) + (\psi(x) - \psi(y)), \\ &= (\varphi(x) + \psi(x)) - (\varphi(y) + \psi(y)), \\ &= (\varphi + \psi)(x) - (\varphi + \psi)(y). \end{aligned}$$

Thus $\varphi + \psi$ is a pseudo-valuation on X. The proof for other case is similar. \Box

Proposition 3.2. If τ_{φ} is a induced topology by d_{φ} , then $(X, *, \tau_{\varphi})$ is a topological BCK-algebra.

Proof. By Theorem 2.6, (X, d_{φ}) is a pseudo-metric space. Let $x * y \in B_{\varepsilon}(x * y)$. We claim that $B_{\frac{\varepsilon}{2}}(x) * B_{\frac{\varepsilon}{2}}(y) \subseteq B_{\varepsilon}(x * y)$. Let $z \in B_{\frac{\varepsilon}{2}}(x) * B_{\frac{\varepsilon}{2}}(y)$. Then there exist $p \in B_{\frac{\varepsilon}{2}}(x)$ and $q \in B_{\frac{\varepsilon}{2}}(y)$ such that z = p * q. Hence $d_{\varphi}(x, p) \leq \frac{\varepsilon}{2}$ and $d_{\varphi}(y, q) \leq \frac{\varepsilon}{2}$. By (19) and (20) we have $d_{\varphi}(x * y, p * y) \leq d_{\varphi}(x, p)$ and $d_{\varphi}(p * y, p * q) \leq d_{\varphi}(y, q)$. By (21),

$$d_{\varphi}(x * y, p * q) \leq d_{\varphi}(x * y, p * y) + d_{\varphi}(p * y, p * q) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus $z = p * q \in B_{\varepsilon}(x * y)$. Therefore $(X, *, \tau)$ is a topological BCK-algebra. \Box

Proposition 3.3. A pseudo-valuation φ on the topological BCK-algebra (X, τ) is continuous iff, for each $\varepsilon > 0$ there exists a neighbourhood U of 0 such that $\varphi(z) < \varepsilon$, for each $z \in U$.

Proof. Suppose $x \in X$ and ε is a positive number. Let U be a neighborhood of 0 such that $\varphi(z) < \varepsilon$, for each $z \in U$. Since x * x = 0, there are open neighborhoods V and W of x such that $V * W \subseteq U$. Put $P = V \cap W$. For each $y \in P$, x * y, $y * x \in P * P \subseteq U$ and so $\varphi(x * y)$, $\varphi(y * x) < \varepsilon$. Thus $\varphi(y) - \varphi(x) < \varepsilon$ and $\varphi(x) - \varphi(y) < \varepsilon$. Hence $|\varphi(y) - \varphi(x)| < \varepsilon$. Thus φ is continuous. Conversely, If φ is continuous on X, then it is continuous in 0. Let ε be a positive number. Since $\varphi(0) = 0$, $(-\varepsilon, \varepsilon)$ is an open neighborhood of $\varphi(0)$ in \mathbb{R} . There is an open neighborhood U of 0 in X such that $\varphi(U) \subseteq (-\varepsilon, \varepsilon)$. Therefore $\varphi(z) < \varepsilon$, for each $z \in U$.

A function between two metric spaces will be called isometry if it preserves distances. Let φ_X and φ_Y be pseudo-valuations on BCK-algebras *X* and *Y* respectively. Then $f : X \to Y$ will be called *pseudo-valuation preserving* if $\varphi_Y \circ f = \varphi_X$.

Proposition 3.4. Let X and Y be BCK-algebras and $\varphi_X : X \to \mathbb{R}$ and $\varphi_Y : Y \to \mathbb{R}$ be pseudo-valuations. If $f : X \to Y$ ia a homomorphism, then the following are equivalent:

- (*i*) *f* is pseudo-valuation preserving,
- (*ii*) f is an isometry.

Proof. Assume that *f* is pseudo-valuation preserving. Then for each $x \in X$, $\varphi_Y(f(x)) = \varphi_X(x)$. for any $x, y \in X$ we have,

$$d_{\varphi_{Y}}(f(x), f(y)) = \varphi_{Y}(f(x) * f(y)) + \varphi_{Y}(f(y) * f(x)),$$

= $\varphi_{Y}(f(x * y)) + \varphi_{Y}(f(y * x)),$
= $\varphi_{Y} \circ f(x * y) + \varphi_{Y} \circ f(y * x),$
= $\varphi_{X}(x * y) + \varphi_{X}(y * x),$
= $d_{\varphi_{X}}(x, y).$

Hence *f* is isometry. Conversely, if *f* is an isometry, then for any $x \in X$,

$$\varphi_X(x) = d_{\varphi_X}(x,0) = d_{\varphi_Y}(f(x), f(0)) = \varphi_Y(f(x)) + \varphi_Y(f(0)) = \varphi_Y(f(x)).$$

Therefore *f* is pseudo-valuation preserving. \Box

Proposition 3.5. Let f be an isomorphism from BCK-algebra $(X, *, 0_X)$ to BCK-algebra $(Y, \star, 0_Y)$. If φ is a pseudovaluation on X, then $\psi : Y \to \mathbb{R}$ defined by $\psi(y) = \varphi \circ f^{-1}(y)$ for any $y \in Y$ is a pseudo-valuation on Y.

Proof. Since $f(0_X) = 0_Y$, $\psi(0_Y) = \varphi \circ f^{-1}(0_Y) = \varphi(0_X) = 0$. Let $y, y' \in Y$. Since f is bijection, there are $x, x' \in X$ such that f(x) = y and f(x') = y'. Hence

$$\begin{split} \psi(y \star y') &= \varphi(f^{-1}(y \star y')), \\ &= \varphi(f^{-1}(y) \star f^{-1}(y')), \\ &= \varphi(x \star x'), \\ &\geq \varphi(x) - \varphi(x'), \\ &= \varphi(f^{-1}(y)) - \varphi(f^{-1}(y')), \\ &= \psi(y) - \psi(y'). \end{split}$$

Therefore ψ is a pseudo-valuation on *Y*.

Proposition 3.6. Let f be an isomorphism from BCK-algebra $(X, *, 0_X)$ to BCK-algebra $(Y, \star, 0_Y)$. If ψ is a pseudovaluation on Y, then $\varphi : X \to \mathbb{R}$ defined by $\varphi(x) = \psi \circ f(x)$ for any $x \in X$ is a pseudo-valuation on X.

Proof. Since $f(0_X) = 0_Y$, $\varphi(0_X) = \psi \circ f(0_X) = \psi(0_Y) = 0$. For any $x, y \in X$ we have

$$\varphi(x * y) = \psi(f(x * y)) = \psi(f(x) \star f(y)) \ge \psi(f(x)) - \psi(f(y)) = \varphi(x) - \varphi(y)$$

Thus φ is a pseudo-valuation on *X*. \Box

Proposition 3.7. Let φ be a pseudo-valuation on X and $A \subseteq X$. Let $x \in X$. If there is a $y \in A$ such that $x \equiv^{I_{\varphi}} y$, then $x \in \overline{A}$. The converse is also true, when I_{φ} is a neighborhood of 0.

Proof. Let there is a $y \in A$ such that $x \equiv^{I_{\varphi}} y$. Then $\varphi(x * y) = \varphi(y * x) = 0$. Thus $\varphi(x * y) + \varphi(y * x) < \varepsilon$ for any $\varepsilon > 0$. Hence for each $\varepsilon > 0$, $B_{\varepsilon}(x) \cap A \neq \emptyset$ and so $x \in \overline{A}$. Conversely, let I_{φ} be a neighborhood of 0 and $x \in \overline{A}$. There is a sequence $\{x_n\}$ in A such that $x_n \to x$. Since * is continuous, $x * x_n \to 0$ and $x_n * x \to 0$. Hence there is a positive integer n_0 such that $x_{n_0} * x \in I_{\varphi}$ and $x * x_{n_0} \in I_{\varphi}$. Thus $x_{n_0} \equiv^{I_{\varphi}} x$. \Box

Proposition 3.8. Let φ be a pseudo-valuation on a BCK-algebra X. If $m_{\varphi}(x) = \lim_{r \to 0^+} \inf\{\varphi(z) : z \in B_r(x)\}$ and $M_{\varphi}(x) = \lim_{r \to 0^+} \sup\{\varphi(z) : z \in B_r(x)\}$, then:

- (*i*) for each $x \in X$, $m_{\varphi}(x)$ and $M_{\varphi}(x)$ are pseudo-valuations on X,
- (*ii*) $m_{\varphi}(x) \leq M_{\varphi}(x)$ for any $x \in X$,
- (iii) $M_{\varphi}(x) m_{\varphi}(x) \le M_{\varphi}(0)$ for any $x \in X$,
- (iv) if $M_{\varphi}(0) < \infty$, then for all $x \in X$, $M_{\varphi}(x)$, $m_{\varphi}(x) < \infty$.

Proof. (*i*) Let *r* be a positive number and $z \in B_r(0)$. Then $d_{\varphi}(z, 0) < r$ and so $\varphi(0) = 0 \le \varphi(z) < r$. Thus $m_{\varphi}(0) = 0$. Let $x, y \in X$ and *r* be a positive number. We show that $m_{\varphi}(x) \le m_{\varphi}(x * y) + m_{\varphi}(y)$. If $u \in B_r(x)$, then

$$\inf\{\varphi(z): z \in B_r(x)\} \le \varphi(u) \le \varphi(u * v) + \varphi(v)$$

for any $v \in B_r(y)$. Hence

$$\inf\{\varphi(z): z \in B_r(x)\} \le \inf\{\varphi(u * v) + \varphi(v): v \in B_r(y)\}.$$

Since for each $x \in X$, $\varphi(x) \ge 0$, we get

$$inf\{\varphi(u * v) + \varphi(v) : v \in B_r(y)\} = inf\{\varphi(w) : w \in u * B_r(y)\} + inf\{\varphi(v) : v \in B_r(y)\}$$

From $u * v \in u * B_r(y) \subseteq B_r(x) * B_r(y) \subseteq B_{2r}(x * y)$, we conclude that

$$\inf\{\varphi(z) : z \in B_r(x)\} \le \inf\{\varphi(w) : w \in B_{2r}(x * y)\} + \inf\{\varphi(v) : v \in B_r(y)\}.$$

Now, the result follows on taking limits as $r \to 0^+$. For other case, since $\{\varphi(z) : z \in B_r(0)\} = \{\varphi(z) : 0 \le \varphi(z) < r\}$, we get $0 \le \sup\{\varphi(z) : 0 \le \varphi(z) < r\} \le r$. Taking limits as $r \to 0^+$, we have $M_{\varphi}(0) = 0$. Now by similar argument the desired result will obtain.

(*ii*) The proof is clear.

(*iii*) For $m_{\varphi}(x) < a$ and $b < M_{\varphi}(x)$ there exist $u, v \in B_r(x)$ with $m_{\varphi}(x) \le \varphi(u) < a$ and $b < \varphi(v) \le M_{\varphi}(x)$. Hence

$$b - a < \varphi(v) - \varphi(u) \le \varphi(v * u) = d_{\varphi}(u * v, 0) < 2u$$

beacuse $v * u \in B_r(x) * B_r(x) \subseteq B_{2r}(x * x) = B_{2r}(0)$. Thus $\varphi(v * u) \leq sup\{\varphi(z) : z \in B_{2r}(0)\}$. Hence, with r fixed, taking *a*, *b* to respective limits,

$$M_{\varphi}(x) - m_{\varphi}(x) \leq \sup\{\varphi(z) : z \in B_{2r}(0)\}.$$

Taking limits as $r \to 0^+$, we obtain the inequality.

(*iv*) Clearly, $0 \le M_{\varphi}(x) - m_{\varphi}(x) \le M_{\varphi}(0)$, hence both $M_{\varphi}(x)$ and $m_{\varphi}(x)$ are finite for every x.

Let *X* be a BCK-algebra. Then *X* is called positive implicative BCK-algebra if (x * y) * z = (x * z) * (y * z). The sets of the form

$$[0, c] = \{x \in X : 0 \le x \le c\} = \{x \in X : x \le c\}$$

is called initial segment.

Proposition 3.9. If φ is a pseudo-valuation on positive implicative BCK-algebra X and $a \in X$, then $\varphi_a(x) = \varphi(x * a)$ is a pseudo-valuation on X, for any $x \in X$. Moreover, if φ is a valuation, then φ_a is a valuation if and only if I_{φ_a} is an initial segment.

Proof. It is easy to prove that $\varphi_a(0) = 0$. Let $x, y, a \in X$. Then

$$\varphi_a(x) - \varphi_a(y) = \varphi(x * a) - \varphi(y * a) \le \varphi((x * a) * (y * a)) = \varphi((x * y) * a) = \varphi_a(x * y).$$

Hence φ_a is a pseudo-valuation on *X*. Now, we have

$$\varphi_a(x) = 0 \Leftrightarrow \varphi(x * a) = 0 \Leftrightarrow x * a = 0 \Leftrightarrow x \le a \Leftrightarrow x \in [0, a].$$

Proposition 3.10. Let X and Y be two BCK-algebras and φ be a pseudo-valuation on X. If $f : X \to Y$ is a surjective homomorphism, then $\varphi(y) = \inf{\{\varphi(x) : f(x) = y\}}$ is a pseudo-valuation on Y.

Proof. It is easy to prove that $\phi(0) = 0$. Let $x, y \in Y$. Then there are $a, b \in X$ such that f(a) = x and f(b) = y. Since f is a homomorphism, f(a * b) = x * y. Thus

$$\begin{aligned} \phi(x * y) + \phi(y) &= \inf\{\varphi(a * b) : f(a * b) = x * y\} + \inf\{\varphi(b) : f(b) = y\}, \\ &\geq \inf\{\varphi(a * b) + \varphi(b) : f(a * b) = x * y, f(b) = y\}, \\ &\geq \inf\{\varphi(a) : f(a) = x\} = \phi(x). \end{aligned}$$

Therefore ϕ is a pseudo-valuation on *Y*.

Let $(X_1, *_1, 0_1)$ and $(X_2, *_2, 0_2)$ be two BCK-algebras and $X = X_1 \times X_2$. Let $\pi_i : X \to X_i$ (i = 1, 2) be a projection from X to X_i . Then for any $x = (x_1, x_2), y = (y_1, y_2) \in X$ we have

$$\pi_i(x * y) = \pi_i(x_1 *_1 y_1, x_2 *_2 y_2) = x_i *_i y_i = \pi_i(x) *_i \pi_i(y).$$

Proposition 3.11. Let $(X_1, *_1, 0_1)$ and $(X_2, *_2, 0_2)$ be two BCK-algebras and $X = X_1 \times X_2$. Then X has a pseudo-valuation φ if and only if X_i have a pseudo-valuation for each i = 1, 2. Moreover, φ is continuous.

Proof. Let *X* has a pseudo-valuation. Since $\pi_i : X \to X_i$ is an epimorphism, X_i has a pseudo-valuation for i = 1, 2 by Proposition 3.10. Conversely, let φ_1 and φ_2 be pseudo-valuations on X_1 and X_2 , respectively. Let $x = (x_1, x_2)$ define $\varphi : X \to \mathbb{R}$ by $\varphi(x) = \varphi_1(x_1) + \varphi_2(x_2)$, then $\varphi(0) = \varphi((0_1, 0_2)) = \varphi_1(0_1) + \varphi_2(0_2) = 0$. Let $x = (x_1, x_2), y = (y_1, y_2) \in X$. Then we have

$$\begin{aligned} \varphi(x * y) &= \varphi(x_1 *_1 y_1, x_2 *_2 y_2), \\ &= \varphi_1(x_1 *_1 y_1) + \varphi_2(x_2 *_2 y_2), \\ \geq \varphi_1(x_1) - \varphi_1(y_1) + \varphi_2(x_2) - \varphi_2(y_2), \\ &= \varphi_1(x_1) + \varphi_1(x_2) - (\varphi_2(y_1) + \varphi_2(y_2)) \\ &= \varphi(x) - \varphi(y). \end{aligned}$$

Hence φ is a pseudo-valuation on *X*. Now, let $\{x_n\}$ and $\{y_n\}$ be converges sequences to *x* and *y* in *X*₁ and *X*₂, respectively. Since φ_1, φ_2 and * are continuous, $\varphi_1(x_n *_1 x) \rightarrow 0$ and $\varphi_2(y_n *_2 y) \rightarrow 0$. Hence

$$\varphi((x_n, y_n) * (x, y)) = \varphi(x_n *_1 x, y_n *_2 y) = \varphi_1(x_n *_1 x) + \varphi_2(y_n *_2 y) \to 0.$$

Thus φ is continuous. \Box

Proposition 3.12. Let φ_1 and φ_2 be two pseudo-valuations on BCK-algebras X_1 and X_2 , respectively. For each $(x, y), (a, b) \in X_1 \times X_2$ define

$$d((x, y), (a, b)) = d_{\varphi_1}(x, a) + d_{\varphi_2}(y, b).$$

Then d is a pseudo metric on $X_1 \times X_2$ *.*

Proof. For any (x, y), $(a, b) \in X_1 \times X_2$, we have

$$d((x, y), (x, y)) = d_{\varphi_1}(x, x) + d_{\varphi_2}(y, y) = 0 + 0 = 0.$$

and

$$d((x, y), (a, b)) = d_{\varphi_1}(x, a) + d_{\varphi_2}(y, b) = d_{\varphi_1}(a, x) + d_{\varphi_2}(b, y) = d((a, b), (x, y)).$$

Let $(x, y), (a, b), (u, v) \in X_1 * X_2$. Then

$$\begin{aligned} d((x, y), (u, v)) &= d_{\varphi_1}(x, u) + d_{\varphi_2}(y, v), \\ &\leq [d_{\varphi_1}(x, a) + d_{\varphi_1}(a, u)] + [d_{\varphi_2}(y, b) + d_{\varphi_2}(b, v)], \\ &= [d_{\varphi_1}(x, a) + d_{\varphi_2}(y, b)] + [d_{\varphi_1}(a, u) + d_{\varphi_2}(b, v)], \\ &= d((x, y), (a, b)) + d((a, b), (u, v)). \end{aligned}$$

Therefore $(X_1 \times X_2, d)$ is a pseudo metric space. \Box

Corollary 3.13. If φ_1 and φ_2 are two valuations on BCK-algebras X_1 and X_2 , respectively, then $(X_1 \times X_2, d)$ is a metric space.

Proposition 3.14. Let φ_1 and φ_2 be two pseudo-valuations on BCK-algebras $(X_1, *_1, 0_1)$ and $(X_2, *_2, 0_2)$ respectively. If $X = X_1 \times X_2$, then $* : X \times X \to X$ is continuous.

Proof. Let $(x, y), (a, b) \in X$. We show that

$$B_{\frac{\varepsilon}{2}}((a,b)) * B_{\frac{\varepsilon}{2}}((x,y)) \subseteq B_{\varepsilon}((a,b) * (x,y)) = B_{\varepsilon}((a*_1x,b*_2y)).$$

Let $(s,t) \in B_{\frac{\varepsilon}{2}}((a,b)) * B_{\frac{\varepsilon}{2}}((x,y))$. Then $(s,t) = (\alpha *_1 \gamma, \beta *_2 \lambda) = (\alpha, \beta) * (\gamma, \lambda)$ such that $(\alpha, \beta) \in B_{\frac{\varepsilon}{2}}((a,b))$ and $(\gamma, \lambda) \in B_{\frac{\varepsilon}{2}}((x,y))$. Hence $d((\alpha, \beta), (a, b)) < \frac{\varepsilon}{2}$ and $d((\gamma, \lambda), (x, y)) < \frac{\varepsilon}{2}$. By (19) and (20) we have,

$$d((s,t), (a,b) * (x,y)) = d((\alpha,\beta) * (\gamma,\lambda), (a,b) * (x,y)),$$

$$= d((\alpha *_1 \gamma, \beta *_2 \lambda), (a *_1 x, b *_2 y)),$$

$$= d_{\varphi_1}((\alpha *_1 \gamma), (a *_1 x)) + d_{\varphi_2}((\beta *_2 \lambda), (b *_2 y)),$$

$$\leq [d_{\varphi_1}(\alpha *_1 \gamma, a *_1 \gamma) + d_{\varphi_1}(a *_1 \gamma, a *_1 x)]$$

$$+ [d_{\varphi_2}(\beta *_2 \lambda, \beta *_2 y) + d_{\varphi_2}(\beta *_2 y, b *_2 y)],$$

$$\leq [d_{\varphi_1}(\alpha, a) + d_{\varphi_1}(\gamma, x)] + [d_{\varphi_2}(\lambda, y) + d_{\varphi_2}(\beta, b)],$$

$$= [d_{\varphi_1}(\alpha, a) + d_{\varphi_2}(\beta, b)] + [d_{\varphi_1}(\gamma, x) + d_{\varphi_2}(\lambda, y)],$$

$$= d((\alpha, \beta), (a, b)) + d((\gamma, \lambda), (x, y))$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus * is continuous. \square

A sequence $\{x_n\} \subseteq X$ is a d_{φ} -cauchy if it is a cauchy sequence of the pseudo-metric (X, d_{φ}) . The space (X, d_{φ}) is d_{φ} -complete if any d_{φ} -cauchy converges to an element of X. Let $\{x_n\}$ and $\{y_n\}$ be d_{φ} -cauchy sequences. Then the sequence $\{d_{\varphi}(x_n, y_n)\}$ is convergent, because it is a cauchy sequence in \mathbb{R} .

Proposition 3.15. Let φ be a pseudo-valuation on a BCK-algebra X. Define the relation ~ by:

$$\{x_n\} \sim \{y_n\} \Leftrightarrow d_{\varphi}(x_n, y_n) \longrightarrow 0$$

for all d_{φ} -cauchy sequences $\{x_n\}$ and $\{y_n\}$ in X. Then \sim is a congruence relation on the set of all d_{φ} -cauchy sequences in X.

Proof. It is easy to prove that ~ is an equivalence relation on *X*. Let $\{x_n\} ~ \{y_n\}$ and $\{a_n\} ~ \{b_n\}$. Then $d_{\varphi}(x_n, y_n) \longrightarrow 0$ and $d_{\varphi}(a_n, b_n) \longrightarrow 0$. By (19) and (20) we have $d_{\varphi}(x_n * a_n, y_n * a_n) \longrightarrow 0$ and $d_{\varphi}(y_n * a_n, y_n * b_n) \longrightarrow 0$. By (21) we have $d_{\varphi}(x_n * y_n, a_n * b_n) \longrightarrow 0$ and so $\{x_n\} * \{y_n\} ~ \{a_n\} * \{b_n\}$. Therefore ~ is a congruence relation on *X*. \Box

Definition 3.16. Let φ be a pseudo-valuation on a BCK-algebra X. The set of all equivalence classes $\{x_n\} = \{\{y_n\} : \{y_n\} \sim \{x_n\}\}$ is denoted by \widetilde{X} . On this set, we define $\{\widetilde{x_n}\} * \{\widetilde{y_n}\} = \{\widetilde{x_n} * \widetilde{y_n}\}$.

Proposition 3.17. Let φ be a pseudo-valuation on a BCK-algebra X. Then $(\widetilde{X}, *, \widetilde{\{0\}})$ is a BCK-algebra and the pseudo-metric d_{φ} induces a metric $\widetilde{d_{\varphi}}$ on \widetilde{X} as follows:

$$\widetilde{d_{\varphi}}(\widetilde{\{x_n\}}, \widetilde{\{y_n\}}) = lim_n d_{\varphi}(x_n, y_n)$$

for all $\widetilde{\{x_n\}}, \widetilde{\{y_n\}} \in \widetilde{X}$.

Proof. It is easy to prove that $(\widetilde{X}, *, \widetilde{\{0\}})$ is a BCK-algebra and $\widetilde{d_{\varphi}}$ is a pseudo-metric on \widetilde{X} . Let $\{\widetilde{x_n}\}, \{\widetilde{y_n}\} \in \widetilde{X}$ and $\widetilde{d_{\varphi}}(\{\widetilde{x_n}\}, \{\widetilde{y_n}\}) = 0$. Then $d_{\varphi}(x_n, y_n) \longrightarrow 0$ and so $\{x_n\} \sim \{y_n\}$. Hence $\{\widetilde{x_n}\} = \{\widetilde{y_n}\}$. Therefore $(\widetilde{X}, \widetilde{d_{\varphi}})$ is a metric space. \Box

Proposition 3.18. Let φ be a pseudo-valuation on a BCK-algebra X. Then

- (*i*) If $\{x_n\}$ is a d_{φ} -cauchy sequence in X, then $\{\varphi(x_n)\}$ is a cauchy sequence in \mathbb{R} .
- (*ii*) the mapping $\pi_{\varphi} : X \to \widetilde{X}$ by $\pi_{\varphi}(x) = \{\widetilde{x}\}$ where $\{\widetilde{x}\}$ is the equivalence class of the constant sequence with any element equal to *x*, is an homomorphism.

Proof. (*i*) By Proposition 3.1 (*ii*), the proof is clear. (*ii*) The proof is clear. \Box

Proposition 3.19. Let φ be a pseudo-valuation on a BCK-algebra X. Then the mapping $\widetilde{\varphi} : \widetilde{X} \to \mathbb{R}$ by $\widetilde{\varphi}(\{x_n\}) = \lim_n \varphi(x_n)$ for each d_{φ} -cauchy sequence in X, is a pseudo-valuation on \widetilde{X} .

Proof. It is easy to prove that $\widetilde{\varphi}(\{0\}) = 0$. Let $\{x_n\}$ and $\{y_n\}$ be d_{φ} -cauchy sequences in X. Then

$$\widetilde{\varphi}(\widetilde{\{x_n\}}) = Lim_n\varphi(x_n) \le lim_n\varphi(x_n * y_n) + lim_n\varphi(y_n) = \widetilde{\varphi}(\widetilde{\{x_n\}} * \widetilde{\{y_n\}}) + \widetilde{\varphi}(\widetilde{\{y_n\}})$$

Hence $\widetilde{\varphi}$ is a pseudo-valuation on \widetilde{X} .

Corollary 3.20. The metric space $(\widetilde{X}, \widetilde{d_{\varphi}})$ is $\widetilde{d_{\varphi}}$ -complete.

Proposition 3.21. If \widetilde{X} , $\widetilde{\varphi}$, π_{φ} and \widetilde{d} are defined as above, then following properties hold:

- (*i*) $\tilde{\varphi} \circ \pi_{\varphi} = \varphi$ and hence π_{φ} is pseudo-valuation preserving.
- (*ii*) φ is a valuation iff, $\pi_{\varphi}(x) = \widetilde{\{0\}}$ implies that x = 0.

(iii)
$$d_{\varphi} = d_{\widetilde{\varphi}}$$
.

(iv) π_{φ} is continuous.

Proof. (*i*) For any $x \in X$, $\tilde{\varphi} \circ \pi_{\varphi}(x) = \tilde{\varphi}(\pi_{\varphi}(x)) = \lim_{n} \varphi(x) = \varphi(x)$. (*ii*) Let φ be a valuation and $\pi_{\varphi}(x) = \{0\}$. Then $\{x\} = \{0\}$ and so $\{x\} \sim \{0\}$. Hence $\varphi(x) = d_{\varphi}(x, 0) = 0$. Since φ is a valuation, x = 0. Conversely, if $\varphi(x) = 0$ for any $x \in X$, then $d_{\varphi}(x, 0) = \varphi(x) = 0$ and so $\pi_{\varphi}(x) = \{x\} = \{0\}$. Hence x = 0. Thus φ is a valuation.

(*iii*) For any $\widetilde{\{x_n\}}, \widetilde{\{y_n\}} \in \widetilde{X}$ we have

$$d_{\widetilde{\varphi}}(\{\overline{x_n}\}, \{\overline{y_n}\}) = \widetilde{\varphi}(\{\overline{x_n * y_n}\}) + \widetilde{\varphi}(\{\overline{y_n * x_n}\}),$$

$$= \lim_n \varphi(x_n * y_n) + \lim_n \varphi(y_n * x_n),$$

$$= \lim_n d_{\varphi}(x_n, y_n)$$

$$= d_{\widetilde{\varphi}}(\{\overline{x_n}\}, \{\overline{y_n}\}).$$

(*iv*) If $x_n \longrightarrow x$ in (X, d_{φ}) , then $lim_n d_{\varphi}(x_n, x) = 0$ in \mathbb{R} . Since

$$d_{\widetilde{\varphi}}(\pi_{\varphi}(x_n), \pi_{\varphi}(x)) = \widetilde{\varphi}(\pi_{\varphi}(x_n * x)) + \widetilde{\varphi}(\pi_{\varphi}(x * x_n)),$$

$$= \varphi(x_n * x) + \varphi(x * x_n),$$

$$= d_{\varphi}(x_n, x).$$

Hence $\pi_{\varphi}(x_n) \longrightarrow \pi_{\varphi}(x)$ in $(\widetilde{X}, \widetilde{d_{\varphi}})$. \Box

Proposition 3.22. Let ψ be a pseudo-valuation on a BCK-algebra Y such that (Y, d_{ψ}) is a d_{ψ} -complete space. If φ is a pseudo-valuation on a BCK-algebra X and $f : X \to Y$ is a pseudo-valuation preserving homomorphism, then there exists a unique pseudo-valuation preserving homomorphism $\tilde{f} : \tilde{X} \to Y$ such that $\tilde{f} \circ \pi_{\varphi} = f$.

Proof. Suppose that $f : X \to Y$ is a pseudo-valuation preserving homomorphism. By Proposition 3.4, f is an isometry. If $\{x_n\}$ is a d_{φ} -cauchy sequence in X, then $\{f(x_n)\}$ is a d_{ψ} -cauchy sequence in Y. Since Y is d_{ψ} -complete, $f(x_n) \to y$ for some $y \in Y$. Define $\widetilde{f}(\{x_n\}) = y$. We show that \widetilde{f} is the unique isometry such that $\widetilde{f} \circ \pi_{\varphi} = f$. Let $\{\overline{x_n}\}, \{\overline{y_n}\} \in \widetilde{X}, f(x_n) \to x$ and $f(y_n) \to y$. Then

$$d_{\overline{\varphi}}(\overline{\{x_n\}},\overline{\{y_n\}}) = d_{\varphi}(\overline{\{x_n\}},\overline{\{y_n\}}),$$

$$= \lim_n \varphi(x_n * y_n) + \lim_n \varphi(y_n * x_n),$$

$$= \lim_n \psi \circ f(x_n * y_n) + \lim_n \psi \circ f(y_n * x_n),$$

$$= \lim_n \psi(f(x_n * y_n)) + \lim_n \psi(f(y_n * x_n)),$$

$$= \lim_n \psi(f(x_n) * f(y_n)) + \lim_n \psi(f(y_n) * f(x_n)),$$

$$= \lim_n \psi(x * y) + \lim_n \psi(y * x),$$

$$= \psi(x * y) + \psi(y * x),$$

$$= \psi(\widetilde{f}(\overline{\{x_n\}}) * \widetilde{f}(\overline{\{y_n\}})) + \psi(\widetilde{f}(\overline{\{y_n\}}) * \widetilde{f}(\overline{\{x_n\}})),$$

The uniqueness is obvious. Since the BCK-algebra operation *Y* is continuous respect to d_{ψ} , we get that \tilde{f} is a homomorphism. Finally, for each $x \in X$, $\tilde{f} \circ \pi_{\varphi}(x) = \tilde{f}(\{x\}) = f(x)$. Thus $\tilde{f} \circ \pi_{\varphi} = f$. \Box

4. Pseudo-valuations on Quotient BCK-algebras

Proposition 4.1. Let I be an ideal in a BCK-algebra X. Then:

(i) If φ is a pseudo-valuation on a BCK-algebra X, then $\overline{\varphi}(x/I) = \inf \{\varphi(z) : z \in x/I\}$ is a pseudo-valuation on X/I.

(ii) If $\overline{\varphi}$ is a pseudo-valuation on X/I, then $\varphi(x) = \overline{\varphi}(x/I)$ is a pseudo-valuation on X. Moreover, $\overline{\varphi}$ is a valuation on X if and only if $I = I_{\varphi}$.

Proof. (*i*) This is Proposition 3.10 with y = x/I and $f = \pi_I$.

(*ii*) Let $\overline{\varphi}$ be a pseudo-valuation on X/I. It is easy to prove that the mapping $\overline{\varphi}(x/I) = \varphi(x)$ is a pseudo-valuation on X. Let $\overline{\varphi}$ be a valuation on X/I. If $x \in I$, then x/I = 0/I and so $\varphi(x) = \overline{\varphi}(x/I) = \overline{\varphi}(0/I) = 0$. Hence $I \subseteq I_{\varphi}$. If $x \in I_{\varphi}$, then $\varphi(x) = 0$ and so $\overline{\varphi}(x/I) = 0$. Thus x/I = 0/I and hence $x \in I$. Therefore $I_{\varphi} \subseteq I$. Conversly, let $I_{\varphi} = I$ and $\overline{\varphi}(x/I) = 0$. Then $\varphi(x) = 0$ and so $x \in I$. Hence x/I = 0/I. Thus $\overline{\varphi}$ is a valuation on X/I. \Box

Corollary 4.2. Let φ be a valuation on a BCK-algebra X. If for each $x \in X$, the set x/I has a minimum, then $\overline{\varphi}(x/I) = \inf\{\varphi(z) : z \in x/I\}$ is a valuation on X/I.

Proof. By Proposition 4.1 (*i*), $\overline{\varphi}$ is a pseudo-valuation. Let for some $x \in X$, $\overline{\varphi}(x/I) = 0$. By assumption, there is an $a \in X$ such that a = minx/I. Since for each $z \in x/I$, $a \le z$, we get that $\varphi(a) \le \varphi(z) = \overline{\varphi}(z/I) = \overline{\varphi}(x/I)$ and so $\varphi(a) = 0$. Since φ is a valuation, a = 0. Hence x/I = 0/I. \Box

Proposition 4.3. Let φ be a pseudo-valuation on a BCK-algebra X. Then $I \subseteq I_{\varphi}$ if and only if there exists a pseudo-valuation $\phi : X/I \to \mathbb{R}$ such that $\phi \circ \pi_I = \varphi$.

Proof. Let $\phi : X/I \to \mathbb{R}$ be a pseudo-valuation on X/I such that $\phi \circ \pi_I = \varphi$. If $x \in I$, then x/I = 0/I. Hence

$$\varphi(x) = \phi \circ \pi_I(x) = \phi(\pi_I(x)) = \phi(x/I) = \phi(0/I) = \phi \circ \pi_I(0) = \varphi(0) = 0.$$

Thus $x \in I_{\varphi}$ and hence $I \subseteq I_{\varphi}$. Conversely, let $I = I_{\varphi}$. Define $\phi(x) = \varphi(x)$ for any $x \in X$. If $x, y \in X$ and x/I = y/I, then $x * y, y * x \in I$. Since $\phi(x) = \varphi(x), \varphi(x * y) = \varphi(y * x) = 0$. Therefore $0 = \varphi(x * y) \ge \varphi(x) - \varphi(y)$ and $0 = \varphi(y * x) \ge \varphi(y) - \varphi(x)$. Thus $\varphi(x) = \varphi(y)$ and hence ϕ is well defined. We have $\phi(0/I) = \varphi(0) = 0$ and

$$\phi(x/I * y/I) = \phi(x * y/I) = \varphi(x * y) \ge \varphi(x) - \varphi(y) = \phi(x/I) - \phi(y/I).$$

Thus ϕ is a pseudo-valuation on *X*/*I*. It is easy to prove that $\phi \circ \pi_I = \varphi$. \Box

Proposition 4.4. Let φ be pseudo-valuation on a BCK-algebra X and $I_{\varphi} = \{x \in X : \varphi(x) = 0\}$. If d_{φ} is the induced pseudo-metric by φ , Then $D(x/I_{\varphi}, y/I_{\varphi}) = d_{\varphi}(x, y)$ is a metric on X/I_{φ} .

Proof. First we show that *D* is well defined. Let *x*, *y*, *a* and *b* be in *X* and $x/I_{\varphi} = a/I_{\varphi}$ and $y/I_{\varphi} = b/I_{\varphi}$. Then $x * a, a * x, y * b, b * y \in I_{\varphi}$ and so $\varphi(x * a) = \varphi(a * x) = \varphi(y * b) = \varphi(b * y) = 0$. By (6), $(x * y) * (x * a) \leq (a * y)$ and $(a * y) * (b * y) \leq (a * b)$. Hence

$$\begin{aligned} \varphi(x*y) - \varphi(x*a) &\leq \varphi((x*y)*(x*a)) &\leq \varphi(a*y) \\ &= \varphi(a*y) - \varphi(b*y) \\ &\leq \varphi((a*y)*(b*y)) \leq \varphi(a*b). \end{aligned}$$

Hence $\varphi(x * y) \leq \varphi(a * b)$. By similar argument we have $\varphi(a * b) \leq \varphi(x * y)$ and so $\varphi(x * y) = \varphi(a * b)$. In a similar fashion we have $\varphi(y * x) = \varphi(b * a)$. Therefore $D(x/I_{\varphi}, y/I_{\varphi}) = D(a/I_{\varphi}, b/I_{\varphi})$ and so *D* is well defined. It is easy to prove that *D* is a pseudo-metric. To prove that *D* is a metric, let $D(x/I_{\varphi}, y/I_{\varphi}) = 0$. Then $\varphi(x * y) = \varphi(y * x) = 0$ and so $x * y, y * x \in I_{\varphi}$. Thus $x/I_{\varphi} = y/I_{\varphi}$. Hence *D* is a metric on X/I_{φ} . \Box

Proposition 4.5. Let φ be pseudo-valuation on a BCK-algebra X and $I_{\varphi} = \{x \in X : \varphi(x) = 0\}$. If τ_D is the induced topology by D on X/I_{φ} and τ is the quotient topology on X/I_{φ} , then:

- (*i*) the epimorphism $\pi_{I_{\varphi}}$: $(X, \tau_{\varphi}) \rightarrow (X/I_{\varphi}, \tau_D)$ is an open map,
- (*ii*) $\tau_D = \tau$,
- (iii) if φ is a valuation, then $\pi_{I_{\varphi}}$ is a homeomorphism.

Proof. (*i*) It is enough to show that $\pi_{I_{\omega}}(B_{\varepsilon}(x)) \in \tau_D$ for each $x \in X$ and $\varepsilon > 0$. We have

$$\begin{aligned} \pi_{I_{\varphi}}(B_{\varepsilon}(x)) &= \{\pi_{I_{\varphi}}(y) : y \in B_{\varepsilon}(x)\} = \{y/I_{\varphi} : d_{\varphi}(y,x) < \varepsilon\} \\ &= \{y/I_{\varphi} : D(y/I_{\varphi}, x/I_{\varphi}) < \varepsilon\}, \\ &= B_{\varepsilon}^{D}(x/I_{\varphi}) \in \tau_{D}. \end{aligned}$$

(*ii*) It is clear that the map $\pi_{I_{\varphi}} : (X, \tau_{\varphi}) \to (X/I_{\varphi}, \tau_D)$ is continuous, becaus $D(x/I_{\varphi}, y/I_{\varphi}) = d_{\varphi}(x, y)$. Thus $\tau_D \subseteq \tau$. If $U \in \tau$, then $\pi_{\varphi}^{-1}(U) \in \tau_{\varphi}$. Hence $\pi_{I_{\varphi}}^{-1}(U) = \bigcup_{x \in \pi_{I_{\varphi}}^{-1}(U)} B_{\varepsilon}(x)$. Since $\pi_{I_{\varphi}}$ is an epimorphism, $U = \pi_{I_{\varphi}}(\pi_{I_{\varphi}}^{-1}(U)) = \pi_{I_{\varphi}}(\bigcup_{x \in \pi_{I_{\varphi}}^{-1}(U)} B_{\varepsilon}(x)) = \bigcup_{x \in \pi_{I_{\varphi}}^{-1}(U)} B_{\varepsilon}^{D}(x/I_{\varphi}) \in \tau_D$. Thus $U \in \tau_D$. Therefore $\tau_D = \tau$. (*ii*) It is enough to show that $\pi_{I_{\varphi}}$ is injective. Let $x, y \in X$ and $\pi_{I_{\varphi}}(x) = \pi_{I_{\varphi}}(y)$. Then $x/I_{\varphi} = y/I_{\varphi}$ and so

(*iii*) It is enough to show that $\pi_{I_{\varphi}}$ is injective. Let $x, y \in X$ and $\pi_{I_{\varphi}}(x) = \pi_{I_{\varphi}}(y)$. Then $x/I_{\varphi} = y/I_{\varphi}$ and so $x * y, y * x \in I_{\varphi}$. Thus $\varphi(x * y) = \varphi(y * x) = 0$. Since φ is a valuation, x * y = y * x = 0. By (4), x = y. Hence $\pi_{I_{\varphi}}$ is a homeomorphism. \Box

Proposition 4.6. Let φ be a pseudo-valuation on a BCK-algebra X. If $x/I_{\varphi} = y/I_{\varphi}$, then $\varphi(x) = \varphi(y)$ for any $x, y \in X$.

Proof. Let $x/I_{\varphi} = y/I_{\varphi}$. Then $x \equiv^{I_{\varphi}} y$ and so $\varphi(x * y) = \varphi(y * x) = 0$. By Proposition 3.1, we have

$$|\varphi(x) - \varphi(y)| \le d_{\varphi}(x, y) = \varphi(x * y) + \varphi(y * x) = 0.$$

Thus $\varphi(x) = \varphi(y)$. \Box

Theorem 4.7. Let φ be a pseudo-valuation on a BCK-algebra X and for each $x \in X$ the set x/I_{φ} has a minimum. Then there is a pseudo-valuation φ on X/I_{φ} such that $(X/I_{\varphi}, d_{\varphi})$ is a metric space. Moreover, if τ_{φ} is the induced topology by d_{φ} , then τ_{φ} is weaker than the quotient topology on X/I_{φ} .

Proof. Let $x \in X$. By assumption, there is a $x_0 \in x/I_{\varphi}$ such that $x_0 = \min x/I_{\varphi}$. Define $\phi(x/I_{\varphi}) = \varphi(x_0)$. We show that ϕ is a pseudo-valuation on X/I_{φ} . Since $0 \in I_{\varphi} = 0/I_{\varphi}$, $\phi(0/I_{\varphi}) = \varphi(0) = 0$. Let $x, y \in X$, $x_0 = \min x/I_{\varphi}$, $y_0 = \min y/I_{\varphi}$ and $z_0 = \min (x * y)/I_{\varphi}$. Since $x_0 * y_0 \in (x * y)/I_{\varphi}$, $x_0 * y_0 \equiv I_{\varphi} z_0$ and so $(x_0 * y_0)/I_{\varphi} = z_0/I_{\varphi}$. By Proposition 4.6, $\varphi(x_0 * y_0) = \varphi(z_0)$. Thus

$$\phi(x/I_{\varphi}) = \varphi(x_0) \le \varphi(x_0 * y_0) + \varphi(y_0) = \varphi(z_0) + \varphi(y_0) = \phi((x * y)/I_{\varphi}) + \phi(y/I_{\varphi})$$

Hence ϕ is a pseudo-valuation on X/I_{φ} . By Theorem 2.6, $d_{\phi} = \phi((x*y)/I_{\varphi}) + \phi((y*x)/I_{\varphi})$ is a pseudo-valuation on X/I_{φ} . Now, we show that d_{ϕ} is a metric. Let $x \in X$ and $x_0 = \min x/I_{\varphi}$. If $\phi(x/I_{\varphi}) = 0$, then $\varphi(x_0) = 0$ and so $x_0 \in I_{\varphi}$. Hence $x/I_{\varphi} = x_0/I_{\varphi} = 0/I_{\varphi}$. Thus d_{ϕ} is a metric on X/I_{φ} . Finally, we show that τ_{ϕ} is weaker than the quotient topology on X/I_{φ} . For this, let $a_0 = \min (x*y)/I_{\varphi}$ and $b_0 = \min (y*x)/I_{\varphi}$. Then $a_0 \le x*y$ and $b_0 \le y*x$ we have

$$d_{\phi}(x/I_{\varphi}, y/I_{\varphi}) = \phi((x * y)/I_{\varphi}) + \phi((y * x)/I_{\varphi}) = \varphi(a_0) + \varphi(b_0) \le \varphi(x * y) + \varphi(y * x) = d_{\varphi}(x, y).$$

Now it is easy to prove that the mapping $\pi_{I_{\varphi}} : X \to X/I_{\varphi}$ by $\pi_{I_{\varphi}}(x) = x/I_{\varphi}$ is continuous. Therefore τ_{φ} is weaker than the quotient topology on X/I_{φ} . \Box

Theorem 4.8. Let φ be a valuation on a BCK-algebra X. If (X, d_{φ}) is a d_{φ} -complete, then for each closed ideal I, X/I is a metric space.

Proof. Let *I* be a closed ideal in (X, d_{φ}) . By Proposition 4.1, the mapping $\overline{\varphi}(x/I) = inf\{\varphi(z) : z \in x/I\}$ is a pseudo-valuation on X/I. We prove that $\overline{\varphi}$ is a valuation. For this let $\overline{\varphi}(x/I) = 0$ for some $x \in X$. Since $\overline{\varphi}(x/I) = inf\{\varphi(z) : z \in x/I\}$, there is a sequence $\{z_n\} \subseteq x/I$ such that the sequence $\{\varphi(z_n)\}$ converges to 0. We show that $\{z_n\}$ is a d_{φ} -cauchy sequence. Let $\varepsilon > 0$. There is a $n_0 \in \mathbb{N}$ such that for each $n \ge n_0$, $\varphi(z_n) < \frac{\varepsilon}{2}$. Now by (17), for each $n, m \ge n_0$, we have

$$d_{\varphi}(z_n, z_m) = \varphi(z_n * z_m) + \varphi(z_m * z_n) \le \varphi(z_n) + \varphi(z_m) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Hence the sequence $\{z_n\}$ is d_{φ} -cauchy sequence and so converges to a $z \in X$. Since φ is continuous, the sequence $\{\varphi(z_n)\}$ converges to $\varphi(z)$. Hence $\varphi(z) = 0$ and since φ is a valuation on X, we get z = 0. On oter hand, since the sequence $\{z_n\}$ is converges to z, then $z \in \overline{x/I}$. Since I is closed in (X, d_{φ}) and $(X, *, \tau_{\varphi})$ is a topological BCK-algebra, by [[10], Proposition 3.8] x/I is closed in (X, d_{φ}) and so $0 = z \in x/I$. Thus $\overline{\varphi}$ is a valuation on X/I. Now by Proposition 2.7, X/I is a metric space. \Box

Theorem 4.9. Let φ be a pseudo-valuation on a BCK-algebra X. Then there exists a closed ideal J on X such that the quotient BCK-algebra X/J is pseudo-metrizable.

Proof. We define a binary relation ~ for elements $a, b \in X$ by the rule $a \sim b$ if $\varphi((x * a) * y) = \varphi(x * b) * y)$ for all $x, y \in X$. It is immediate from definition that this relation is an equivalence relation. Let J be the class containing $0 \in X$. Let us show that J is a closed ideal of X and for each $x \in X, x/J \subseteq x/ \sim$. Clearly,

$$J = \{a \in X : \varphi((x * a) * y) = \varphi(x * 0) * y\} = \varphi(x * y) \text{ for all } x, y \in X\}$$

For $x, y \in X$ define a function $f_{x,y} : X \to \mathbb{R}$ by $f_{x,y}(z) = \varphi((x * z) * y)$ for each $z \in X$. Since the function $f_{x,y}$ is continuous, the set $J = \bigcap_{x,y \in X} f_{x,y}^{-1}(f_{x,y}(0))$ is closed in X. To show that J is an ideal of X, let $a * b, b \in J$. Then $\varphi((x * (a * b) * y) = \varphi(x * y))$ and $\varphi((x * b) * y) = \varphi(x * y)$. Replacing x by x * b in the frist equality, by (6) we obtain

$$\varphi((x * b) * y) = \varphi(((x * b) * (a * b)) * y) \le \varphi((x * a) * y).$$

Thus $\varphi(x * y) \leq \varphi((x * a) * y)$. On the other hand, (8) and (10) imply $(x * a) * y = (x * y) * a \leq x * y$. By (17), $\varphi((x * a) * y) \leq \varphi(x * y)$. Therefore $\varphi((x * a) * y) = \varphi(x * y)$ and so $a \in J$. Thus *J* is an ideal of *X*.

Let $d \in c/J$. Then c * d, $d * c \in J$. Since $\varphi((x * (c * d)) * y) = \varphi(x * y)$ and $\varphi((x * (d * c)) * y) = \varphi(x * y)$, replacing x by x * d in frist equality, we obtain

$$\varphi((x*d)*y) = \varphi(((x*d)*(c*d))*y) \le \varphi((x*c)*y).$$

Similarly, replacing *x* by *x* * *c* in second equality, we obtain $\varphi((x * c) * y) = \varphi(((x * c) * (d * c)) * y) \le \varphi((x * d) * y)$. Thus $\varphi((x * d) * y) = \varphi((x * c) * y)$ which implies that $c \sim d$. Hence $d \in c/\sim$. Therefore $c/J \subseteq c/\sim$. Since for any $x, y \in X$, the function $\varphi((x * a) * y)$ with argument *a* is constant on the set *a*/*J*, so for any *a*, *b* $\in X$, we can define

$$\rho(a/J, b/J) = \sup_{x,y \in X} |\varphi((x * a) * y) - \varphi((x * b) * y)|$$

We claim that ρ is a pseudo-metric on X/J. Clearly, $\rho(a/J, b/J) \ge 0$ for each $a, b \in X$. It is clear that $\rho(a/J, b/J) = \rho(b/J, a/J)$. To verify triangle inequality, let $a, b, c \in X$. Then

$$\begin{split} \rho(a/J,c/J) &= \sup_{x,y \in X} |\varphi((x*a)*y) - \varphi((x*c)*y)| \\ &\leq \sup_{x,y \in X} (|\varphi((x*a)*y) - \varphi((x*b)*y)| + |\varphi((x*b)*y) - \varphi((x*c)*y)|) \\ &\leq \sup_{x,y \in X} |\varphi((x*a)*y) - \varphi((x*b)*y)| + \sup_{x,y \in X} |\varphi((x*b)*y) - \varphi((x*c)*y)| \\ &= \rho(a/J,b/J) + \rho(b/J,c/J). \end{split}$$

5. Conclusion

In this paper, we studied some properties of pseudo-valuations and their induced metrics on a BCKalgebra and we showed that there are many pseudo-valuations on a BCK-algebra. The set of all pseudovaluations on a BCK-algebra is a BCK-algebra, too. Next the researchers can study properties of this BCKalgebra. Moreover, since the power set of a non-empty set is a BCK-algebra using of pseudo-valuations can be useful in the study of theory of sets.

References

- [1] R. A. Borzooei, G. R. Rezaei and N. Kouhestani, Metrizability (semi)topological BL-algebras, Soft Comput, 16(2012), 1681-1690.
- [2] D. Busneag, Hilbert-algebras with valuations, Didcrete Math. 263(2003), 11-14.
- [3] M. I. Doh, M. S. Kang, BCK/BCI-algebras with pseudo-valuations, Honam Mathematical J, 32 (2010), 217-226.
- [4] A. Dvurecenskij, S. Pulmannova, (1rd edition), New trends in quantum structures, Springer- Science+Business Media, Berlin, 2000.
- [5] S. Ghorbani, Quotient BCI-algebras induced by pseudo-valuations, Iranian Journal of Mathematical Sciences and Informatics, 5(2010), 13-24.
- [6] K. Iséki, On BCI-algebras, Math. Seminar Notes, 8(1980), 125-130.
- [7] K. Iséki, Tanaka, An introduction to theory of BCK-algebras, Math. Japonica, 23(1978), 1-26.
- [8] Y. Imai, K. Iséki, On axiom system of propositional calculi XIV, Proc. Japan Academy 42(1966), 19-22.
- [9] N. Kouhestani, S. Mehrshad, (Semi)topological quotient BCK-algebras, Afrika Matematika, 28(2017), 1235-1251.
- [10] S. Mehrshad, N. Kouhestani, A quasi-uniformity on BCC-algebras, Annals of the University of Craiova, 44(2017), 64-77.
- [11] T. Senapati, K. P. Shum, Cubic implicative ideals of BCK-algebras, Missouri Journal of Mathematical Sciences, 29(2017), 125-138.