On Pseudo-Valuations on BCK-Algebras

S. Mehrshad ${ }^{\text {a }}$, N. Kouhestani ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, University of zabol, Zabol, Iran
${ }^{b}$ Department of Mathematics, University of sistan and baluchestan, Zahedan, Iran

Abstract

In this paper, we study some properties of pseudo-valuations and their induced quasi metrics. The continuity of operation of a BCK-algebra was studied with topology induced by a pseudo-valuation. Moreover, we show that product of finite number of this pseudo metric spaces is a pseudo metric space. Also, we prove that if a BCK-algebra X has a pseudo-valuation, then every quotient space of X has a pseudo metric. The completion of this spaces has been investigated in the present study.

1. Introduction

A BCK-algebra is one of important of logical algebras introduced by Y. Imai and K. Iseki in 1966 [8]. This notation is originated from two different ways: one of them is based on set theory, the other is from classical and non-classical propositional calculi. The BCK-operator $*$ is an analogue of the set theoretical difference. As is well known, there is a close relation between the notions of the set difference in set theory and the implication functor in logical systems. Busneag in [2] defined a pesudo-valuation on a Hilbert algebra, and proved that every pseudo-valuation induces a pseudo-metric on a Hilbert algebra. Doh and Kang [3] by using the model of Hilbert algebra introduced the notion of pseudo-valuation on a BCK/BCI-algebra and provided several theorems of pseudo-valuations. In this paper, in section 3, we study some properties of pseudo-valuations on BCK-algebrs and completion $\left(\widetilde{X}, \widetilde{d_{\varphi}}\right)$ of pseudo metric space $\left(X, d_{\varphi}\right)$. In section 4 , we introduced some pseudo-valuations on quotient BCK-algebra X / I_{φ} and study the induced pseudo metric by this pseudo-valuations. Moreover, we show that for each pseudo-valuation on a BCK-algebra X there is an ideal J different with I_{φ} such that X / J is pseudo metrizable.

2. Preliminaries

2.1. BCK-algebras

An algebra $(X, *, 0)$ of type $(2,0)$ is called a BCK-algebra if it satisfies the following axioms: for any $x, y, z \in X$,
(1) $((x * y) *(x * z)) *(z * y)=0$,
(2) $(x *(x * y)) * y=0$,

[^0](3) $x * x=0$,
(4) $x * y=y * x=0 \Rightarrow x=y$,
(5) $0 * x=0$.[See,[4]]

In BCK-algebra X if we define \leqslant by $x \leqslant y$ if and only if $x * y=0$, then \leqslant is a partial order and the following conclusions hold:
(6) $(x * y) *(x * z) \leqslant(z * y)$ and $(y * x) *(z * x) \leqslant(y * z)$,
(7) $x *(x *(x * y))=x * y$,
(8) $(x * y) * z=(x * z) * y$,
(9) $x * 0=x$,
(10) $x * y \leqslant x$,
(11) $x \leqslant y$ implies $x * z \leqslant y * z$ and $z * y \leq z * x$,
(12) $(x * y) * z \leq x * z \leq x *(z * u)$.

Let $(X, *, 0)$ be a BCK-algebra and $x \wedge y=y *(y * x)$. Then X is called commutative BCK-algebra if $x \wedge y=y \wedge x$. If X is commutative BCK-algebra, then $\inf \{x, y\}=x \wedge y$.

If there is an element 1 of a BCK-algebra $(X, *, 0)$ such that $x \leq 1$ for all $x \in X$, then $(X, *, 0)$ is said to be bounded BCK-algebra. [See, [4]]

Definition 2.1. [4] Let X be a BCK-algebra. An ideal is a nonempty set $I \subseteq X$ such that
(a) $0 \in I$,
(b) $x * y \in I, y \in I \Rightarrow x \in I$.

Proposition 2.2. [4] Let I be an ideal in a BCK-algebra $(X, *, 0)$. Then:
(i) If $x \leqslant y$ and $y \in I$, then $x \in I$.
(ii) the relation

$$
x \equiv^{I} y \Leftrightarrow x * y, y * x \in I
$$

is a congruence relation on X, i.e. it is an equivalence relation on X such that for each $a, b, c, d \in X$, if $a \equiv^{I} b$ and $c \equiv^{I} d$, then $a * c \equiv^{I} b * d$,
(iii) if $\frac{x}{I}=\left\{y \in X: x \equiv^{I} y\right\}$ and $\frac{X}{I}=\left\{\frac{x}{I}: x \in X\right\}$, then $\frac{X}{I}$ is a BCK-algebra under the binary operation

$$
\frac{x}{I} * \frac{y}{I}=\frac{x * y}{I} .
$$

In this case $\frac{X}{I}$ is said to be a quotient BCK-algebra,
(iv) the mapping $\pi_{I}: X \hookrightarrow \frac{X}{I}$ by $\pi_{I}(x)=x / I$ is an epimorphism and for each $S \subseteq X$,

$$
\left(\pi_{I}^{-1} \circ \pi_{I}\right)(S)=\bigcup_{x \in S} \frac{x}{I} .
$$

π_{I} is also called a canonical epimorphism.

2.2. Pseudo-valuations

Definition 2.3. [3] A real-valued function φ on a BCK-algebra X is called a weak pseudo-valuation on X if for all $x, y \in X$,

$$
\begin{equation*}
\varphi(x * y) \leq \varphi(x)+\varphi(y) \tag{15}
\end{equation*}
$$

Definition 2.4. [3] A real-valued function φ on a BCK-algebra X is called a pseudo-valuation on X if
(i) $\varphi(0)=0$,
(ii) $\varphi(x)-\varphi(y) \leq \varphi(x * y)$, for all $x, y \in X$.

A pseudo-valuation φ on a BCK-algebra X is said to be valuation if

$$
\varphi(x)=0 \Rightarrow x=0
$$

Let φ be a pseudo-valuation on a BCK-algebra X. Then for all $x, y, z \in X$,
(16) $\varphi(x) \geq 0$,
(17) $x \leq y \Rightarrow \varphi(x) \leq \varphi(y)$,
(18) $\varphi(x * z) \leq \varphi(x * y)+\varphi(y * z)$.

In a BCK-algebra, every pseudo-valuation is a weak pseudo-valuation.[See, [3]]
Proposition 2.5. Let φ be a pseudo-valuation on X. Then $I_{\varphi}=\{x \in X: \varphi(x)=0\}$ is an ideal of X.
Theorem 2.6. [3] Let φ be a pseudo-valuation on a BCK-algebra X. Define $d_{\varphi}: X \times X \rightarrow X$ by

$$
d_{\varphi}(x, y)=\varphi(x * y)+\varphi(y * x)
$$

for all $(x, y) \in X \times X$. Then d_{φ} is a pseudo-metric, i.e. for evey $x, y, z \in X$ we have:
(i) $d_{\varphi}(x, x)=0$,
(ii) $d_{\varphi}(x, y)=d_{\varphi}(y, x)$,
(iii) $d_{\varphi}(x, y) \leq d_{\varphi}(x, z)+d_{\varphi}(z, y)$.

If (X, d) is a pseudo-metric space, then:
(i) for each $x \in X$ and $\varepsilon>0$, the set $B_{\varepsilon}(x)=\{y \in X: d(y, x)<\varepsilon\}$ is called a ball of radius ε with center at x,
(ii) the set $U \subseteq X$ is open in (X, d) if for each $x \in U$, there is an $\varepsilon>0$ such that $B_{\varepsilon}(x) \subseteq U$,
(iii) the topology τ_{d} induced by d is the collection of all open sets in (X, d).

Theorem 2.7. [3] Let φ be a pseudo-valuation on a BCK-algebra X. Then a map $\varphi: X \rightarrow \mathbb{R}$ is a valuation if and only if $\left(X, d_{\varphi}\right)$ is a metric space.

Proposition 2.8. [3] Let φ be a pseudo-valuation on a BCK-algebra X. Then:
(19) $d_{\varphi}(x, y) \geq d_{\varphi}(z * x, z * y)$,
(20) $d_{\varphi}(x, y) \geq d_{\varphi}(x * z, y * z)$,
(21) $d_{\varphi}(x * y, z * w) \leq d_{\varphi}(x * y, z * y)+d_{\varphi}(z * y, z * w)$,
for all $x, y, z, w \in X$.

3. Pseudo-valuations on BCK-algebras

Proposition 3.1. Let φ and ψ be pseudo-valuations on BCK-algebra X. Then
(i) $d_{\varphi}((x \wedge z),(y \wedge z)) \leq d_{\varphi}(x, y)$,
(ii) $|\varphi(x)-\varphi(y)| \leq d_{\varphi}(x, y)$,
(iii) $\varphi: X \rightarrow \mathbb{R}$ is continuous,
(iv) I_{φ} is a closed subset of X,
(v) for each $x \in X, \varphi+\psi: X \rightarrow \mathbb{R}$ defined by $(\varphi+\psi)(x)=\varphi(x)+\psi(x)$ is a pseudo-valuation on X. Moreover, $(t \varphi)(x)=t(\varphi(x))$ is a pseudo-valuation on X for any $t \in \mathbb{R}^{+}$and $x \in X$.

Proof. (i) We have $d_{\varphi}((x \wedge z),(y \wedge z))=\varphi((x \wedge z) *(y \wedge z))+\varphi((y \wedge z) *(x \wedge z))$. By (6),

$$
(x \wedge z) *(y \wedge z)=(z *(z * x)) *(z *(z * y)) \leq(z * y) *(z * x) \leq(x * z) .
$$

Similarly, we have $(y \wedge z) *(x \wedge z) \leq(y * x)$. By (17), $\varphi((z * y) *(z * x)) \leq \varphi(x * z)$ and $\varphi((y \wedge z) *(x \wedge z)) \leq \varphi(y * x)$. Hence

$$
d_{\varphi}((x \wedge z),(y \wedge z))=\varphi((x \wedge z) *(y \wedge z))+\varphi((y \wedge z) *(x \wedge z)) \leq \varphi(x * y)+\varphi(y * x)=d_{\varphi}(x, y)
$$

(ii) Let $x, y \in X$. Then:

$$
\varphi(y)-\varphi(x) \leq \varphi(y * x)) \leq \varphi(y * x)+\varphi(x * y)=d_{\varphi}(x, y)
$$

and

$$
\varphi(x)-\varphi(y) \leq \varphi(x * y) \leq \varphi(x * y)+\varphi(y * x)=d_{\varphi}(x, y)
$$

Hence $-d_{\varphi}(x, y) \leq \varphi(x)-\varphi(y) \leq d_{\varphi}(x, y)$. Thus $|\varphi(x)-\varphi(y)| \leq d_{\varphi}(x, y)$.
(iii) Let $\left\{x_{n}\right\}$ be a sequence in X such that $x_{n} \longrightarrow x \in X$. Then $d_{\varphi}\left(x_{n}, x\right) \longrightarrow 0$ in \mathbb{R}. The desired result follows by part (ii).
(iv) Since $I_{\varphi}=\{x \in X: \varphi(x)=0\}=\varphi^{-1}(\{0\})$, by part (iii) the proof is clear.
(v) By definition, $(\varphi+\psi)(0)=\varphi(0)+\psi(0)=0+0=0$. Suppose that $x, y \in X$. Then:

$$
\begin{aligned}
(\varphi+\psi)(x * y) & =\varphi(x * y)+\psi(x * y) \\
& \geq(\varphi(x)-\varphi(y))+(\psi(x)-\psi(y)) \\
& =(\varphi(x)+\psi(x))-(\varphi(y)+\psi(y)) \\
& =(\varphi+\psi)(x)-(\varphi+\psi)(y)
\end{aligned}
$$

Thus $\varphi+\psi$ is a pseudo-valuation on X. The proof for other case is similar.

Proposition 3.2. If τ_{φ} is a induced topology by d_{φ}, then $\left(X, *, \tau_{\varphi}\right)$ is a topological BCK-algebra.
Proof. By Theorem 2.6, $\left(X, d_{\varphi}\right)$ is a pseudo-metric space. Let $x * y \in B_{\epsilon}(x * y)$. We claim that $B_{\frac{\varepsilon}{2}}(x) * B_{\frac{\varepsilon}{2}}(y) \subseteq$ $B_{\varepsilon}(x * y)$. Let $z \in B_{\frac{\varepsilon}{2}}(x) * B_{\frac{\varepsilon}{2}}(y)$. Then there exist $p \in B_{\frac{\varepsilon}{2}}(x)$ and $q \in B_{\frac{\varepsilon}{2}}(y)$ such that $z=p * q$. Hence $d_{\varphi}(x, p) \leq \frac{\varepsilon}{2}$ and $d_{\varphi}(y, q) \leq \frac{\varepsilon}{2}$. By (19) and (20) we have $d_{\varphi}(x * y, p * y) \leq d_{\varphi}(x, p)$ and $d_{\varphi}(p * y, p * q) \leq d_{\varphi}(y, q)$. By (21),

$$
d_{\varphi}(x * y, p * q) \leq d_{\varphi}(x * y, p * y)+d_{\varphi}(p * y, p * q) \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

Thus $z=p * q \in B_{\varepsilon}(x * y)$. Therefore $(X, *, \tau)$ is a topological BCK-algebra.
Proposition 3.3. A pseudo-valuation φ on the topological BCK-algebra (X, τ) is continuous iff, for each $\varepsilon>0$ there exists a neighbourhood U of 0 such that $\varphi(z)<\varepsilon$, for each $z \in U$.

Proof. Suppose $x \in X$ and ε is a positive number. Let U be a neighborhood of 0 such that $\varphi(z)<\varepsilon$, for each $z \in U$. Since $x * x=0$, there are open neighborhoods V and W of x such that $V * W \subseteq U$. Put $P=V \cap W$. For each $y \in P, x * y, y * x \in P * P \subseteq U$ and so $\varphi(x * y), \varphi(y * x)<\varepsilon$. Thus $\varphi(y)-\varphi(x)<\varepsilon$ and $\varphi(x)-\varphi(y)<\varepsilon$. Hence $|\varphi(y)-\varphi(x)|<\varepsilon$. Thus φ is continuous. Conversely, If φ is continuous on X, then it is continuous in 0 . Let ε be a positive number. Since $\varphi(0)=0,(-\varepsilon, \varepsilon)$ is an open neighborhood of $\varphi(0)$ in \mathbb{R}. There is an open neighborhood U of 0 in X such that $\varphi(U) \subseteq(-\varepsilon, \varepsilon)$. Therefore $\varphi(z)<\varepsilon$, for each $z \in U$.

A function between two metric spaces will be called isometry if it preserves distances. Let φ_{X} and φ_{Y} be pseudo-valuations on BCK-algebras X and Y respectively. Then $f: X \rightarrow Y$ will be called pseudo-valuation preserving if $\varphi_{Y} \circ f=\varphi_{X}$.
Proposition 3.4. Let X and Y be BCK-algebras and $\varphi_{X}: X \rightarrow \mathbb{R}$ and $\varphi_{Y}: Y \rightarrow \mathbb{R}$ be pseudo-valuations. If $f: X \rightarrow Y$ ia a homomorphism, then the following are equivalent:
(i) f is pseudo-valuation preserving,
(ii) f is an isometry.

Proof. Assume that f is pseudo-valuation preserving. Then for each $x \in X, \varphi_{Y}(f(x))=\varphi_{X}(x)$. for any $x, y \in X$ we have,

$$
\begin{aligned}
d_{\varphi_{Y}}(f(x), f(y)) & =\varphi_{Y}(f(x) * f(y))+\varphi_{Y}(f(y) * f(x)), \\
& =\varphi_{Y}(f(x * y))+\varphi_{Y}(f(y * x)), \\
& =\varphi_{Y} \circ f(x * y)+\varphi_{Y} \circ f(y * x), \\
& =\varphi_{X}(x * y)+\varphi_{X}(y * x), \\
& =d_{\varphi_{X}}(x, y) .
\end{aligned}
$$

Hence f is isometry. Conversely, if f is an isometry, then for any $x \in X$,

$$
\varphi_{X}(x)=d_{\varphi_{X}}(x, 0)=d_{\varphi_{Y}}(f(x), f(0))=\varphi_{Y}(f(x))+\varphi_{Y}(f(0))=\varphi_{Y}(f(x))
$$

Therefore f is pseudo-valuation preserving.
Proposition 3.5. Let f be an isomorphism from BCK-algebra $\left(X, *, 0_{X}\right)$ to BCK-algebra $\left(Y, \star, 0_{Y}\right)$. If φ is a pseudovaluation on X, then $\psi: Y \rightarrow \mathbb{R}$ defined by $\psi(y)=\varphi \circ f^{-1}(y)$ for any $y \in Y$ is a pseudo-valuation on Y.

Proof. Since $f\left(0_{X}\right)=0_{Y}, \psi\left(0_{Y}\right)=\varphi \circ f^{-1}\left(0_{Y}\right)=\varphi\left(0_{X}\right)=0$. Let $y, y^{\prime} \in Y$. Since f is bijection, there are $x, x^{\prime} \in X$ such that $f(x)=y$ and $f\left(x^{\prime}\right)=y^{\prime}$. Hence

$$
\begin{aligned}
\psi\left(y \star y^{\prime}\right) & =\varphi\left(f^{-1}\left(y \star y^{\prime}\right)\right) \\
& =\varphi\left(f^{-1}(y) * f^{-1}\left(y^{\prime}\right)\right) \\
& =\varphi\left(x * x^{\prime}\right) \\
& \geq \varphi(x)-\varphi\left(x^{\prime}\right) \\
& =\varphi\left(f^{-1}(y)\right)-\varphi\left(f^{-1}\left(y^{\prime}\right)\right. \\
& =\psi(y)-\psi\left(y^{\prime}\right) .
\end{aligned}
$$

Therefore ψ is a pseudo-valuation on Y.
Proposition 3.6. Let f be an isomorphism from BCK-algebra $\left(X, *, 0_{X}\right)$ to BCK-algebra $\left(Y, \star, 0_{Y}\right)$. If ψ is a pseudovaluation on Y, then $\varphi: X \rightarrow \mathbb{R}$ defined by $\varphi(x)=\psi \circ f(x)$ for any $x \in X$ is a pseudo-valuation on X.

Proof. Since $f\left(0_{X}\right)=0_{Y}, \varphi\left(0_{X}\right)=\psi \circ f\left(0_{X}\right)=\psi\left(0_{Y}\right)=0$. For any $x, y \in X$ we have

$$
\varphi(x * y)=\psi(f(x * y))=\psi(f(x) \star f(y)) \geq \psi(f(x))-\psi(f(y))=\varphi(x)-\varphi(y)
$$

Thus φ is a pseudo-valuation on X.

Proposition 3.7. Let φ be a pseudo-valuation on X and $A \subseteq X$. Let $x \in X$. If there is a $y \in A$ such that $x \equiv^{I_{\varphi}} y$, then $x \in \bar{A}$. The converse is also true, when I_{φ} is a neighborhood of 0 .

Proof. Let there is a $y \in A$ such that $x \equiv^{I_{\varphi}} y$. Then $\varphi(x * y)=\varphi(y * x)=0$. Thus $\varphi(x * y)+\varphi(y * x)<\varepsilon$ for any $\varepsilon>0$. Hence for each $\varepsilon>0, B_{\varepsilon}(x) \cap A \neq \emptyset$ and so $x \in \bar{A}$. Conversely, let I_{φ} be a neighborhood of 0 and $x \in \bar{A}$. There is a sequence $\left\{x_{n}\right\}$ in A such that $x_{n} \rightarrow x$. Since $*$ is continuous, $x * x_{n} \rightarrow 0$ and $x_{n} * x \rightarrow 0$. Hence there is a positive integer n_{0} such that $x_{n_{0}} * x \in I_{\varphi}$ and $x * x_{n_{0}} \in I_{\varphi}$. Thus $x_{n_{0}} \equiv^{I_{\varphi}} x$.

Proposition 3.8. Let φ be a pseudo-valuation on a BCK-algebra X. If $\left.m_{\varphi}(x)=\lim _{r \rightarrow 0^{+}} \inf f \varphi(z): z \in B_{r}(x)\right\}$ and $M_{\varphi}(x)=\lim _{r \rightarrow 0^{+}} \operatorname{Sup}\left\{\varphi(z): z \in B_{r}(x)\right\}$, then:
(i) for each $x \in X, m_{\varphi}(x)$ and $M_{\varphi}(x)$ are pseudo-valuations on X,
(ii) $m_{\varphi}(x) \leq M_{\varphi}(x)$ for any $x \in X$,
(iii) $M_{\varphi}(x)-m_{\varphi}(x) \leq M_{\varphi}(0)$ for any $x \in X$,
(iv) if $M_{\varphi}(0)<\infty$, then for all $x \in X, M_{\varphi}(x), m_{\varphi}(x)<\infty$.

Proof. (i) Let r be a positive number and $z \in B_{r}(0)$. Then $d_{\varphi}(z, 0)<r$ and so $\varphi(0)=0 \leq \varphi(z)<r$. Thus $m_{\varphi}(0)=0$. Let $x, y \in X$ and r be a positive number. We show that $m_{\varphi}(x) \leq m_{\varphi}(x * y)+m_{\varphi}(y)$. If $u \in B_{r}(x)$, then

$$
\inf \left\{\varphi(z): z \in B_{r}(x)\right\} \leq \varphi(u) \leq \varphi(u * v)+\varphi(v)
$$

for any $v \in B_{r}(y)$. Hence

$$
\inf \left\{\varphi(z): z \in B_{r}(x)\right\} \leq \inf \left\{\varphi(u * v)+\varphi(v): v \in B_{r}(y)\right\} .
$$

Since for each $x \in X, \varphi(x) \geq 0$, we get

$$
\inf \left\{\varphi(u * v)+\varphi(v): v \in B_{r}(y)\right\}=\inf \left\{\varphi(w): w \in u * B_{r}(y)\right\}+\inf \left\{\varphi(v): v \in B_{r}(y)\right\} .
$$

From $u * v \in u * B_{r}(y) \subseteq B_{r}(x) * B_{r}(y) \subseteq B_{2 r}(x * y)$, we conclude that

$$
\inf \left\{\varphi(z): z \in B_{r}(x)\right\} \leq \inf \left\{\varphi(w): w \in B_{2 r}(x * y)\right\}+\inf \left\{\varphi(v): v \in B_{r}(y)\right\}
$$

Now, the result follows on taking limits as $r \rightarrow 0^{+}$. For other case, since $\left\{\varphi(z): z \in B_{r}(0)\right\}=\{\varphi(z): 0 \leq \varphi(z)<$ $r\}$, we get $0 \leq \sup \{\varphi(z): 0 \leq \varphi(z)<r\} \leq r$. Taking limits as $r \rightarrow 0^{+}$, we have $M_{\varphi}(0)=0$. Now by similar argument the desired result will obtain.
(ii) The proof is clear.
(iii) For $m_{\varphi}(x)<a$ and $b<M_{\varphi}(x)$ there exist $u, v \in B_{r}(x)$ with $m_{\varphi}(x) \leq \varphi(u)<a$ and $b<\varphi(v) \leq M_{\varphi}(x)$. Hence

$$
b-a<\varphi(v)-\varphi(u) \leq \varphi(v * u)=d_{\varphi}(u * v, 0)<2 r
$$

beacuse $v * u \in B_{r}(x) * B_{r}(x) \subseteq B_{2 r}(x * x)=B_{2 r}(0)$. Thus $\varphi(v * u) \leq \sup \left\{\varphi(z): z \in B_{2 r}(0)\right\}$. Hence, with r fixed, taking a, b to respective limits,

$$
M_{\varphi}(x)-m_{\varphi}(x) \leq \sup \left\{\varphi(z): z \in B_{2 r}(0)\right\} .
$$

Taking limits as $r \rightarrow 0^{+}$, we obtain the inequality.
(iv) Clearly, $0 \leq M_{\varphi}(x)-m_{\varphi}(x) \leq M_{\varphi}(0)$, hence both $M_{\varphi}(x)$ and $m_{\varphi}(x)$ are finite for every x.

Let X be a BCK-algebra. Then X is called positive implicative BCK-algebra if $(x * y) * z=(x * z) *(y * z)$. The sets of the form

$$
[0, c]=\{x \in X: 0 \leq x \leq c\}=\{x \in X: x \leq c\}
$$

is called initial segment.

Proposition 3.9. If φ is a pseudo-valuation on positive implicative BCK-algebra X and $a \in X$, then $\varphi_{a}(x)=\varphi(x * a)$ is a pseudo-valuation on X, for any $x \in X$. Moreover, if φ is a valuation, then φ_{a} is a valuation if and only if $I_{\varphi_{a}}$ is an initial segment.
Proof. It is easy to prove that $\varphi_{a}(0)=0$. Let $x, y, a \in X$. Then

$$
\varphi_{a}(x)-\varphi_{a}(y)=\varphi(x * a)-\varphi(y * a) \leq \varphi((x * a) *(y * a))=\varphi((x * y) * a)=\varphi_{a}(x * y) .
$$

Hence φ_{a} is a pseudo-valuation on X. Now, we have

$$
\varphi_{a}(x)=0 \Leftrightarrow \varphi(x * a)=0 \Leftrightarrow x * a=0 \Leftrightarrow x \leq a \Leftrightarrow x \in[0, a] .
$$

Proposition 3.10. Let X and Y be two BCK-algebras and φ be a pseudo-valuation on X. If $f: X \rightarrow Y$ is a surjective homomorphism, then $\phi(y)=\inf \{\varphi(x): f(x)=y\}$ is a pseudo-valuation on Y.

Proof. It is easy to prove that $\phi(0)=0$. Let $x, y \in Y$. Then there are $a, b \in X$ such that $f(a)=x$ and $f(b)=y$. Since f is a homomorphism, $f(a * b)=x * y$. Thus

$$
\begin{aligned}
\phi(x * y)+\phi(y) & =\inf \{\varphi(a * b): f(a * b)=x * y\}+\inf \{\varphi(b): f(b)=y\} \\
& \geq \inf \{\varphi(a * b)+\varphi(b): f(a * b)=x * y, f(b)=y\} \\
& \geq \inf \{\varphi(a): f(a)=x\}=\phi(x) .
\end{aligned}
$$

Therefore ϕ is a pseudo-valuation on Y.
Let $\left(X_{1}, *_{1}, 0_{1}\right)$ and $\left(X_{2}, *_{2}, 0_{2}\right)$ be two BCK-algebras and $X=X_{1} \times X_{2}$. Let $\pi_{i}: X \rightarrow X_{i}(i=1,2)$ be a projection from X to X_{i}. Then for any $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in X$ we have

$$
\pi_{i}(x * y)=\pi_{i}\left(x_{1} *_{1} y_{1}, x_{2} *_{2} y_{2}\right)=x_{i} *_{i} y_{i}=\pi_{i}(x) *_{i} \pi_{i}(y) .
$$

Proposition 3.11. Let $\left(X_{1}, *_{1}, 0_{1}\right)$ and $\left(X_{2}, *_{2}, 0_{2}\right)$ be two BCK-algebras and $X=X_{1} \times X_{2}$. Then X has a pseudovaluation φ if and only if X_{i} have a pseudo-valuation for each $i=1,2$. Moreover, φ is continuous.

Proof. Let X has a pseudo-valuation. Since $\pi_{i}: X \rightarrow X_{i}$ is an epimorphism, X_{i} has a pseudo-valuation for $i=1,2$ by Proposition 3.10. Conversely, let φ_{1} and φ_{2} be pseudo-valuations on X_{1} and X_{2}, respectively. Let $x=\left(x_{1}, x_{2}\right)$ define $\varphi: X \rightarrow \mathbb{R}$ by $\varphi(x)=\varphi_{1}\left(x_{1}\right)+\varphi_{2}\left(x_{2}\right)$, then $\varphi(0)=\varphi\left(\left(0_{1}, 0_{2}\right)\right)=\varphi_{1}\left(0_{1}\right)+\varphi_{2}\left(0_{2}\right)=0$. Let $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in X$. Then we have

$$
\begin{aligned}
\varphi(x * y) & =\varphi\left(x_{1} *_{1} y_{1}, x_{2} *_{2} y_{2}\right) \\
& =\varphi_{1}\left(x_{1} *_{1} y_{1}\right)+\varphi_{2}\left(x_{2} *_{2} y_{2}\right) \\
& \geq \varphi_{1}\left(x_{1}\right)-\varphi_{1}\left(y_{1}\right)+\varphi_{2}\left(x_{2}\right)-\varphi_{2}\left(y_{2}\right) \\
& =\varphi_{1}\left(x_{1}\right)+\varphi_{1}\left(x_{2}\right)-\left(\varphi_{2}\left(y_{1}\right)+\varphi_{2}\left(y_{2}\right)\right) \\
& =\varphi(x)-\varphi(y)
\end{aligned}
$$

Hence φ is a pseudo-valuation on X. Now, let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be converges sequences to x and y in X_{1} and X_{2}, respectively. Since φ_{1}, φ_{2} and $*$ are continuous, $\varphi_{1}\left(x_{n} *_{1} x\right) \rightarrow 0$ and $\varphi_{2}\left(y_{n} *_{2} y\right) \rightarrow 0$. Hence

$$
\varphi\left(\left(x_{n}, y_{n}\right) *(x, y)\right)=\varphi\left(x_{n} *_{1} x, y_{n} *_{2} y\right)=\varphi_{1}\left(x_{n} *_{1} x\right)+\varphi_{2}\left(y_{n} *_{2} y\right) \rightarrow 0
$$

Thus φ is continuous.
Proposition 3.12. Let φ_{1} and φ_{2} be two pseudo-valuations on $B C K$-algebras X_{1} and X_{2}, respectively. For each $(x, y),(a, b) \in X_{1} \times X_{2}$ define

$$
d((x, y),(a, b))=d_{\varphi_{1}}(x, a)+d_{\varphi_{2}}(y, b)
$$

Thend is a pseudo metric on $X_{1} \times X_{2}$.

Proof. For any $(x, y),(a, b) \in X_{1} \times X_{2}$, we have

$$
d((x, y),(x, y))=d_{\varphi_{1}}(x, x)+d_{\varphi_{2}}(y, y)=0+0=0
$$

and

$$
d((x, y),(a, b))=d_{\varphi_{1}}(x, a)+d_{\varphi_{2}}(y, b)=d_{\varphi_{1}}(a, x)+d_{\varphi_{2}}(b, y)=d((a, b),(x, y))
$$

Let $(x, y),(a, b),(u, v) \in X_{1} * X_{2}$. Then

$$
\begin{aligned}
d((x, y),(u, v)) & =d_{\varphi_{1}}(x, u)+d_{\varphi_{2}}(y, v), \\
& \leq\left[d_{\varphi_{1}}(x, a)+d_{\varphi_{1}}(a, u)\right]+\left[d_{\varphi_{2}}(y, b)+d_{\varphi_{2}}(b, v)\right], \\
& =\left[d_{\varphi_{1}}(x, a)+d_{\varphi_{2}}(y, b)\right]+\left[d_{\varphi_{1}}(a, u)+d_{\varphi_{2}}(b, v)\right], \\
& =d((x, y),(a, b))+d((a, b),(u, v)) .
\end{aligned}
$$

Therefore $\left(X_{1} \times X_{2}, d\right)$ is a pseudo metric space.
Corollary 3.13. If φ_{1} and φ_{2} are two valuations on $B C K$-algebras X_{1} and X_{2}, respectively, then $\left(X_{1} \times X_{2}, d\right)$ is a metric space.

Proposition 3.14. Let φ_{1} and φ_{2} be two pseudo-valuations on BCK-algebras $\left(X_{1}, *_{1}, 0_{1}\right)$ and $\left(X_{2}, *_{2}, 0_{2}\right)$ respectively. If $X=X_{1} \times X_{2}$, then $*: X \times X \rightarrow X$ is continuous.

Proof. Let $(x, y),(a, b) \in X$. We show that

$$
B_{\frac{\varepsilon}{2}}((a, b)) * B_{\frac{\varepsilon}{2}}((x, y)) \subseteq B_{\varepsilon}((a, b) *(x, y))=B_{\varepsilon}\left(\left(a *_{1} x, b *_{2} y\right)\right) .
$$

Let $(s, t) \in B_{\frac{\varepsilon}{2}}((a, b)) * B_{\frac{\varepsilon}{2}}((x, y))$. Then $(s, t)=\left(\alpha *_{1} \gamma, \beta *_{2} \lambda\right)=(\alpha, \beta) *(\gamma, \lambda)$ such that $(\alpha, \beta) \in B_{\frac{\varepsilon}{2}}((a, b))$ and $(\gamma, \lambda) \in B_{\frac{\varepsilon}{2}}((x, y))$. Hence $d((\alpha, \beta),(a, b))<\frac{\varepsilon}{2}$ and $d((\gamma, \lambda),(x, y))<\frac{\varepsilon}{2}$. By (19) and (20) we have,

$$
\begin{aligned}
d((s, t),(a, b) *(x, y)) & =d((\alpha, \beta) *(\gamma, \lambda),(a, b) *(x, y)), \\
& =d\left(\left(\alpha *_{1} \gamma, \beta *_{2} \lambda\right),\left(a *_{1} x, b *_{2} y\right)\right), \\
& =d_{\varphi_{1}}\left(\left(\alpha *_{1} \gamma\right),\left(a *_{1} x\right)\right)+d_{\varphi_{2}}\left(\left(\beta *_{2} \lambda\right),\left(b *_{2} y\right)\right), \\
& \leq\left[d_{\varphi_{1}}\left(\alpha *_{1} \gamma, a *_{1} \gamma\right)+d_{\varphi_{1}}\left(a *_{1} \gamma, a *_{1} x\right)\right] \\
& +\left[d_{\varphi_{2}}\left(\beta *_{2} \lambda, \beta *_{2} y\right)+d_{\varphi_{2}}\left(\beta *_{2} y, b *_{2} y\right)\right], \\
& \leq\left[d_{\varphi_{1}}(\alpha, a)+d_{\varphi_{1}}(\gamma, x)\right]+\left[d_{\varphi_{2}}(\lambda, y)+d_{\varphi_{2}}(\beta, b)\right], \\
& =\left[d_{\varphi_{1}}(\alpha, a)+d_{\varphi_{2}}(\beta, b)\right]+\left[d_{\varphi_{1}}(\gamma, x)+d_{\varphi_{2}}(\lambda, y)\right], \\
& =d((\alpha, \beta),(a, b))+d((\gamma, \lambda),(x, y)) \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Thus * is continuous.
A sequence $\left\{x_{n}\right\} \subseteq X$ is a d_{φ}-cauchy if it is a cauchy sequence of the pseudo-metric $\left(X, d_{\varphi}\right)$. The space $\left(X, d_{\varphi}\right)$ is d_{φ}-complete if any d_{φ}-cauchy converges to an element of X. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be d_{φ}-cauchy sequences. Then the sequence $\left\{d_{\varphi}\left(x_{n}, y_{n}\right)\right\}$ is convergent, because it is a cauchy sequence in \mathbb{R}.

Proposition 3.15. Let φ be a pseudo-valuation on a BCK-algebra X. Define the relation $\sim b y$:

$$
\left\{x_{n}\right\} \sim\left\{y_{n}\right\} \Leftrightarrow d_{\varphi}\left(x_{n}, y_{n}\right) \longrightarrow 0
$$

for all d_{φ}-cauchy sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X. Then \sim is a congruence relation on the set of all d_{φ}-cauchy sequences in X.

Proof. It is easy to prove that \sim is an equivalence relation on X. Let $\left\{x_{n}\right\} \sim\left\{y_{n}\right\}$ and $\left\{a_{n}\right\} \sim\left\{b_{n}\right\}$. Then $d_{\varphi}\left(x_{n}, y_{n}\right) \longrightarrow 0$ and $d_{\varphi}\left(a_{n}, b_{n}\right) \longrightarrow 0$. By (19) and (20) we have $d_{\varphi}\left(x_{n} * a_{n}, y_{n} * a_{n}\right) \longrightarrow 0$ and $d_{\varphi}\left(y_{n} * a_{n}, y_{n} * b_{n}\right) \longrightarrow 0$. By (21) we have $d_{\varphi}\left(x_{n} * y_{n}, a_{n} * b_{n}\right) \longrightarrow 0$ and so $\left\{x_{n}\right\} *\left\{y_{n}\right\} \sim\left\{a_{n}\right\} *\left\{b_{n}\right\}$. Therefore \sim is a congruence relation on X.

Definition 3.16. Let φ be a pseudo-valuation on a BCK-algebra X. The set of all equivalence classes $\widetilde{\left\{x_{n}\right\}}=\left\{\left\{y_{n}\right\}\right.$: $\left.\left\{y_{n}\right\} \sim\left\{x_{n}\right\}\right\}$ is denoted by \widetilde{X}. On this set, we define $\widetilde{\left\{x_{n}\right\}} * \widetilde{\left\{y_{n}\right\}}=\left\{\widetilde{x_{n} * y_{n}}\right\}$.

Proposition 3.17. Let φ be a pseudo-valuation on a BCK-algebra X. Then $(\widetilde{X}, *, \widetilde{\{0\}})$ is a BCK-algebra and the pseudo-metric d_{φ} induces a metric $\widetilde{d_{\varphi}}$ on \widetilde{X} as follows:

$$
\widetilde{d_{\varphi}}\left(\widetilde{\left\{x_{n}\right\}}, \widetilde{\left.y_{n}\right\}}\right)=\lim _{n} d_{\varphi}\left(x_{n}, y_{n}\right)
$$

for all $\widetilde{\left\{x_{n}\right\}}, \widetilde{\left\{y_{n}\right\}} \in \widetilde{X}$.
Proof. It is easy to prove that $(\widetilde{X}, *, \widetilde{\{0\}})$ is a BCK-algebra and $\widetilde{d_{\varphi}}$ is a pseudo-metric on \widetilde{X}. Let $\widetilde{\left\{x_{n}\right\}}, \widetilde{\left\{y_{n}\right\}} \in \widetilde{X}$ and $\widetilde{d_{\varphi}}\left(\widetilde{\left\{x_{n}\right\}}, \widetilde{\left\{y_{n}\right\}}\right)=0$. Then $d_{\varphi}\left(x_{n}, y_{n}\right) \longrightarrow 0$ and so $\left\{x_{n}\right\} \sim\left\{y_{n}\right\}$. Hence $\widetilde{\left\{x_{n}\right\}}=\widetilde{\left\{y_{n}\right\}}$. Therefore $\left(\widetilde{X}, \widetilde{d_{\varphi}}\right)$ is a metric space.

Proposition 3.18. Let φ be a pseudo-valuation on a BCK-algebra X. Then
(i) If $\left\{x_{n}\right\}$ is a d_{φ}-cauchy sequence in X, then $\left\{\varphi\left(x_{n}\right)\right\}$ is a cauchy sequence in \mathbb{R}.
(ii) the mapping $\pi_{\varphi}: X \rightarrow \widetilde{X}$ by $\pi_{\varphi}(x)=\widetilde{\{x\}}$ where $\widetilde{\{x\}}$ is the equivalence class of the constant sequence with any element equal to x, is an homomorphism.

Proof. (i) By Proposition 3.1 (ii), the proof is clear.
(ii) The proof is clear.

Proposition 3.19. Let φ be a pseudo-valuation on a BCK-algebra X. Then the mapping $\widetilde{\varphi}: \widetilde{X} \rightarrow \mathbb{R}$ by $\widetilde{\varphi}\left(\widetilde{\left.x_{n}\right\}}\right)=$ $\lim _{n} \varphi\left(x_{n}\right)$ for each d_{φ}-cauchy sequence in X, is a pseudo-valuation on \widetilde{X}.

Proof. It is easy to prove that $\widetilde{\varphi}(\{0\})=0$. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be d_{φ}-cauchy sequences in X. Then

$$
\widetilde{\varphi}\left(\widetilde{\left\{x_{n}\right\}}\right)=\operatorname{Lim}_{n} \varphi\left(x_{n}\right) \leq \lim _{n} \varphi\left(x_{n} * y_{n}\right)+\lim _{n} \varphi\left(y_{n}\right)=\widetilde{\varphi}\left(\widetilde{\left.x_{n}\right\}} * \widetilde{\left\{y_{n}\right\}}\right)+\widetilde{\varphi}\left(\widetilde{\left\{y_{n}\right\}}\right) .
$$

Hence $\widetilde{\varphi}$ is a pseudo-valuation on \widetilde{X}.
Corollary 3.20. The metric space $\left(\widetilde{X}, \widetilde{d_{\varphi}}\right)$ is $\widetilde{d_{\varphi}}$-complete.
Proposition 3.21. If $\widetilde{X}, \widetilde{\varphi}, \pi_{\varphi}$ and \widetilde{d} are defined as above, then following properties hold:
(i) $\widetilde{\varphi} \circ \pi_{\varphi}=\varphi$ and hence π_{φ} is pseudo-valuation preserving.
(ii) φ is a valuation iff, $\pi_{\varphi}(x)=\widetilde{\{0\}}$ implies that $x=0$.
(iii) $\widetilde{d_{\varphi}}=d_{\widetilde{\varphi}}$.
(iv) π_{φ} is continuous.

Proof. (i) For any $x \in X, \widetilde{\varphi} \circ \pi_{\varphi}(x)=\widetilde{\varphi}\left(\pi_{\varphi}(x)\right)=\lim _{n} \varphi(x)=\varphi(x)$.
(ii) Let φ be a valuation and $\pi_{\varphi}(x)=\widetilde{\{0\}}$. Then $\widetilde{\{x\}}=\widetilde{\{0\}}$ and so $\{x\} \sim\{0\}$. Hence $\varphi(x)=d_{\varphi}(x, 0)=0$. Since φ is a valuation, $x=0$. Conversely, if $\varphi(x)=0$ for any $x \in X$, then $d_{\varphi}(x, 0)=\varphi(x)=0$ and so $\pi_{\varphi}(x)=\widetilde{\{x\}}=\widetilde{\{0\}}$. Hence $x=0$. Thus φ is a valuation.
(iii) For any $\widetilde{\left\{x_{n}\right\}}, \widetilde{\left\{y_{n}\right\}} \in \widetilde{X}$ we have

$$
\begin{aligned}
d_{\widetilde{\varphi}}\left(\widetilde{\left\{x_{n}\right\}}, \widetilde{\left.y_{n}\right\}}\right) & =\widetilde{\varphi}\left(\left\{\widetilde{\left.x_{n} * y_{n}\right\}}\right)+\widetilde{\varphi}\left(\left\{\widetilde{y_{n} * x_{n}}\right\}\right),\right. \\
& =\lim _{n} \varphi\left(x_{n} * y_{n}\right)+\lim _{n} \varphi\left(y_{n} * x_{n}\right), \\
& =\lim _{n} d_{\varphi}\left(x_{n}, y_{n}\right) \\
& =\widetilde{d_{\varphi}}\left(\widetilde{\left\{x_{n}\right\}}, \widetilde{\left\{y_{n}\right\}}\right) .
\end{aligned}
$$

(iv) If $x_{n} \longrightarrow x$ in $\left(X, d_{\varphi}\right)$, then $\lim _{n} d_{\varphi}\left(x_{n}, x\right)=0$ in \mathbb{R}. Since

$$
\begin{aligned}
d_{\widetilde{\varphi}}\left(\pi_{\varphi}\left(x_{n}\right), \pi_{\varphi}(x)\right) & =\widetilde{\varphi}\left(\pi_{\varphi}\left(x_{n} * x\right)\right)+\widetilde{\varphi}\left(\pi_{\varphi}\left(x * x_{n}\right)\right) \\
& =\varphi\left(x_{n} * x\right)+\varphi\left(x * x_{n}\right) \\
& =d_{\varphi}\left(x_{n}, x\right)
\end{aligned}
$$

Hence $\pi_{\varphi}\left(x_{n}\right) \longrightarrow \pi_{\varphi}(x)$ in $\left(\widetilde{X}, \tilde{d}_{\varphi}\right)$.
Proposition 3.22. Let ψ be a pseudo-valuation on a BCK-algebra Y such that $\left(Y, d_{\psi}\right)$ is a d_{ψ}-complete space. If φ is a pseudo-valuation on a BCK-algebra X and $f: X \rightarrow Y$ is a pseudo-valuation preserving homomorphism, then there exists a unique pseudo-valuation preserving homomorphism $\widetilde{f}: \widetilde{X} \rightarrow Y$ such that $\widetilde{f} \circ \pi_{\varphi}=f$.

Proof. Suppose that $f: X \rightarrow Y$ is a pseudo-valuation preserving homomorphism. By Proposition 3.4, f is an isometry. If $\left\{x_{n}\right\}$ is a d_{φ}-cauchy sequence in X, then $\left\{f\left(x_{n}\right)\right\}$ is a d_{ψ}-cauchy sequence in Y. Since Y is d_{ψ}-complete, $f\left(x_{n}\right) \rightarrow y$ for some $y \in Y$. Define $\widetilde{f}\left(\left\{x_{n}\right\}\right)=y$. We show that \widetilde{f} is the unique isometry such that $\stackrel{\psi}{f} \circ \pi_{\varphi}=f$. Let $\widetilde{\left\{x_{n}\right\}},\left\{y_{n}\right\} \in \widetilde{X}, f\left(x_{n}\right) \rightarrow x$ and $f\left(y_{n}\right) \rightarrow y$. Then

$$
\begin{aligned}
d_{\widetilde{\varphi}}\left(\widetilde{\left\{x_{n}\right\}}, \widetilde{\left\{y_{n}\right\}}\right) & =\widetilde{d_{\varphi}}\left(\widetilde{\left\{x_{n}\right\}}, \widetilde{\left\{y_{n}\right\}}\right), \\
& =\lim _{n} \varphi\left(x_{n} * y_{n}\right)+\lim _{n} \varphi\left(y_{n} * x_{n}\right), \\
& =\lim _{n} \psi \circ f\left(x_{n} * y_{n}\right)+\lim _{n} \psi \circ f\left(y_{n} * x_{n}\right), \\
& =\lim _{n} \psi\left(f\left(x_{n} * y_{n}\right)\right)+\lim _{n} \psi\left(f\left(y_{n} * x_{n}\right)\right), \\
& =\lim _{n} \psi\left(f\left(x_{n}\right) * f\left(y_{n}\right)\right)+\lim _{n} \psi\left(f\left(y_{n}\right) * f\left(x_{n}\right)\right), \\
& =\lim _{n} \psi(x * y)+\lim _{n} \psi(y * x), \\
& =\psi(x * y)+\psi(y * x), \\
& =\psi\left(\widetilde{f}\left(\left\{x_{n}\right\}\right) * \widetilde{f}\left(\left\{\widetilde{\left.y_{n}\right\}}\right)\right)+\psi\left(\widetilde { f } \left(\left\{\widetilde{\left.y_{n}\right\}}\right) * \widetilde{f}\left(\left\{\widetilde{\left.x_{n}\right\}}\right)\right),\right.\right.\right. \\
& \left.=d_{\psi}\left(\widetilde{f\left(\left\{x_{n}\right\}\right.}\right), \widetilde{f}\left(\left\{y_{n}\right\}\right)\right) .
\end{aligned}
$$

The uniqueness is obvious. Since the BCK-algebra operation Y is continuous respect to d_{ψ}, we get that \widetilde{f} is a homomorphism. Finally, for each $x \in X, \widetilde{f} \circ \pi_{\varphi}(x)=\widetilde{f}(\{x\})=f(x)$. Thus $\widetilde{f} \circ \pi_{\varphi}=f$.

4. Pseudo-valuations on Quotient BCK-algebras

Proposition 4.1. Let I be an ideal in a BCK-algebra X. Then:
(i) If φ is a pseudo-valuation on a BCK-algebra X, then $\bar{\varphi}(x / I)=\inf \{\varphi(z): z \in x / I\}$ is a pseudo-valuation on X / I.
(ii) If $\bar{\varphi}$ is a pseudo-valuation on X / I, then $\varphi(x)=\bar{\varphi}(x / I)$ is a pseudo-valuatuon on X. Moreover, $\bar{\varphi}$ is a valuation on X if and only if $I=I_{\varphi}$.

Proof. (i) This is Proposition 3.10 with $y=x / I$ and $f=\pi_{I}$.
(ii) Let $\bar{\varphi}$ be a pseudo-valuation on X / I. It is easy to prove that the mapping $\bar{\varphi}(x / I)=\varphi(x)$ is a pseudovaluation on X. Let $\bar{\varphi}$ be a valuation on X / I. If $x \in I$, then $x / I=0 / I$ and so $\varphi(x)=\bar{\varphi}(x / I)=\bar{\varphi}(0 / I)=0$. Hence $I \subseteq I_{\varphi}$. If $x \in I_{\varphi}$, then $\varphi(x)=0$ and so $\bar{\varphi}(x / I)=0$. Thus $x / I=0 / I$ and hence $x \in I$. Therefore $I_{\varphi} \subseteq I$. Conversly, let $I_{\varphi}=I$ and $\bar{\varphi}(x / I)=0$. Then $\varphi(x)=0$ and so $x \in I$. Hence $x / I=0 / I$. Thus $\bar{\varphi}$ is a valuation on X / I.

Corollary 4.2. Let φ be a valuation on a BCK-algebra X. If for each $x \in X$, the set x / I has a minimum, then $\bar{\varphi}(x / I)=\inf \{\varphi(z): z \in x / I\}$ is a valuation on X / I.

Proof. By Proposition $4.1(i), \bar{\varphi}$ is a pseudo-valuation. Let for some $x \in X, \bar{\varphi}(x / I)=0$. By assumption, there is an $a \in X$ such that $a=\min x / I$. Since for each $z \in x / I, a \leq z$, we get that $\varphi(a) \leq \varphi(z)=\bar{\varphi}(z / I)=\bar{\varphi}(x / I)$ and so $\varphi(a)=0$. Since φ is a valuation, $a=0$. Hence $x / I=0 / I$.

Proposition 4.3. Let φ be a pseudo-valuation on a BCK-algebra X. Then $I \subseteq I_{\varphi}$ if and only if there exists a pseudo-valuation $\phi: X / I \rightarrow \mathbb{R}$ such that $\phi \circ \pi_{I}=\varphi$.

Proof. Let $\phi: X / I \rightarrow \mathbb{R}$ be a pseudo-valuation on X / I such that $\phi \circ \pi_{I}=\varphi$. If $x \in I$, then $x / I=0 / I$. Hence

$$
\varphi(x)=\phi \circ \pi_{I}(x)=\phi\left(\pi_{I}(x)\right)=\phi(x / I)=\phi(0 / I)=\phi \circ \pi_{I}(0)=\varphi(0)=0
$$

Thus $x \in I_{\varphi}$ and hence $I \subseteq I_{\varphi}$. Conversely, let $I=I_{\varphi}$. Define $\phi(x)=\varphi(x)$ for any $x \in X$. If $x, y \in X$ and $x / I=y / I$, then $x * y, y * x \in I$. Since $\phi(x)=\varphi(x), \varphi(x * y)=\varphi(y * x)=0$. Therefore $0=\varphi(x * y) \geq \varphi(x)-\varphi(y)$ and $0=\varphi(y * x) \geq \varphi(y)-\varphi(x)$. Thus $\varphi(x)=\varphi(y)$ and hence ϕ is well defined. We have $\phi(0 / I)=\varphi(0)=0$ and

$$
\phi(x / I * y / I)=\phi(x * y / I)=\varphi(x * y) \geq \varphi(x)-\varphi(y)=\phi(x / I)-\phi(y / I) .
$$

Thus ϕ is a pseudo-valuation on X / I. It is easy to prove that $\phi \circ \pi_{I}=\varphi$.
Proposition 4.4. Let φ be pseudo-valuation on a BCK-algebra X and $I_{\varphi}=\{x \in X: \varphi(x)=0\}$. If d_{φ} is the induced pseudo-metric by φ, Then $D\left(x / I_{\varphi}, y / I_{\varphi}\right)=d_{\varphi}(x, y)$ is a metric on X / I_{φ}.

Proof. First we show that D is well defined. Let x, y, a and b be in X and $x / I_{\varphi}=a / I_{\varphi}$ and $y / I_{\varphi}=b / I_{\varphi}$. Then $x * a, a * x, y * b, b * y \in I_{\varphi}$ and so $\varphi(x * a)=\varphi(a * x)=\varphi(y * b)=\varphi(b * y)=0$. By $(6),(x * y) *(x * a) \leq(a * y)$ and $(a * y) *(b * y) \leq(a * b)$. Hence

$$
\begin{aligned}
\varphi(x * y)-\varphi(x * a) \leq \varphi((x * y) *(x * a)) & \leq \varphi(a * y) \\
& =\varphi(a * y)-\varphi(b * y) \\
& \leq \varphi((a * y) *(b * y)) \leq \varphi(a * b)
\end{aligned}
$$

Hence $\varphi(x * y) \leq \varphi(a * b)$. By similar argument we have $\varphi(a * b) \leq \varphi(x * y)$ and so $\varphi(x * y)=\varphi(a * b)$. In a similar fashion we have $\varphi(y * x)=\varphi(b * a)$. Therefore $D\left(x / I_{\varphi}, y / I_{\varphi}\right)=D\left(a / I_{\varphi}, b / I_{\varphi}\right)$ and so D is well defined. It is easy to prove that D is a pseudo-metric. To prove that D is a metric, let $D\left(x / I_{\varphi}, y / I_{\varphi}\right)=0$. Then $\varphi(x * y)=\varphi(y * x)=0$ and so $x * y, y * x \in I_{\varphi}$. Thus $x / I_{\varphi}=y / I_{\varphi}$. Hence D is a metric on X / I_{φ}.

Proposition 4.5. Let φ be pseudo-valuation on a BCK-algebra X and $I_{\varphi}=\{x \in X: \varphi(x)=0\}$. If τ_{D} is the induced topology by D on X / I_{φ} and τ is the quotient topology on X / I_{φ}, then:
(i) the epimorphism $\pi_{I_{\varphi}}:\left(X, \tau_{\varphi}\right) \rightarrow\left(X / I_{\varphi}, \tau_{D}\right)$ is an open map,
(ii) $\tau_{D}=\tau$,
(iii) if φ is a valuation, then $\pi_{I_{\varphi}}$ is a homeomorphism.

Proof. (i) It is enough to show that $\pi_{I_{\varphi}}\left(B_{\varepsilon}(x)\right) \in \tau_{D}$ for each $x \in X$ and $\varepsilon>0$. We have

$$
\begin{aligned}
\pi_{I_{\varphi}}\left(B_{\varepsilon}(x)\right) & =\left\{\pi_{I_{\varphi}}(y): y \in B_{\varepsilon}(x)\right\}=\left\{y / I_{\varphi}: d_{\varphi}(y, x)<\varepsilon\right\} \\
& =\left\{y / I_{\varphi}: D\left(y / I_{\varphi}, x / I_{\varphi}\right)<\varepsilon\right\} \\
& =B_{\varepsilon}^{D}\left(x / I_{\varphi}\right) \in \tau_{D} .
\end{aligned}
$$

(ii) It is clear that the map $\pi_{I_{\varphi}}:\left(X, \tau_{\varphi}\right) \rightarrow\left(X / I_{\varphi}, \tau_{D}\right)$ is continuous, becaus $D\left(x / I_{\varphi}, y / I_{\varphi}\right)=d_{\varphi}(x, y)$. Thus $\tau_{D} \subseteq \tau$. If $U \in \tau$, then $\pi_{\varphi}^{-1}(U) \in \tau_{\varphi}$. Hence $\pi_{I_{\varphi}}^{-1}(U)=\cup_{x \in \pi_{I_{\varphi}}^{-1}(U)} B_{\varepsilon}(x)$. Since $\pi_{I_{\varphi}}$ is an epimorphism, $U=$ $\pi_{I_{\varphi}}\left(\pi_{I_{\varphi}}^{-1}(U)\right)=\pi_{I_{\varphi}}\left(\cup_{x \in \pi_{I_{\varphi}}^{-1}(U)} B_{\varepsilon}(x)\right)=\cup_{x \in \pi_{I_{\varphi}}^{-1}(U)} B_{\varepsilon}^{D}\left(x / I_{\varphi}\right) \in \tau_{D}$. Thus $U \in \tau_{D}$. Therefore $\tau_{D}=\tau$.
(iii) It is enough to show that $\pi_{I_{\varphi}}$ is injective. Let $x, y \in X$ and $\pi_{I_{\varphi}}(x)=\pi_{I_{\varphi}}(y)$. Then $x / I_{\varphi}=y / I_{\varphi}$ and so $x * y, y * x \in I_{\varphi}$. Thus $\varphi(x * y)=\varphi(y * x)=0$. Since φ is a valuation, $x * y=y * x=0$. By (4), $x=y$. Hence $\pi_{I_{\varphi}}$ is a homeomorphism.

Proposition 4.6. Let φ be a pseudo-valuation on a BCK-algebra X. If $x / I_{\varphi}=y / I_{\varphi}$, then $\varphi(x)=\varphi(y)$ for any $x, y \in X$.
Proof. Let $x / I_{\varphi}=y / I_{\varphi}$. Then $x \equiv^{I_{\varphi}} y$ and so $\varphi(x * y)=\varphi(y * x)=0$. By Proposition 3.1, we have

$$
|\varphi(x)-\varphi(y)| \leq d_{\varphi}(x, y)=\varphi(x * y)+\varphi(y * x)=0
$$

Thus $\varphi(x)=\varphi(y)$.
Theorem 4.7. Let φ be a pseudo-valuation on a BCK-algebra X and for each $x \in X$ the set x / I_{φ} has a minimum. Then there is a pseudo-valuation ϕ on X / I_{φ} such that $\left(X / I_{\varphi}, d_{\phi}\right)$ is a metric space. Moreover, if τ_{ϕ} is the induced topology by d_{ϕ}, then τ_{ϕ} is weaker than the quotient topology on X / I_{φ}.

Proof. Let $x \in X$. By assumption, there is a $x_{0} \in x / I_{\varphi}$ such that $x_{0}=\min x / I_{\varphi}$. Define $\phi\left(x / I_{\varphi}\right)=\varphi\left(x_{0}\right)$. We show that ϕ is a pseudo-valuation on X / I_{φ}. Since $0 \in I_{\varphi}=0 / I_{\varphi}, \phi\left(0 / I_{\varphi}\right)=\varphi(0)=0$. Let $x, y \in X, x_{0}=\min x / I_{\varphi}$, $y_{0}=\min y / I_{\varphi}$ and $z_{0}=\min (x * y) / I_{\varphi}$. Since $x_{0} * y_{0} \in(x * y) / I_{\varphi}, x_{0} * y_{0} \equiv^{I_{\varphi}} z_{0}$ and so $\left(x_{0} * y_{0}\right) / I_{\varphi}=z_{0} / I_{\varphi}$. By Proposition 4.6, $\varphi\left(x_{0} * y_{0}\right)=\varphi\left(z_{0}\right)$. Thus

$$
\phi\left(x / I_{\varphi}\right)=\varphi\left(x_{0}\right) \leq \varphi\left(x_{0} * y_{0}\right)+\varphi\left(y_{0}\right)=\varphi\left(z_{0}\right)+\varphi\left(y_{0}\right)=\phi\left((x * y) / I_{\varphi}\right)+\phi\left(y / I_{\varphi}\right) .
$$

Hence ϕ is a pseudo-valuation on X / I_{φ}. By Theorem 2.6, $d_{\phi}=\phi\left((x * y) / I_{\varphi}\right)+\phi\left((y * x) / I_{\varphi}\right)$ is a pseudo-valuation on X / I_{φ}. Now, we show that d_{ϕ} is a metric. Let $x \in X$ and $x_{0}=\min x / I_{\varphi}$. If $\phi\left(x / I_{\varphi}\right)=0$, then $\varphi\left(x_{0}\right)=0$ and so $x_{0} \in I_{\varphi}$. Hence $x / I_{\varphi}=x_{0} / I_{\varphi}=0 / I_{\varphi}$. Thus d_{ϕ} is a metric on X / I_{φ}. Finally, we show that τ_{ϕ} is weaker than the quotient topology on X / I_{φ}. For this, let $a_{0}=\min (x * y) / I_{\varphi}$ and $b_{0}=\min (y * x) / I_{\varphi}$. Then $a_{0} \leq x * y$ and $b_{0} \leq y * x$ we have

$$
d_{\phi}\left(x / I_{\varphi}, y / I_{\varphi}\right)=\phi\left((x * y) / I_{\varphi}\right)+\phi\left((y * x) / I_{\varphi}\right)=\varphi\left(a_{0}\right)+\varphi\left(b_{0}\right) \leq \varphi(x * y)+\varphi(y * x)=d_{\varphi}(x, y)
$$

Now it is easy to prove that the mapping $\pi_{I_{\varphi}}: X \rightarrow X / I_{\varphi}$ by $\pi_{I_{\varphi}}(x)=x / I_{\varphi}$ is continuous. Therefore τ_{ϕ} is weaker than the quotient topology on X / I_{φ}.

Theorem 4.8. Let φ be a valuation on a BCK-algebra X. If $\left(X, d_{\varphi}\right)$ is a d_{φ}-complete, then for each closed ideal $I, X / I$ is a metric space.

Proof. Let I be a closed ideal in $\left(X, d_{\varphi}\right)$. By Proposition 4.1, the mapping $\bar{\varphi}(x / I)=\inf \{\varphi(z): z \in x / I\}$ is a pseudo-valuation on X / I. We prove that $\bar{\varphi}$ is a valuation. For this let $\bar{\varphi}(x / I)=0$ for some $x \in X$. Since $\bar{\varphi}(x / I)=\inf \{\varphi(z): z \in x / I\}$, there is a sequence $\left\{z_{n}\right\} \subseteq x / I$ such that the sequence $\left\{\varphi\left(z_{n}\right)\right\}$ converges to 0 . We show that $\left\{z_{n}\right\}$ is a d_{φ}-cauchy sequence. Let $\varepsilon>0$. There is a $n_{0} \in \mathbb{N}$ such that for each $n \geq n_{0}, \varphi\left(z_{n}\right)<\frac{\varepsilon}{2}$. Now by (17), for each $n, m \geq n_{0}$, we have

$$
d_{\varphi}\left(z_{n}, z_{m}\right)=\varphi\left(z_{n} * z_{m}\right)+\varphi\left(z_{m} * z_{n}\right) \leq \varphi\left(z_{n}\right)+\varphi\left(z_{m}\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

Hence the sequence $\left\{z_{n}\right\}$ is d_{φ}-cauchy sequence and so converges to a $z \in X$. Since φ is continuous, the sequence $\left\{\varphi\left(z_{n}\right)\right\}$ converges to $\varphi(z)$. Hence $\varphi(z)=0$ and since φ is a valuation on X, we get $z=0$. On oter hand, since the sequence $\left\{z_{n}\right\}$ is converges to z, then $z \in \overline{x / I}$. Since I is closed in $\left(X, d_{\varphi}\right)$ and $\left(X, *, \tau_{\varphi}\right)$ is a topological BCK-algebra, by [[10], Proposition 3.8] x / I is closed in $\left(X, d_{\varphi}\right)$ and so $0=z \in x / I$. Thus $\bar{\varphi}$ is a valuation on X / I. Now by Proposition $2.7, X / I$ is a metric space.

Theorem 4.9. Let φ be a pseudo-valuation on a BCK-algebra X. Then there exists a closed ideal Jon X such that the quotient BCK-algebra X/J is pseudo-metrizable.

Proof. We define a binary relation \sim for elements $a, b \in X$ by the rule $a \sim b$ if $\varphi((x * a) * y)=\varphi(x * b) * y)$ for all $x, y \in X$. It is immediate from definition that this relation is an equivalence relation. Let J be the class containing $0 \in X$. Let us show that J is a closed ideal of X and for each $x \in X, x / J \subseteq x / \sim$. Clearly,

$$
J=\{a \in X: \varphi((x * a) * y)=\varphi(x * 0) * y)=\varphi(x * y) \text { for all } x, y \in X\}
$$

For $x, y \in X$ define a function $f_{x, y}: X \rightarrow \mathbb{R}$ by $f_{x, y}(z)=\varphi((x * z) * y)$ for each $z \in X$. Since the function $f_{x, y}$ is continuous, the set $J=\cap_{x, y \in X} f_{x, y}^{-1}\left(f_{x, y}(0)\right)$ is closed in X. To show that J is an ideal of X, let $a * b, b \in J$. Then $\varphi((x *(a * b) * y)=\varphi(x * y)$ and $\varphi((x * b) * y)=\varphi(x * y)$. Replacing x by $x * b$ in the frist equality, by (6) we obtain

$$
\varphi((x * b) * y)=\varphi(((x * b) *(a * b)) * y) \leq \varphi((x * a) * y) .
$$

Thus $\varphi(x * y) \leq \varphi((x * a) * y)$. On the other hand, (8) and (10) imply $(x * a) * y=(x * y) * a \leq x * y$. By (17), $\varphi((x * a) * y) \leq \varphi(x * y)$. Therefore $\varphi((x * a) * y)=\varphi(x * y)$ and so $a \in J$. Thus J is an ideal of X.

Let $d \in c / J$. Then $c * d, d * c \in J$. Since $\varphi((x *(c * d)) * y)=\varphi(x * y)$ and $\varphi((x *(d * c)) * y)=\varphi(x * y)$, replacing x by $x * d$ in frist equality, we obtain

$$
\varphi((x * d) * y)=\varphi(((x * d) *(c * d)) * y) \leq \varphi((x * c) * y)
$$

Similarly, replacing x by $x * c$ in second equality, we obtain $\varphi((x * c) * y)=\varphi(((x * c) *(d * c)) * y) \leq \varphi((x * d) * y)$. Thus $\varphi((x * d) * y)=\varphi((x * c) * y)$ which implies that $c \sim d$. Hence $d \in c / \sim$. Therefore $c / J \subseteq c / \sim$. Since for any $x, y \in X$, the function $\varphi((x * a) * y)$ with argument a is constant on the set a / J, so for any $a, b \in X$, we can define

$$
\rho(a / J, b / J)=\sup _{x, y \in X}|\varphi((x * a) * y)-\varphi((x * b) * y)| .
$$

We claim that ρ is a pseudo-metric on X / J. Clearly, $\rho(a / J, b / J) \geq 0$ for each $a, b \in X$. It is clear that $\rho(a / J, b / J)=$ $\rho(b / J, a / J)$. To verify triangle inequality, let $a, b, c \in X$. Then

$$
\begin{aligned}
\rho(a / J, c / J) & =\sup _{x, y \in X}|\varphi((x * a) * y)-\varphi((x * c) * y)| \\
& \leq \sup _{x, y \in X}(|\varphi((x * a) * y)-\varphi((x * b) * y)|+|\varphi((x * b) * y)-\varphi((x * c) * y)|) \\
& \leq \sup _{x, y \in X}|\varphi((x * a) * y)-\varphi((x * b) * y)|+\sup _{x, y \in X}|\varphi((x * b) * y)-\varphi((x * c) * y)| \\
& =\rho(a / J, b / J)+\rho(b / J, c / J) .
\end{aligned}
$$

5. Conclusion

In this paper, we studied some properties of pseudo-valuations and their induced metrics on a BCKalgebra and we showed that there are many pseudo-valuations on a BCK-algebra. The set of all pseudovaluations on a BCK-algebra is a BCK-algebra, too. Next the researchers can study properties of this BCKalgebra. Moreover, since the power set of a non-empty set is a BCK-algebra using of pseudo-valuations can be useful in the study of theory of sets.

References

[1] R. A. Borzooei, G. R. Rezaei and N. Kouhestani, Metrizability (semi)topological BL-algebras, Soft Comput, 16(2012), 1681-1690.
[2] D. Busneag, Hilbert-algebras with valuations, Didcrete Math. 263(2003), 11-14.
[3] M. I. Doh, M. S. Kang, BCK/BCI-algebras with pseudo-valuations, Honam Mathematical J, 32 (2010), 217-226.
[4] A. Dvurecenskij, S. Pulmannova, (1rd edition), New trends in quantum structures, Springer- Science+Business Media, Berlin, 2000.
[5] S. Ghorbani, Quotient BCI-algebras induced by pseudo-valuations, Iranian Journal of Mathematical Sciences and Informatics, 5(2010), 13-24.
[6] K. Iséki, On BCI-algebras, Math. Seminar Notes, 8(1980), 125-130.
[7] K. Iséki, Tanaka, An introduction to theory of BCK-algebras, Math. Japonica, 23(1978), 1-26.
[8] Y. Imai, K. Iséki, On axiom system of propositional calculi XIV, Proc. Japan Academy 42(1966), 19-22.
[9] N. Kouhestani, S. Mehrshad, (Semi)topological quotient BCK-algebras, Afrika Matematika, 28(2017), 1235-1251.
[10] S. Mehrshad, N. Kouhestani, A quasi-uniformity on BCC-algebras, Annals of the University of Craiova, 44(2017), 64-77.
[11] T. Senapati, K. P. Shum, Cubic implicative ideals of BCK-algebras, Missouri Journal of Mathematical Sciences, 29(2017), 125-138.

[^0]: 2010 Mathematics Subject Classification. Primary 06F35; Secondary 03G25 Keywords. BCK-algebra, Pseudo-Valuation, Ideal, Quotient BCK-algebra Received: 08 December 2017; Accepted: 19 April 2018
 Communicated by Dijana Mosić
 Email addresses: saeedmehrshad@gmail.com (S. Mehrshad), Kouhestani@math.usb.ac.ir (N. Kouhestani)

