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Abstract. In this paper, we extend the proximal point algorithm proposed by Chang et al.[8] for total
asymptotically nonexpansive mapping in CAT(0) spaces. We also demonstrate the ∆-convergence and
strong convergence to a common element of the set of minimizers of a convex function and the set of fixed
points of the Cesàro type mean of total asymptotically nonexpansive mappings in CAT(0) spaces.

1. Introduction

Let C be a nonempty subset of a metric space X and F(T), the set of fixed points of a mapping T : C→ C.
Recall that T is asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with kn → 1 such that

d(Tnx,Tny) ≤ knd(x, y), for all x, y ∈ C, n ≥ 1,

it is asymptotically nonexpansive in the intermediate sense if it is continuous and the following inequality
holds:

lim sup
n→∞

sup
x,y∈C

(
d(Tnx,Tny) − d(x, y)

)
≤ 0

and a total asymptotically nonexpansive mapping [1] if there exist non negative real sequences {kn} and {ϕn}with
kn → 0 and ϕn → 0 as n→∞ and a strictly increasing continuous function ξ : [0,∞)→ [0,∞) with ξ (0) = 0
such that

d
(
Tnx,Tny

)
≤ d

(
x, y

)
+ knξ

(
d
(
x, y

))
+ ϕn for all x, y ∈ C, n ≥ 1.

This is the most general class of mappings which includes both the classes of mappings defined above.
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Examples of total asymptotically nonexpansive mappings:

(i) Let X = R, C = [0,∞) and T : C → C be defined by Tx = sin x. Then T is a total asymptotically
nonexpansive[15].

(ii) Let X = R,C = [− 1
π ,

1
π ] and let |k| < 1. For each x ∈ C, we define T : C→ C by

Tx =

kx sin 1
x if x , 0

0 if x = 0.

Then T is an asymptotically nonexpansive in the intermediate sense [17] and hence total asymptotically
nonexpansive.

(iii) Let X = R,C = [0, 2] and T : C→ C be defined by

Tx =

1 if x ∈ [0, 1]
1
√

3

√

4 − x2 if x ∈ [1, 2] .

Then T is a total asymptotically nonexpansive [16].
In 1975, Baillon [5] first constructed the following Cesàro mean iterative algorithm of a nonexpansive

mapping T on a Hilbert space:

Tnx =
1

n + 1

n∑
i=0

Tix (1)

and proved that it weakly converges to a fixed point of T.
Shimizu and Takahashi [23] provided a strong convergence theorem modifying (1) for an asymptotically

nonexpansive mapping in Hilbert spaces.
Fixed point theory for various types of mappings in CAT(0) spaces has been investigated rapidly. In 2008,

Dhompongsa and Panyanak [9] studied strong and ∆−convergence of the Mann and Ishikawa algorithms
for nonexpansive mappings in CAT(0) spaces.

Let H be a real Hilbert space and f : H→ (−∞,∞] a proper convex and lower semi-continuous function.
One of the important optimization problems in a Hilbert space H is to find x ∈ H such that

f (x) = min
y∈H

f
(
y
)
. (2)

The set of minimizers of f is denoted by arg miny∈H f (y).
A solution to problem(2) is provided by the proximal point algorithm (shortly, the PPA) initiated

by Martinet [21] in 1970. In 1976, Rockafellar [22] studied the convergence to a solution of the convex
minimization problem in Hilbert spaces and also used this method.

For a proper, convex, and lower semi-continuous function f on a Hilbert space H which attains its
minimum, the (PPA) is defined by:

x1 ∈ H,

xn+1 = arg miny∈H

(
f
(
y
)

+
1

2λn
||y − xn||

2
)
, for all n ≥ 1,

where λn > 0.
Recently, many convergence results using the (PPA) for solving optimization problems have been

extended from classical linear spaces to the setting of manifolds. For numerous applications of these
methods, we refer the reader to [3, 6, 10, 12, 20].

In 2013, Bačák [4] introduced the (PPA) in a CAT(0) space X as under:

x1 ∈ X, xn+1 = arg miny∈X

(
f
(
y
)

+
1

2λn
d2 (

y, xn
))
, for all n ≥ 1, (3)
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where λn > 0.
Ariza-Ruiz [3] established that if the set of minimizers of f is nonempty and Σ∞n=1λn = ∞, then the

sequence {xn} , in (3), ∆−converges to its minimizer.
In 2016, Chang-Wen-Yao [8] established strong convergence and ∆−convergence theorems of the follow-

ing iterative algorithm {xn} by using fixed points and Cesàro type mean of an asymptotically nonexpansive
mapping in CAT(0) spaces:

x0 ∈ C,
zn = arg miny∈C[ f (y) + 1

2λn
d2(y, xn)],

yn = (1 − βn)xn ⊕
βn

n+1

n⊕
j=0

T jzn

xn+1 = (1 − αn)xn ⊕ αnTnyn, for all n ≥ 1

(4)

where αn, βn ∈ (0, 1) , λn > 0 and d

 1
n+1

n⊕
j=0

T jzn, x

 = 1
n+1

n∑
j=0

d
(
T jzn, x

)
for x ∈ C.

This paper aims to use Cesàro type mean of a total asymptotically nonexpansive mappings to study the
proximal point algorithm(4) for finding a common element of the set of minimizers of a convex function
and the set of fixed points of total asymptotically nonexpansive mappings through ∆−convergence and
stronge convergence in CAT(0) spaces.

2. Preliminaries

Let X be a metric space and x, y ∈ X. A geodesic path from x to y is a mapping θ :
[
0, d

(
x, y

)]
→ X such

that θ (0) = x, θ
(
d
(
x, y

))
= y, and d (θ (t) , θ (t′)) = |t − t′| for t, t′ ∈

[
0, d

(
x, y

)]
. The image of θ is known as a

geodesic segment in X. A metric space X is a uniquely geodesic space if any two points of X are joined by a
unique geodesic segment.

A geodesic triangle ∆ (x1, x2, x3) in a geodesic metric space X consists of three points x1, x2 and x3 in X and a
geodesic segment between each pair of these points. A comparison triangle for geodesic triangle ∆ (x1, x2, x3)
in X is a triangle ∆ (x1, x2, x3) := ∆ (x̄1, x̄2, x̄3) in R2 such that dR2

(
x̄i, x̄ j

)
= d

(
xi, x j

)
for all i, j = 1, 2, 3.

A geodesic space X is a CAT(0) space if for each ∆ in X and ∆ in R2, the inequality

d
(
x, y

)
≤ dR2

(
x̄, ȳ

)
holds for all x, y ∈ ∆ and x̄, ȳ ∈ ∆.

All Hilbert spaces are CAT(0) spaces [14] while this is not the case with Banach spaces [25].
In this paper, we write (1 − t)x ⊕ ty for the unique point z on the geodesic segment joining x and y such

that

d(x, z) = td(x, y), d(y, z) = (1 − t)d(x, y).

Let {xn} be a bounded sequence in a closed and convex subset C of a CAT(0) space X. For any x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) and asymptotic center A({xn})of {xn} , respectively, are given by

r ({xn}) = inf{r (x, {xn}) : x ∈ X}

and

A({xn}) = {x ∈ X : r({xn}) = r(x, {xn})}.
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It is well known that, in CAT(0) spaces, A({xn}) consists of exactly one point.
A sequence {xn} in a CAT(0) space X is said to ∆−converge to a point x ∈ X if x is the unique asymptotic

center of every subsequence {un} of {xn}.
In this case, we write ∆ − lim

n→∞
xn = x.

A function f : C→ (−∞,∞] defined on a convex subset C of a CAT(0) space is convex if for any geodesic
[x, y] = {γx,y(λ) : 0 ≤ λ ≤ 1} = {λx⊕ (1−λ)y : 0 ≤ λ ≤ 1} joining x, y ∈ C , the function f ◦ γ is convex, that is,

f
(
γx,y (λ)

)
= f (λx ⊕ (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y).

Let X be a CAT(0) space and f : X→ (−∞,∞] be a proper convex and lower semi-continuous function. For
any λ > 0, define the Moreau-Yosida resolvent of f in X by

Jλ(x) = arg miny∈X[ f (y) +
1

2λ
d2(y, x)], ∀x ∈ X.

Ariza et. al [3] has shown that the set F(Jλ) of fixed points of the resolvent associated with f coincides with
the set arg min

y∈X
f (y) of minimizers of f .

Lemma 2.1. [7].Let {an}, {bn} and {cn} be sequences of nonnegative real numbers such that Σ∞n=1bn < ∞ and
Σ∞n=1cn < ∞. If an+1 ≤ (1 + bn) an + cn for all n ≥ 1, then limn→∞ an exists.

Lemma 2.2. [9].In a CAT(0) space X, we have the followings:
(i) d((1 − t)x ⊕ ty, z) ≤ (1 − t)d(x, z) + td(y, z) for all x, y, z ∈ X, t ∈ [0, 1]
(ii) d2((1 − t)x ⊕ ty, z) ≤ (1 − t)d2(x, z) + td2(y, z) − t(1 − t)d2(x, y) for all x, y, z ∈ X, t ∈ [0, 1] .

Lemma 2.3. [19]. Let X be a complete CAT(0) space. Then every bounded sequence in X has a ∆− convergent
subsequence.

Lemma 2.4. [18]. If {xn} is a bounded sequence in a complete CAT(0) space with A({xn}) = {x}, {un} is a subsequence
of {xn} with A({un}) = {u} and the sequence {d(xn,u)} converges, then x = u.

Lemma 2.5. [11]. Let X be a complete CAT(0) space and f : X → (−∞,∞] a proper convex and lower semi-
continuous function. Then we have the followings:
(i) For any λ > 0, the resolvent Jλ of f is nonexpansive
(ii) For all x ∈ X and λ > µ > 0, the following identity holds:

Jλx = Jµ(
λ − µ

λ
Jλx ⊕

µ

λ
x).

Lemma 2.6. [2]. (sub-differential inequality). Let X be a complete CAT(0) space and f : X → (−∞,∞] be proper
convex and lower semi-continuous function. Then, for all x, y ∈ X and λ > 0, the following inequality holds:

1
2λ

d2(Jλx, y) −
1

2λ
d2(x, y) +

1
2λ

d2(x, Jλx) + f (Jλx) ≤ f (y).

Lemma 2.7. [13].Let X be a complete CAT(0) space and C a nonempty closed and convex subset of X and T : C→ C
a uniformly continuous and total asymptotically nonexpansive mapping. If {xn} is a bounded sequence in C such that
limn→∞ d (xn,Txn) = 0 and ∆ − lim

n→∞
xn = x, then Tx = x.

3. Convergence Theorems Involving Cesàro Type Mean of Total Asymptotically Nonexpansive Map-
pings

We are now in a position to prove our main results.
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Theorem 3.1. Let X be a complete CAT(0) space and C its nonempty, closed and convex subset. Let f : C→ (−∞,∞]
be a proper, convex and lower semi-continuous function, T : C→ C a uniformaly continuous and total asymptotically
nonexpansive mapping with sequences {kn} and {ϕn}, where kn → 0 and ϕn → 0 and a strictly increasing continuous
function ξ : [0,∞)→ [0,∞) with ξ(0) = 0. For any x0 ∈ C, let {xn} be the sequence given in (4) where {αn} ,

{
βn

}
are

sequences in (0, 1) with 0 < a ≤ αn, βn < b < 1 and {λn} a sequence such that λn ≥ λ > 0 for all n ≥ 1 and some λ.

Set Ln = 1
n+1

n∑
j=0

k j, L′n = 1
n+1

n∑
j=0
ϕ j and σn = max{kn, ϕn,Ln,L′n}. If

∞∑
n=0
σn < ∞, Ω = F(T) ∩ arg miny∈C f (y) , φ

and if there exist constants M and M∗ > 0 such that ξ(λ) ≤M∗λ for λ ≥M, then {xn}, ∆−converges to a point in Ω.

Proof. By the strictly increasing function ξ and the inequality ξ(λ) ≤M∗λ for λ ≥M, it follows that

ξ
(
d
(
x, y

))
≤ ξ (M) + M∗d

(
x, y

)
. (5)

Since
∞∑

n=0
σn < ∞, therefore

Ln =
1

n + 1

n∑
j=0

k j → 0 and L
′

n =
1

n + 1

n∑
j=0

ϕ j → 0 (as n→∞) . (6)

Let q ∈ Ω. Then q = Tq and f (q) ≤ f (y) for all y ∈ C. This implies that

f (q) +
1

2λn
d2(q, q) ≤ f (y) +

1
2λn

d2(y, q) for all y ∈ C,

and hence q = Jλn q, for all n ≥ 1, where Jλn is the Moreau-Yosida resolvent of f in X defined above. We
divide the proof into five steps.
Step(I): First we prove that the lim

n→∞
d(xn, q) exists. Indeed, since zn = Jλn xn, by Lemma 2.5(i), Jλn is

nonexpansive. Hence we have

d(zn, q) = d(Jλn xn, Jλn q) ≤ d(xn, q). (7)

Applying Lemma 2.2(i) to (4), we have that

d(yn, q) = d

(1 − βn)xn ⊕
βn

n + 1

n⊕
j=0

T jzn, q


≤ (1 − βn)d

(
xn, q

)
+ βnd

 1
n + 1

n⊕
j=0

T jzn, q


≤ (1 − βn)d

(
xn, q

)
+

βn

n + 1

n∑
j=0

d
(
T jzn, q

)
.

(8)
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Further we calculate

βn

n + 1

n∑
j=0

d
(
T jzn, q

)
≤

βn

n + 1

n∑
j=0

{
d
(
zn, q

)
+ k j

[
ξ (M) + M∗d

(
zn, q

)]
+ ϕ j

}
=

βn

n + 1
d
(
zn, q

)
+

βn

n + 1

n∑
j=0

k j
[
ξ (M) + M∗d

(
zn, q

)]
+

βn

n + 1

n∑
j=0

ϕ j

≤
βn

n + 1
d
(
xn, q

)
+

βn

n + 1

n∑
j=0

k j
[
ξ (M) + M∗d

(
zn, q

)]
+

βn

n + 1

n∑
j=0

ϕ j.

That is,

βn

n + 1

n∑
j=0

d
(
T jzn, q

)
≤

βn

n + 1
d
(
xn, q

)
+ βn Ln

[
ξ (M) + M∗d

(
zn, q

)]
+ βn L

′

n.

(9)

Using (9) into (8), we get that

d(yn, q) ≤ (1 − βn)d
(
xn, q

)
+

βn

n + 1
d
(
zn, q

)
+ βn Ln

[
ξ (M) + M∗d

(
zn, q

)]
+ βn L

′

n

≤ (1 − βn)d
(
xn, q

)
+ βnd

(
xn, q

)
+ βn Ln

[
ξ (M) + M∗d

(
zn, q

)]
+ βn L

′

n

≤ d
(
xn, q

)
+ βn Ln

[
ξ (M) + M∗d

(
zn, q

)]
+ βn L

′

n.

(10)

With the help of Lemma 2.2(i), (5),(7) and (10), we calculate that

d(xn+1, q) = d((1 − αn)xn ⊕ αnTnyn, q)
≤ (1 − αn)d(xn, q) + αnd(Tnyn, q)
≤ (1 − αn)d(xn, q) + αn

{
d(yn, q) + kn ξ

(
d(yn, q)

)
+ ϕn

}
≤ (1 − αn)d(xn, q) + αn

{
d(yn, q) + knξ (M)

+knM∗d
(
yn, q

)
+ ϕn

}
≤ d

(
xn, q

)
+ αnβn Lnξ (M) + αnβn Ln M∗d

(
xn, q

)
+ αnknM∗d

(
xn, q

)
+ αnknM∗βn Ln ξ (M)

+ αnβn knLn M∗2d
(
xn, q

)
+ αnβn knL

′

nM∗ + αnβn L
′

n + αnϕn

(11)
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continuing the process,

d(xn+1, q) ≤ d
(
xn, q

)
+

{
αnβn Ln M∗ + αnknM∗

+αnβn knLn M∗2

}
d
(
xn, q

)
+ αnβn Lnξ (M) + αnknM∗βn Ln ξ (M) + αnβn knL

′

nM∗

+ αnβn L
′

n + αnϕn

≤ d
(
xn, q

)
+

{
b2σn M∗ + bσnM∗ + b2b1σn M∗2

}
d
(
xn, q

)
+ b2ξ (M) σn + b2M∗ξ (M) b1σn + b2b1σnM∗ + b2σnM∗ + bσn

≤

[
1 +

(
b2 M∗ + bM∗ + b2b1M∗2

)
σn

]
d
(
xn, q

)
+

(
b2ξ (M) + b2M∗ξ (M) b1 + b2b1M∗ + b2M∗ + b

)
σn.

(12)

Applying Lemma 2.1 to (12), we obtain that lim
n→∞

d(xn, q) exists. Without loss of generality, we assume that

lim
n→∞

d(xn, q) = c > 0. (13)

In the presence of (13), we deduce that the sequences {zn}, {yn}, {T jzn} and {Tnyn} are bounded. Step(II):
Now we prove that

lim
n→∞

d(xn, zn) = 0.

By the sub-differential inequality (Lemma 2.6) we have

1
2λn

{
d2(zn, q) − d2(xn, q) + d2(xn, zn)

}
≤ f (q) − f (zn).

Since f (q) ≤ f (zn) for all n ≥ 1, it follows from the above inequality that

d2(xn, zn) ≤ d2(xn, q) − d2(zn, q). (14)

In order to prove that lim
n→∞

d(xn, zn) = 0, it suffices to prove that d2(zn, q)→ c.

In fact, it follows from (12) that

d(xn+1, q) ≤ (1 − αn)d(xn, q) + αn
{
d(yn, q) + kn ξ

(
d(yn, q)

)
+ ϕn

}
≤ d(xn, q) − αnd(xn, q) + αn

{
d(yn, q) + kn

[
ξ (M) + M∗d

(
yn, q

)]
+ ϕn

}
.

Rewriting the above inequality, we have

d(xn, q) ≤
1
αn

[
d(xn, q) − d(xn+1, q)

]
+ d(yn, q)(1 + kn M∗) + knξ (M) + ϕn

≤
1
a
[
d(xn, q) − d(xn+1, q)

]
+ d(yn, q)(1 + kn M∗) + knξ (M) + ϕn.

(15)

The inequality (15) together with (13) implies that

c = lim inf
n→∞

d(xn, q) ≤ lim inf
n→∞

d(yn, q). (16)

On the other hand, it follows from (10) and (6) that

lim sup
n→∞

d(yn, q) ≤ lim sup
n→∞

d(xn, q) = c.
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This together with (16) implies that

lim
n→∞

d(yn, q) = c. (17)

From (10), we also have that

d(yn, q) ≤ (1 − βn)d
(
xn, q

)
+

βn

n + 1
d
(
zn, q

)
+ βn Ln

[
ξ (M) + M∗d

(
zn, q

)]
+ βn L

′

n

≤ (1 − βn)d
(
xn, q

)
+ βnd

(
zn, q

)
+ βn Ln

[
ξ (M) + M∗d

(
zn, q

)]
+ βn L

′

n

≤ d(xn, q) − βnd
(
xn, q

)
+ βnd

(
zn, q

)
+ βn Ln

[
ξ (M) + M∗d

(
zn, q

)]
+ βn L

′

n

which can be rewritten as

d(xn, q) ≤
1
βn

[
d(xn, q) − d(yn, q)

]
+ d

(
zn, q

)
+ Ln

[
ξ (M) + M∗d

(
zn, q

)]
+ L

′

n

≤
1
a
[
d(xn, q) − d(yn, q)

]
+ d

(
zn, q

)
+ Ln

[
ξ (M) + M∗d

(
zn, q

)]
+ L

′

n

This together with (13) and (6) provides that

c = lim inf
n→∞

d(xn, q) ≤ lim inf
n→∞

d(zn, q). (18)

From (7), it follows that

lim sup
n→∞

d(zn, q) ≤ lim sup
n→∞

d(xn, q) = c. (19)

Combining (18) and (19), we have that

lim
n→∞

d(zn, q) = c. (20)

Therefore it follows from (13)-(14) and (20) that

lim
n→∞

d(xn, zn) = 0. (21)

Step(III): Now we prove that

lim
n→∞

d(xn,Txn) = 0, and lim
n→∞

d(xn,yn) = 0.

It follows from Lemma 2.2(ii) and (4) that

d(yn, q)2 = d

(1 − βn)xn ⊕
βn

n + 1

n⊕
j=0

T jzn, q


2

≤ (1 − βn)d(xn, q)2 + βnd

 1
n + 1

n⊕
j=0

T jzn, q


2

− βn(1 − βn)d

xn,
1

n + 1

n⊕
j=0

T jzn


2

.

(22)



A. Kalsoom et al. / Filomat 32:12 (2018), 4165–4176 4173

We also compute

d

 1
n + 1

n⊕
j=0

T jzn, q


2

≤

 1
n + 1

n∑
j=0

d(zn, q) + k jξ
(
d(zn, q)

)
+ ϕn


2

≤


d
(
zn, q

)
+ 1

n+1

n∑
j=0

k j
[
ξ (M) + d

(
zn, q

)
M∗

]
+ 1

n+1

n∑
j=0
ϕ j


2

≤

{
d
(
zn, q

)
+ Ln

[
ξ (M) + d

(
zn, q

)
M∗

]
+ L

′

n

}2

(23)

Denote sn = d

xn, 1
n+1

n⊕
j=0

T jzn

2

.

Substituting (23) into (22), simplifying and using Ln → 0, L′n → 0, d(xn, q) → c, and d(yn, q) → c
(as n→∞), we have

a (1 − b) sn ≤ βn(1 − βn)d

xn,
1

n + 1

n⊕
j=0

T jzn


2

≤ (1 − βn)d2 (
xn, q

)
+ βn

{
d
(
zn, q

)
+ Ln

[
ξ (M) + d

(
zn, q

)
M∗

]
+ L

′

n

}2

− d2 (
yn, q

)
≤ (1 − βn)d2 (

xn, q
)

+ βn

{
d
(
zn, q

)
+ Ln

[
ξ (M) + d

(
zn, q

)
M∗

]
+ L

′

n

}2

− d2 (
yn, q

)
≤ d2 (

xn, q
)
− βnd2 (

xn, q
)

+ βn

{
d
(
zn, q

)
+ Ln

[
ξ (M) + d

(
zn, q

)
M∗

]
+ L

′

n

}2

− d2 (
yn, q

)
→ 0 as n→∞.

That is,

d

xn,
1

n + 1

n⊕
j=0

T jzn

→ 0 as n→∞.

Therefore

lim
n→∞

1
n + 1

n∑
j=0

d
(
xn,T jzn

)2
= 0.

This implies that

lim
n→∞

d
(
xn,T jzn

)
= 0 for each j = 0, 1, 2, ...,n.

Since T is uniformly continuous, (21) holds and

d(xn,Txn) ≤ d (xn,Tzn) + d (Txn,Tzn) ,

therefore

lim
n→∞

d(xn,Txn) = 0. (24)
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Step(IV): We also prove that

lim
n→∞

d(Jλxn, xn) = 0, where λn ≥ λ > 0.

It follows from (17) and Lemma 2.6(ii) that

d(Jλxn, xn) ≤ d(Jλxn, zn) + d(zn, xn) = d(Jλxn, Jλn xn) + d(zn, xn)

= d
(
Jλxn, Jλ

(
λn − λ
λn

Jλn xn

⊕ λ
λn

xn

))
+ d(zn, xn)

≤ d
(
xn,

(
1 −

λ
λn

)
Jλn xn

⊕ λ
λn

xn

)
+ d(zn, xn)

≤

(
1 −

λ
λn

)
d(xn, Jλxn) + d(zn, xn)

=
(
1 −

λ
λn

)
d(xn, zn) + d(zn, xn)→ 0.

That is,

lim
n→∞

d(Jλxn, xn) = 0. (25)

Step(V): Here we prove that

w∆ (xn) =
⋃

{un}⊂{xn}

{A ({un})} ⊂ Ω.

Let u ∈ w∆ (xn), then there exists a subsequence {un} of {xn} such that A ({un}) = {u}. It follows from Lemma
2.3 that there exists a subsequence {vn} of {un} such that ∆ − lim

n→∞
vn = v for some v ∈ C. In view of (24) and

(25), we get that

lim
n→∞

d (vn,Tvn) = 0 = lim
n→∞

d (Jλvn, vn) .

Therefore by Lemma 2.7, v ∈ Ω.Also, by (13), the limit lim
n→∞

d (xn, v) exists. Hence by Lemma 2.4, u = v. This

shows that w∆ (xn) ⊂ Ω.
Finally, we show that the sequence {xn}, ∆−converges to a point in Ω. To this end, it suffices to show that

w∆ (xn) consists of exactly one point. Let {un} be a subsequence of {xn}with A({un}) = {u} and let A({xn}) = {x}.
Since u ∈ w∆ (xn) ⊂ Ω and {d(xn,u)} converges by (13), we have x = u. Hence w∆ (xn) = {x}. This completes
the proof.

Recall that a mapping T : C → C is semi-compact, if for any bounded sequence {xn} in C such that
d (xn,Txn) → 0 (as n → ∞), there exists a subsequence

{
xni

}
⊂ {xn} such that

{
xni

}
strongly converges to a

point x ∈ C.
Our strong convergence theorems are as under.

Theorem 3.2. Under the assumptions of Theorem 3.1 if, in addition, T or Jλ is semi-compact, then the sequence {xn}

defined by (4) strongly converges to a point in Ω.

Proof. It follows from (24) and (25) that

lim
n→∞

d(xn,Txn) = 0 = lim
n→∞

d(xn, Jλ (xn)). (26)

By the assumption, we assume T is semi-compact. Then by (26), there exists a subsequence
{
xni

}
⊂ {xn} such

that
{
xni

}
converges strongly to some point x ∈ C. Hence, from (26), we have

d (x,Tx) = lim
i→∞

d
(
xni ,Txni

)
= 0 and d (x, Jλx) = lim

i→∞
d
(
xni , Jλxni

)
= 0.

Therefore x ∈ Ω. As by (13) the limit lim
n→∞

d(xn, x) exists and also
{
xni

}
strongly converges to x ∈ Ω, therefore

{xn} strongly converges to x ∈ Ω.
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Theorem 3.3. Under the assumptions of Theorem 3.1 if, in addition, there exists a nondecreasing function 1 :
[0,∞)→ [0,∞) with 1(0) = 0, 1(r) > 0 for all r > 0 such that

1(d(x,Ω)) ≤ d(x, Jλx) + d(x,Tx) for all x ∈ C, (27)

then the sequence {xn} defined by (4) strongly converges to a point x ∈ Ω.

Proof. With the help of (24)-(25) and (27), we have lim
n→∞
1(d(xn,Ω)) = 0. Since 1 is nondecreasing with 1(0) = 0

and 1(r) > 0 for r > 0, we have that

lim
n→∞

d(xn,Ω) = 0.

Next we prove that {xn} is a Cauchy sequence in C. In fact, it follows from (12) that for any q ∈ Ω, we have
that

d(xn+1, q) ≤
(
1 + µn

)
d
(
xn, q

)
+ νn (28)

where µn =
(
b2 M∗ + bM∗ + b2b1M∗2

)
σn

and νn =
(
b2ξ (M) + b2M∗ξ (M) b1 + b2b1M∗ + b2M∗ + b

)
σn.

By taking infp∈Ω on both sides of (28), we obtain that

d(xn+1,Ω) ≤
(
1 + µn

)
d (xn,Ω) + νn (29)

Assume that
∑
∞

n=1 µn = µ and hence
∏
∞

n=1
(
1 + µn

)
= µ. For ε > 0, there exists n0 ≥ 1 such that d(xn0 ,Ω) < ε

4µ+4

and
∑
∞

n=n0
tn < ε

4s .
Let m > n ≥ n0 and p ∈ F. With the help of (29), we obtain

d (xm, xn) ≤ d (xm,Ω) + d (xn,Ω)

≤

m−1∏
i=n0

(
1 + µi

)
d
(
xn0 ,F

)
+

m−1∏
i=n0

(
1 + µi

) m−1∑
n=n0

νi

+

n−1∏
i=n0

(
1 + µi

)
d
(
xn0 ,Ω

)
+

n−1∏
i=n0

(
1 + µi

) n−1∑
n=n0

νi

≤

∞∏
i=n0

(
1 + µi

)
d
(
xn0 ,Ω

)
+

∞∏
i=n0

(
1 + µi

) ∞∑
n=n0

νi

+

∞∏
i=n0

(
1 + µi

)
d
(
xn0 ,Ω

)
+

∞∏
i=n0

(
1 + µi

) ∞∑
n=n0

νi

< 2
[(

1 + µ
) ε

4s + 4
+ µ

ε
4µ

]
= ε.

This proves that {xn} is a Cauchy sequence in C. Let limn→∞ xn = q. Then d
(
q,Ω

)
= d (limn→∞ xn,Ω) =

limn→∞ d (xn,Ω) = 0. As Ω is closed, so we obtain q ∈ Ω. Hence {xn} strongly converges to a point of Ω.
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