Existence of Solutions of a Non-variational Bi-harmonic System via Fixed Point Theory

Idir Mechai ${ }^{\text {a }}$, Metib Alghamdi ${ }^{\text {a }}$, Habib Yazidi ${ }^{\text {a,b }}$
${ }^{a}$ Department of Mathematics, Faculty of Science, Jazan University, P.O.Box 277, Jazan 45142, Saudi Arabia
${ }^{b}$ University of Tunis, National School of Engineers of Tunis, 5 Street Taha Hssine, Bab Mnar 1008 Tunis, Tunisia

Abstract

We prove existence of a positive solution for a system of non-variational bi-harmonic equations. Furthermore, we give some a priori estimates of solutions and a non-existence result. In addition we compute numerical solutions to illustrate the theoretical results.

1. Introduction

We consider the following $2^{k}, k \geq 1$ strongly coupled elliptic system

$$
\begin{cases}\Delta^{2} u_{i}=f_{i}\left(u_{i+1}\right), & u_{i}>0 \text { in } B, i=1,2, \ldots, 2^{k}-1, \tag{1}\\ \Delta^{2} u_{2^{k}}=f_{2^{k}}\left(u_{1}\right), & u_{2^{k}}>0 \text { in } B,\end{cases}
$$

with the boundary conditions

$$
\left\{\begin{array}{l}
u_{i}=0, \quad \frac{\partial u_{i}}{\partial v}=0, \text { on } \partial B, i=1,2, \ldots, 2^{k}-1 \tag{2}\\
u_{2^{k}}=0, \\
\frac{\partial u_{2^{k}}}{\partial v}=0, \text { on } \partial B
\end{array}\right.
$$

where B is the unit ball in $\mathbb{R}^{N}(N>4)$, the functions $f_{i}:[0, \infty) \rightarrow[0, \infty)$ are continuous, verifying $f_{i}(0)=0$ for $i=1,2,3, \ldots, 2^{k}$.

The system described by (1)-(2) is ubiquitous in physics and chemistry where steady-states are answers to problematic questions in a great variety of systems of reaction-diffusion equations. These equations interact everywhere in nature. This interaction takes place in such disparate phenomena as the proliferation of virile mutants over a substantially wide habitat, the dispersion of fire flames in spacious forests, in combustion chambers, or in nuclear reactors where neutron populations evolve and develop. Hence, the reactiondiffusion equations represent a significant research area in mathematics see [6] and the references therein.

[^0]The non-variational Laplacian systems are extensively studied in several research papers. Existence, non existence, and a priori estimates for solutions are addressed in many papers [2], [4], [5] and [15]. Similar results are obtained for the bi-Laplacian systems, fractional differential equations and nonlinear elastic beam equations using topological methods, namely fixed point theorem and degree theory [1], [7], [10], [11], [13], [18].

The particular case of the system (1)-(2), corresponding to $k=1$ was treated in ([17]). The authors established the existence of a non-trivial solution provided that a priori estimates on the L^{∞}-norm of solutions holds true. In the present work, we propose to study the general strongly coupled elliptic system (1)-(2). We carry out a detailed analysis of the expected solutions for our problem, and we extract suitable conditions on the source terms f_{i} for $i=1,2,3, \ldots, 2^{k}$, which allow us to prove existence and non-existence results.

This paper is organized as follows. In Section 2 we recall some preliminary results related to the bilaplacian problem. Furthermore, we study the eigenvalue problem associate to the system (1)-(2) and prove some properties of its solutions. The main results are presented and proved in Section 3. We end the paper, Section 4, by giving examples and computing numerical solutions related to the system (1)-(2).

2. Preliminary Results

In this work, we seek a positive radial summetric solution to system (1)-(2). Then, let $r=|x| \in[0,1)$, $u_{i}=u_{i}(r)$ for $i=1,2,3, \ldots, 2^{k}-1$, and $u_{2^{k}}=u_{2^{k}}(r)$

$$
\left\{\begin{array}{l}
u_{i}^{(4)}+\frac{2(N-1)}{r} u_{i}^{(3)}+\frac{(N-1)(N-3)}{r^{2}} u_{i}^{\prime \prime}-\frac{(N-1)(N-3)}{r^{3}} u_{i}^{\prime}=f_{i}\left(u_{i+1}\right), \quad u_{i}>0 \tag{3}\\
u_{2^{k}}^{(4)}+\frac{2(N-1)}{r} u_{2^{k}}^{(3)}+\frac{(N-1)(N-3)}{r^{2}} u_{2^{k}}^{\prime \prime}-\frac{(N-1)(N-3)}{r^{3}} u_{2^{k}}^{\prime}=f_{2^{k}}\left(u_{1}\right), \quad u_{2^{k}}>0
\end{array}\right.
$$

with the following boundary conditions

$$
\left\{\begin{array}{l}
u_{i}^{\prime}(0)=0, \quad u_{i}^{(3)}(0)=0, \quad u_{i}(1)=0, \quad u_{i}^{\prime}(1)=0 \tag{4}\\
u_{2^{k}}^{\prime}(0)=0, \quad u_{2^{k}}^{(3)}(0)=0, \quad u_{2^{k}}(1)=0, \quad u_{2^{k}}^{\prime}(1)=0 .
\end{array}\right.
$$

It's well known that any solution $(u(r), v(r)) \in C^{4}(0,1) \times C^{4}(0,1)$ of (3)-(4) is a radial symmetric solution of (1)-(2).

The eigenvalue problem for the operator Δ^{2} plays a crucial a role in studying our problem, we cite the following result from [18, Lemma 2].

Lemma 2.1. There is a $\mu_{1}>0$ such that the problem

$$
\Delta^{2} v=\mu_{1} v \quad \text { in } B, \quad v=\frac{\partial v}{\partial v}=0 \quad \text { on } \partial B
$$

possesses a positive, radial symmetric solution $\varphi_{1}(x)$ which satisfies, for some positive constants C_{1} and C_{2},

$$
\begin{equation*}
C_{1}(1-|x|)^{2} \leq \varphi_{1}(x) \leq C_{2}(1-|x|)^{2}, \quad x \in \bar{B} \tag{5}
\end{equation*}
$$

We recall the Green function $G(r, s)$ for the operator $\Delta^{2}, N>4$, see [11] and [18],

$$
G(r, s)= \begin{cases}a_{N}(s)+r^{2} b_{N}(s), & \text { for } 0 \leq r \leq s \leq 1 \tag{6}\\ \left(\frac{s}{r}\right)^{N-1}\left(a_{N}(r)+s^{2} b_{N}(r)\right), & \text { for } 0 \leq s \leq r \leq 1\end{cases}
$$

where

$$
a_{N}(t)=\frac{t^{3}}{4(N-2)(N-4)}\left[2+(N-4) t^{N-2}-(N-2) t^{N-4}\right]
$$

and

$$
b_{N}(t)=\frac{t}{4 N(N-2)}\left[N t^{N-2}-(N-2) t^{N}-2\right] .
$$

The following proprieties of the kernel $G(r, s)$ are in [18]. There exists a positive constant C such that

$$
\begin{align*}
& 0 \leq G(r, s) \leq C s^{N-1}(1-s)^{2}(\max (r, s))^{4-N}, \tag{7}\\
& \frac{\partial}{\partial r} G(r, s)(r, s) \leq 0 \tag{8}
\end{align*}
$$

and

$$
\begin{equation*}
\left.\frac{\partial^{2}}{\partial r^{2}} G(r, s)\right|_{r=1}=\frac{1}{2} s^{N-1}\left(1-s^{2}\right) \tag{9}
\end{equation*}
$$

Hence, the problem (3)-(4) is transformed into the integral equations

$$
\left\{\begin{array}{l}
u_{i}(r)=\int_{0}^{1} G(r, s) f_{i}\left(u_{i+1}(s)\right) \mathrm{d} s, \quad \text { for } i=1,2, \ldots, 2^{k}-1 \tag{10}\\
u_{2^{k}}(r)=\int_{0}^{1} G(r, s) f_{2^{k}}\left(u_{1}(s)\right) \mathrm{d} s .
\end{array}\right.
$$

It's natural that problem (3)-(4) and problem (10) are equivalent.
Consider the following eigenvalue problem,

$$
\left\{\begin{array}{l}
\Delta^{2} \phi_{i}=\lambda_{i+1} \phi_{i+1}, \quad i=1,2, \ldots, 2^{k}-1 \quad \text { in } B \tag{11}\\
\Delta^{2} \phi_{2^{k}}=\lambda_{1} \phi_{1} \\
\phi_{i}=0, \frac{\partial \phi_{i}}{\partial v}=0, i=1,2, \ldots, 2^{k}-1 \\
\phi_{2^{k}}=0, \frac{\partial \phi_{2^{k}}}{\partial v}=0
\end{array}\right.
$$

where $\lambda_{i}>0, i=1,2,3, \ldots, 2^{k}$.
Note φ_{1} the corresponding eigenfunction of μ_{1} the first eigenvalue of Δ^{2} on the unit ball B, we prove the following result.

Lemma 2.2. Assume that $\prod_{i=1}^{2^{k}} \lambda_{i}=\mu_{1}^{2^{k}}$, then the problem (11) has a positive solution $\left(\phi_{1}, \phi_{2}, \phi_{3}, \ldots, \phi_{2^{k}}\right)$ verifying (modulo a constant) $\phi_{1}=\varphi_{1}, \phi_{i}=\frac{\lambda_{1} \lambda_{i+1} \ldots \lambda_{2^{k}}}{\mu_{1}^{2^{k}-(i-1)}} \varphi_{1}$ for $i=2,3, \ldots, 2^{k}-1, \phi_{2^{k}}=\frac{\lambda_{1}}{\mu} \varphi_{1}$.
Proof. We define

$$
\begin{equation*}
w_{1}=\phi_{1}, \quad w_{i}=\frac{\mu_{1}^{2^{k}-(i-1)}}{\prod_{\substack{2^{k}}}^{l=1,} \lambda_{l}} \phi_{i}, \quad \text { for } i=2, \ldots, 2^{k}-1, \text { and } w_{2^{k}}=\frac{\mu_{1}}{\lambda_{1}} \phi_{2^{k}} \tag{12}
\end{equation*}
$$

We put (12) in the problem (11), after some simplifications, we obtain

$$
\begin{cases}\Delta^{2} w_{i}=\mu_{1} w_{i+1}, \Delta^{2} w_{2^{k}}=\mu_{1} w_{1} & \text { in } B \tag{13}\\ w_{i}=\frac{\partial w_{i}}{\partial v}=0, w_{2^{k}}=\frac{\partial w_{2^{k}}}{\partial v}=0 & \text { on } \partial B\end{cases}
$$

for $i=1,2,3, \ldots, 2^{k}-1$.
Adding all the equations, we get

$$
\begin{cases}\Delta^{2}\left(\sum_{i=1}^{2^{k}} w_{i}\right)=\mu_{1} \sum_{i=1}^{2^{k}} w_{i} & \text { in } B \tag{14}\\ \sum_{i=1}^{2^{k}} w_{i}=0, \frac{\partial}{\partial v}\left(\sum_{i=1}^{2^{k}} w_{i}\right)=0 & \text { on } \partial B\end{cases}
$$

Applying $\left(\Delta^{2}\right)^{2^{k-1}-1}$ on the $i^{\text {th }}$ and $(i+k)^{t h}$ equations of the system (13) for $i=1,2,3, \ldots, 2^{k-1}$, yields

$$
\begin{cases}\left(\Delta^{2}\right)^{2^{k-1}-1} w_{i}=\mu_{1}^{2^{k-1}-1} w_{i+2^{k-1}} & \text { in } B \tag{15}\\ w_{i}=0, \frac{\partial w_{i}}{\partial v}=0 & \text { on } \partial B\end{cases}
$$

and

$$
\begin{cases}\left(\Delta^{2}\right)^{2^{k-1}-1} w_{i+2^{k-1}}=\mu_{1}^{2^{k-1}-1} w_{i} & \text { in } B \tag{16}\\ w_{i+2^{k-1}}=0, \frac{\partial w_{i+2^{k-1}}}{\partial v}=0 & \text { on } \partial B\end{cases}
$$

Next, subtracting the equation (16) from (15), gives

$$
\begin{cases}\left(\Delta^{2}\right)^{2^{k-1}-1}\left(w_{i}-w_{i+2^{k-1}}\right)=\mu_{1}^{2^{k-1}-1}\left(w_{i+2^{k-1}}-w_{i}\right) & \text { in } B \tag{17}\\ w_{i}-w_{i+2^{k-1}}=0, \frac{\partial}{\partial v}\left(w_{i}-w_{i+2^{k-1}}\right)=0 & \text { on } \partial B\end{cases}
$$

We multiply (17) by $w_{i}-w_{i+2^{k-1}}$ and we make a 2^{k} integration by parts, we obtain

$$
\int_{B}\left|\Delta\left(w_{i}-w_{i+2^{k-1}}\right)\right|^{\left.\right|^{k}} \mathrm{~d} x=-\mu_{1}^{2^{k-1}-1} \int_{B}\left|w_{i}-w_{i+2^{k-1}}\right|^{2} \mathrm{~d} x
$$

this proves that $w_{i}=w_{i+2^{k-1}}$ for $i=1,2,3, \ldots, 2^{k-1}$ in \bar{B}, which reduce the system (13) to 2^{k-1} equations. Repeating the same argument $k-1$ times, where at each $j^{\text {th }}$ iteration we apply the operator $\left(\Delta^{2}\right)^{2^{k-j}-1}$ to the reduced system with 2^{k-j} equations and following the same steps as the previous iteration. Finally, we obtain $w_{1}=w_{2}=w_{3}=\ldots=w_{2^{k}}$.

The properties of the eigenvalue problem for the bi-Laplacian, imply that the only solution of the system (14) is the first eigenfunction φ_{1}. Looking at (14), we have, modulo a positive constant, $w_{1}=\ldots=w_{2^{k}}=\varphi_{1}$. Then we deduce directly the desired result.

Let us, now, give the following identity which is important in studying our problem. Let F_{i} be the primitive of f_{i} such that $F_{i}(0)=0$, for $i=1, \ldots, 2^{k}$.

Lemma 2.3. Let $\left(u_{1}, u_{2}, u_{3}, \ldots, u_{2^{k}}\right)$ a solution of the system (1)-(2) and α_{i} for $i=1,2, \ldots, 2^{k}$ are some positive constants. We have the following

$$
\begin{align*}
\sum_{i=1}^{2^{k}-1} \int_{\partial B}\left(\Delta u_{i}, \Delta u_{i+1}\right)(x . v) d \sigma_{x}= & \sum_{i=1}^{2^{k}-1} \int_{B} N F_{i}\left(u_{i+1}\right)-\alpha_{i+1} u_{i+1} f_{i}\left(u_{i+1}\right) d x \\
& +\int_{B} N F_{2^{k}}\left(u_{1}\right)-\alpha_{1} u_{1} f_{2^{k}}\left(u_{1}\right) d x d x \tag{18}\\
& +\sum_{i=1}^{2^{k}-1}\left(N-4-\sum_{l=1}^{l=2^{k}} \alpha_{l}\right) \int_{B}\left(\Delta u_{i}, \Delta u_{i+1}\right) d x
\end{align*}
$$

Proof. Looking at [14, Proposition 4], [15, Theorem 2.1] and by some adaptations, we write the following general identity

$$
\begin{align*}
& \frac{\partial}{\partial x_{i}}\left[x_{i} L-\left(x_{k} \frac{\partial u_{l}}{\partial x_{k}}+a_{l} u_{l}\right)\left(L_{p_{i}}-\frac{\partial}{\partial x_{j}} L_{r_{i j}}\right)-\frac{\partial}{\partial x_{j}}\left(x_{k} \frac{\partial u_{l}}{\partial x_{k}}+a_{l} u_{l}\right) L_{r_{i j}}\right] \tag{19}\\
& =N L+x_{i} L_{x_{i}}-a_{l} u_{l} L_{u_{l}}-\left(a_{l}+1\right) \frac{\partial u_{l}}{\partial x_{i}} L_{p_{i}}-\left(a_{l}+2\right) \frac{\partial^{2} u_{l}}{\partial x_{i} \partial x_{j}} L_{r_{i j}}
\end{align*}
$$

where $L=L(x, U, p, r)$ is a lagrangian with $U=\left(u_{1}, u_{2}, \ldots, u_{2^{k}}\right), p=\left(p_{i}^{k}\right), p_{i}^{k}=\frac{\partial u_{k}}{\partial x_{i}}, r=\left(r_{i j}\right), i, j=1, \ldots N$ and a_{l} for $l=1,2,3, \ldots, 2^{k}$, are constants. Applying the identity (19) to the Lagrangian of the problem (1)-(2);

$$
L=L(x, U, \nabla U, \Delta U)=\sum_{m=1}^{m=2^{k}-1}\left[\left(\Delta u_{m}, \Delta u_{m+1}\right)+F_{m}\left(u_{m+1}\right)\right]+\left(\Delta u_{2^{k}}, \Delta u_{1}\right)+F_{2^{k}}\left(u_{1}\right),
$$

and $a_{l}=\alpha_{l}$ for $l=1,2,3, \ldots, 2^{k}$.
Integrating (19) over B and using the condition $u_{l}=0, \frac{\partial u_{l}}{\partial v}=0$ on ∂B for $l=1,2,3, \ldots, 2^{k}$, we get (18).
Remark 2.4. If we take $\sum_{l=1}^{l=2^{k}} \alpha_{l}=N-4$ in (18), we remark that the critical conditions on $f_{i}, i=1,2,3, \ldots, 2^{k}$ are $N F_{2^{k}}\left(u_{1}\right)-\alpha_{1} u_{1} f_{2^{k}}\left(u_{1}\right)=0$ and $N F_{i}\left(u_{i+1}\right)-\alpha_{i+1} u_{i+1} f_{i}\left(u_{i+1}\right)=0$ for $i=1,2,3, \ldots, 2^{k}-1$ therefore

$$
\frac{f_{2^{k}}\left(u_{1}\right)}{F_{2^{k}}\left(u_{1}\right)}=\frac{N / \alpha_{1}}{u_{1}} \quad \text { and } \quad \frac{f_{i+1}\left(u_{i}\right)}{F_{i+1}\left(u_{i}\right)}=\frac{N /\left(\alpha_{i+1}\right)}{u_{i+1}}, \quad \text { for } 1,2,3, \ldots, 2^{k}-1 .
$$

Hence, for some positive constants c_{i},

$$
f_{2^{k}}\left(u_{1}\right)=c_{2^{k}} u^{\frac{N}{a_{1}}-1} \quad \text { and } \quad f_{i}\left(u_{i+1}\right)=c_{i} u_{i+1}^{\frac{N}{a_{i+1}}-1}, \quad \text { for } 1,2,3, \ldots, 2^{k}-1
$$

3. Main Results and Proofs

We define the following critical exponents associated to the system (1)-(2) by

$$
\begin{equation*}
q_{i}^{\star}=\frac{N-\alpha_{i+1}}{\alpha_{i+1}} \text { and } q_{2^{k}}^{\star}=\frac{N-\alpha_{1}}{\alpha_{1}}, \quad \text { where } \alpha_{i}, \alpha_{i+1} \in((N-4) / 2, N / 2) \text {, for } i=1,2,3, \ldots, 2^{k}-1 \tag{20}
\end{equation*}
$$

A simple computation shows that $\sum_{i=1}^{i=2^{k}} \frac{1}{q_{i}^{*}+1}=\frac{N-4}{N}$.
We state our first main result.

Theorem 3.1. Suppose that f_{i} for $i=1,2,3, \ldots, 2^{k}$, verify the following conditions
(I) $\liminf _{s \rightarrow \infty} f_{i}(s) s^{-1}>\lambda_{i}, \quad \limsup _{s \rightarrow 0} f_{i}(s) s^{-1}<\lambda_{i}$,
(II) $\begin{array}{ll} & s \rightarrow \infty \\ N F_{i}(s)-\alpha_{i+1} s f_{i}(s) & \geq \theta_{i+1} s f_{i}(s), s>0, \text { for some } \theta_{i+1} \geq 0, i=1,2,3, \ldots, 2^{k}-1, \\ N F_{2^{k}}(s)-\alpha_{1} s f_{2^{k}}(s) \geq \theta_{1} s f_{2^{k}}(s), s>0, \text { for some } \theta_{1} \geq 0,\end{array}$ where $\alpha_{j}, j=1,2,3, \ldots, 2^{k}$ are positive reals such that $\sum_{j=1}^{j=2^{k}} \alpha_{j}=N-4$.
In addition, we suppose that:
(H) There exists a constant $C>0$ such that for every solution $\left(u_{1}, u_{2}, u_{3}, \ldots, u_{2^{k}}\right)$
(H) of the system (1)-(2) verifies $\left\|u_{i}\right\|_{\infty} \leq C$, for $i=1,2,3, \ldots, 2^{k}$.

Then there exists a nontrivial solution of the system (1)-(2).
Remark 3.2. Let $f_{i}, i=1,2,3, \ldots, 2^{k}$ verifying the conditions (I) and (II) of Theorem 3.1. we have

$$
\lim _{t \rightarrow \infty} \frac{f_{i}(t)}{t_{i+1}^{*}}=0, \text { for } i=1,2,3, \ldots, 2^{k}-1 \quad \text { and } \quad \lim _{t \rightarrow \infty} \frac{f_{2^{k}}(t)}{t^{q_{1}^{*}}}=0
$$

Indeed, from condition (I), there exists $t_{0}>0$ such that $f_{i}(t)>0$ for $t>t_{0}$. Then, looking at condition (II) we write

$$
\begin{equation*}
N F_{i}(t) \geq-\theta_{i}+\eta_{i} t f_{i}(t) \quad \text { for } t>t_{0} \tag{21}
\end{equation*}
$$

where $\eta_{i}=\alpha_{i}+\theta_{i, 2}$.
Hence

$$
F_{i}^{\prime}(t)-\frac{N}{\eta_{i} t} F_{i}(t) \geq \frac{\theta_{i}}{\eta_{i} t}
$$

Multiplying the last inequalities, respectively, by $t^{-\frac{N}{\eta_{i}}}$, we obtain

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t^{-\frac{N}{n_{i}}} F_{i}(t)\right) \leq \frac{\theta_{i}}{\eta_{i}} t^{-1-\frac{N}{n_{i}}} .
$$

Then, for some positive constants C_{i}, we have

$$
\begin{equation*}
F_{i}(t) \leq C_{i} t^{\frac{N}{n_{i}}} \tag{22}
\end{equation*}
$$

Replacing (22) into (21), we get for t large enough that,

$$
f_{i}(t) \leq C t^{\frac{N}{n_{i}}-1}
$$

for some positive constant C. Since $\sum_{i=1}^{2^{k}} \alpha_{i}=N-4$ and $\eta_{i}=\alpha_{i}+\theta_{i, 2}$, then we have $\sum_{i=1}^{2^{k}} \eta_{i}>N-4$.
The proof of Theorem 3.1 relies on a variant of fixed point theorem, see [9] and [12].
Theorem 3.3. Let C be a cone in a Banach space X and $\Phi: C \rightarrow C$ a compact map such that $\Phi(0)=0$. Assume that there exist numbers $0<r<R$ such that
(a) $x \neq \lambda \Phi(x)$ for $0 \leq \lambda \leq 1$ and $\|x\|=r$,
(b) there exists a compact map $F: \overline{B_{R}} \times[0, \infty) \rightarrow C$ such that

$$
\begin{cases}F(x, 0)=\Phi(x) & \text { if } \quad\|x\|=R \\ F(x, \mu) \neq x & \text { if } \quad\|x\|=R \text { and } 0 \leq \mu<\infty \\ F(x, \mu) \neq x & \text { if } \quad x \in \overline{B_{R}} \text { and } \mu \geq \mu_{0}\end{cases}
$$

Then if $U=\{x \in C: r<\|x\|<R\}$ and $B_{\rho}=\{x \in C:\|x\|<\rho\}$, we have

$$
i_{C}\left(\Phi, B_{R}\right)=0, \quad i_{C}\left(\Phi, B_{r}\right)=1 \quad i_{C}(\Phi, U)=-1
$$

where $i_{C}(\Phi, \Omega)$ denotes the index of Φ with respect to Ω. In particular, Φ has a fixed point in U.
Proof of Theorem 3.1 Applying Theorem 3.3, Let $C^{*}([0,1])$ denote the space of continuous bounded functions defined on $[0,1]$. Consider the Banach space $X=\left(C^{*}((0,1))\right)^{2^{k}}$ endowed with the norm $\|u\|=\sup _{t \in[0,1]}\{|u(t)|\}$. The cone C is defined by

$$
C=\{w \in X: \quad w(t) \geq 0 \quad \text { for all } t \in[0,1]\}
$$

where $w=\left(y_{1}, \ldots, y_{2^{k}}\right) \geq 0$ means that $y_{i} \geq 0$ for $i=1, \ldots, 2^{k}$.
We define the compact map $\Phi: X \rightarrow X$ by

$$
\Phi(w)(r)=\int_{0}^{1} G(r, s) h(w(s)) \mathrm{d} s, \quad h(w)=\left(f_{1}\left(u_{2}\right), \ldots, f_{2^{k}-1}\left(u_{2^{k}}\right), f_{2^{k}}\left(u_{1}\right)\right)
$$

It's clear that a fixed point of Φ is a solution of (10). So, it will be a solution of (3)-(4) as well.
Verification of condition (a): From hypothesis (I) of Theorem 3.1 we have that $f_{i}\left(u_{i+1}(x)\right) \leq q_{i} \lambda_{i} u_{i+1}(x)$, $i=1, \ldots, 2^{k}-1$ and $f_{2^{k}}\left(u_{1}(x)\right) \leq q_{2^{k}} \lambda_{2^{k}} u_{1}(x)$ where $q_{i}<1$ for $i=1, \ldots, 2^{k}$. Then

$$
\begin{array}{r}
\lambda_{1} \int \phi_{1} u_{2} d x=\int u_{2} \Delta^{2} \phi_{2^{k}} d x=\int \Delta^{2} u_{2} \phi_{2^{k}} d x=\int f_{2}\left(u_{3}\right) \phi_{2^{k}} d x<\lambda_{2} q_{2} \int \phi_{2^{k}} u_{3} d x \\
\begin{aligned}
& \lambda_{2^{k}} \int \phi_{2^{k}-i+3} u_{i} d x=\int u_{i} \Delta^{2} \phi_{2^{k}-i+2} d x=\int \Delta^{2} u_{i} \phi_{2^{k}-i+2} d x=\int f_{i}\left(u_{i+1}\right) \phi_{2^{k}-i+2} d x \\
&<\lambda_{i} q_{i} \int \phi_{2^{k}-i+2} u_{i+1} d x, \text { for } i=3, \ldots, 2^{k}-1, \\
& \lambda_{3} \int \phi_{3} u_{2^{k}} d x=\int u_{2^{k}} \Delta^{2} \phi_{2} d x=\int \Delta^{2} u_{2^{k}} \phi_{3} d x=\int f_{2^{k}}\left(u_{1}\right) \phi_{2} d x<\lambda_{2^{k}} q_{2^{k}} \int \phi_{2} u_{1} d x, \\
& \lambda_{2} \int \phi_{2} u_{1} d x=\int u_{1} \Delta^{2} \phi_{1} d x=\int \Delta^{2} u_{1} \phi_{1} d x=\int f_{1}\left(u_{2}\right) \phi_{1} d x<\lambda_{1} q_{1} \int \phi_{1} u_{2} d x
\end{aligned},
\end{array}
$$

Multiplying (23), (24) for $i=3, \ldots, 2^{k}-1$, (25) and (26) each other. Since the integrals are nonzero, we get, after some simplifications,

$$
\prod_{i=1}^{2^{k}} \lambda_{i}<\prod_{i=1}^{2^{k}} q_{i} \prod_{i=1}^{2^{k}} \lambda_{i}
$$

which leads to a contradiction, since $\prod_{i=1}^{2^{k}} q_{i}<1$. Also, if u_{i} for $i=1, \ldots, 2^{k}$ are replaced by λu_{i} in the previous inequalities, for $\lambda \in[0,1]$, then similarly a contradiction follows and hence

$$
w(t) \neq \lambda \Phi(w(t)) \quad \text { with } \quad \lambda \in[0,1], \quad\|w\|=r, \quad w \in C
$$

Verification of (b): Set the compact mapping $F: C \times[0, \infty) \rightarrow C$ such that

$$
\begin{equation*}
F(w, \mu)(r)=\Phi(w+\mu)(r) \tag{27}
\end{equation*}
$$

Clearly we have $F(w, 0)=\Phi(w)$. From condition (i) of Theorem 3.1, there exist constants $k_{i}>\lambda_{i}$ for $i=1, \ldots, 2^{k}$, and $\mu_{0}>0$ such that $f_{i}\left(y_{i}+\mu\right) \geq k_{i} y_{i}$ if $\mu \geq \mu_{0}$ for all $y_{i} \geq 0$. We have

$$
\begin{equation*}
\lambda_{1} \int \phi_{1} u_{2} d x=\int u_{2} \Delta^{2} \phi_{2^{k}} d x=\int \Delta^{2} u_{2} \phi_{2^{k}} d x=\int f_{2}\left(u_{3}\right) \phi_{2^{k}} d x \geq k_{2} \int \phi_{2^{k}} u_{3} d x \tag{28}
\end{equation*}
$$

$$
\begin{align*}
& \lambda_{2^{k}} \int \phi_{2^{k}-i+3} u_{i} d x=\int u_{i} \Delta^{2} \phi_{2^{k}-i+2} d x=\int \Delta^{2} u_{i} \phi_{2^{k}-i+2} d x=\int f_{i}\left(u_{i+1}\right) \phi_{2^{k}-i+2} d x \tag{29}\\
& \geq k_{i} q_{i} \int \phi_{2^{k}-i+2} u_{i+1} d x, \text { for } i=3, \ldots, 2^{k}-1, \\
& \lambda_{3} \int \phi_{3} u_{2^{k}} d x=\int u_{2^{k}} \Delta^{2} \phi_{2} d x=\int \Delta^{2} u_{2^{k}} \phi_{3} d x=\int f_{2^{k}}\left(u_{1}\right) \phi_{2} d x \geq k_{2^{k}} \int \phi_{2} u_{1} d x, \tag{30}\\
& \lambda_{2} \int \phi_{2} u_{1} d x=\int u_{1} \Delta^{2} \phi_{1} d x=\int \Delta^{2} u_{1} \phi_{1} d x=\int f_{1}\left(u_{2}\right) \phi_{1} d x \geq k_{1} \int \phi_{1} u_{2} d x . \tag{31}
\end{align*}
$$

Multiplying all the previous inequality each other, since the integrals $\int u_{i} \phi_{i}$, for $i, j \in\left\{1,2, \ldots, 2^{k}\right\}$, are nonzero, we obtain

$$
\prod_{i=1}^{2^{k}} \lambda_{i} \geq \prod_{i=1}^{2^{k}} k_{i}
$$

The last inequality leads to a contradiction since $k_{i}>\lambda_{i}$ for every $i=1,2, \ldots, 2^{k}$.
Then, there exists a constant $\mu_{0}>0$ such that

$$
\begin{equation*}
w(t) \neq F(w, \mu)(t) \quad \text { for all } w \in C \text { and } \mu \geq \mu_{0} \tag{32}
\end{equation*}
$$

Therefore the last condition of (b) is verified. Now, in order to prove the second condition of (b), we take the family of nonlinearities $\left(f_{1}\left(y_{1}+\mu\right), \ldots, f_{2^{k}}\left(y_{2}^{k}+\mu\right)\right)$ for $\mu \in\left[0, \mu_{0}\right]$. Using the a priori estimates (H) which does not depend on μ and choosing $R>r$ large enough, we have

$$
\begin{equation*}
w(r) \neq F(w, \mu)(r) \quad \text { for all } \mu \in\left[0, \mu_{0}\right], \quad w \in C, \quad\|w\|=R \tag{33}
\end{equation*}
$$

The relations (32) and (33) prove the second condition of (b).
Finally, all conditions of Theorem 3.3 are fulfilled, then we obtain the existence of a nontrivial positive solution of problem (10). Therefore we deduce the existence of positive solution of problem (1)-(2) as well.

Theorem 3.4. Suppose that f_{i} for $i=1,2,3, \ldots, 2^{k}$, satisfy the conditions (I) and (II). Then every solution of the system (1)-(2) is bounded in L^{∞}, namely the hypothesis (H) is verified.
Proof. We will proof it in four steps.
Step 1. We claim that there exist positive constants $C_{i, 1}, C_{i, 2}$, for $i=1, \ldots, 2^{k}$ such that

$$
\begin{align*}
\int_{B} f_{i}\left(u_{i+1}\right) \phi_{i} \mathrm{~d} x & \leq C_{i, 1}, \text { for } i=1, \ldots, 2^{k}-1 \tag{34}\\
\int_{B} f_{2^{k}}\left(u_{1}\right) \phi_{2^{k}} \mathrm{~d} x & \leq C_{2^{k}, 1} \tag{35}\\
\int_{B} u_{i} \phi_{i} \mathrm{~d} x & \leq C_{i, 2}, \text { for } i=1, \ldots 2^{k} . \tag{36}
\end{align*}
$$

Indeed, from the equations (1) and (11) one can write

$$
\begin{aligned}
\int_{B} f_{i}\left(u_{i+1}\right) \phi_{i} \mathrm{~d} x & =\int_{B} \Delta^{2} u_{i} \phi_{i} \mathrm{~d} x=\int_{B} u_{i} \Delta^{2} \phi_{i} \mathrm{~d} x \\
& =\lambda_{i+1} \int_{B} u_{i} \phi_{i+1} \mathrm{~d} x \text { for } i=1, \ldots, 2^{k}-1, \\
\int_{B} f_{2^{k}}\left(u_{1}\right) \phi_{2^{k}} \mathrm{~d} x & =\int_{B} \Delta^{2} u_{2^{k}} \phi_{2^{k}} \mathrm{~d} x=\int_{B} u_{2^{k}} \Delta^{2} \phi_{2^{k}} \mathrm{~d} x \\
& =\lambda_{1} \int_{B} u_{2^{k}} \phi_{1} \mathrm{~d} x .
\end{aligned}
$$

Next, from condition (I) of Theorem 3.1, there exist $k_{i}>\lambda_{i}$ and $A_{i}>0$, for every $i \in\left\{1, \ldots, 2^{k}\right\}$, such that $f_{i}\left(u_{i+1}\right) \geq k_{i} u_{i+1}-A_{i}$ for $i=1, \ldots, 2^{k}-1$ and $f_{2^{k}}\left(u_{1}\right) \geq k_{2^{k}} u_{1}$. Thus, for generic constant C, we have

$$
\begin{align*}
\int_{B} f_{1}\left(u_{2}\right) \phi_{1} \mathrm{~d} x & =\lambda_{2} \int_{B} u_{1} \phi_{2} \mathrm{~d} x \leq C+\frac{\lambda_{2}}{K_{2^{k}}} \int_{B} f_{2^{k}}\left(u_{1}\right) \phi_{2} \mathrm{~d} x, \tag{37}\\
\int_{B} f_{2^{k}}\left(u_{1}\right) \phi_{2} \mathrm{~d} x & =\lambda_{3} \int_{B} u_{2^{k}} \phi_{3} \mathrm{~d} x \leq C+\frac{\lambda_{3}}{K_{2^{k}-1}} \int_{B} f_{2^{k}-1}\left(u_{2^{k}}\right) \phi_{3} \mathrm{~d} x, \tag{38}\\
\int_{B} f_{2^{k}-i}\left(u_{2^{k}+1-i}\right) \phi_{2+i} \mathrm{~d} x & =\lambda_{3+i} \int_{B} u_{2^{k}} \phi_{3} \mathrm{~d} x \tag{39}\\
& \leq C+\frac{\lambda_{3+i}}{K_{2^{k}-1-i}} \int_{B} f_{2^{k}-1-i}\left(u_{2^{k}-i}\right) \phi_{3+i} \mathrm{~d} x, \text { for } i=1, \ldots 2^{k}-3, \\
\int_{B}\left|f_{2}\left(u_{3}\right)\right| \phi_{2^{k}} \mathrm{~d} x & =\lambda_{1} \int_{B} u_{2^{k}} \phi_{1} \mathrm{~d} x \leq C+\frac{\lambda_{1}}{K_{1}} \int_{B} f_{1}\left(u_{2}\right) \phi_{1} \mathrm{~d} x \tag{40}
\end{align*}
$$

Combining (37)-(40) we get, for a generic constant C,

$$
\begin{align*}
\int_{B} f_{2^{k}-j}\left(u_{2^{k}+1-j}\right) \phi_{2+j} \mathrm{~d} x & \leq C+\frac{\lambda_{3+j} \lambda_{3+j-1}}{k_{2^{k}-1-j} k_{2^{k}-2-j}} \int_{B} f_{2^{k}-2-j}\left(u_{2^{k}-1-j}\right) \phi_{3+j-1} \mathrm{~d} x \\
& \vdots \tag{41}\\
& \leq C+\frac{\prod_{i=1}^{2^{k}} \lambda_{i}}{\prod_{i=1}^{2^{k}} k_{i}} \int_{B} f_{2^{k}-j}\left(u_{2^{k}+1-j}\right) \phi_{2+j} \mathrm{~d} x
\end{align*}
$$

also

$$
\begin{align*}
\int_{B} f_{1}\left(u_{2}\right) \phi_{1} \mathrm{~d} x & \leq C+\frac{\lambda_{2} \lambda_{3}}{k_{2^{k} k_{2^{k}-1}}} \int_{B} f_{2^{k}-1}\left(u_{2^{k}}\right) \phi_{3} \mathrm{~d} x \\
& \vdots \tag{42}\\
& \leq C+\frac{\prod_{i=1}^{2^{k}} \lambda_{i}}{\prod_{i=1}^{2^{k}} k_{i}} \int_{B} f_{1}\left(u_{2}\right) \phi_{1} \mathrm{~d} x
\end{align*}
$$

and

$$
\begin{align*}
\int_{B} f_{2}\left(u_{3}\right) \phi_{2^{k}} \mathrm{~d} x & \leq C+\frac{\lambda_{1} \lambda_{2}}{k_{1} k_{2^{k}}} \int_{B} f_{2^{k}}\left(u_{1}\right) \phi_{2} \mathrm{~d} x \\
& \vdots \tag{43}\\
& \leq C+\frac{\prod_{i=1}^{2^{k}} \lambda_{i}}{\prod_{i=1}^{2^{k}} k_{i}} \int_{B} f_{2}\left(u_{3}\right) \phi_{2^{k}} \mathrm{~d} x
\end{align*}
$$

Since $\frac{\prod_{i=1}^{2^{k}} \lambda_{i}}{\substack{\prod_{i}^{k} \\ i=1}}<1$, this implies (34) and (35).
From condition (I) of Theorem 3.1, (34) and (35) we deduce (36).

Step 2. We claim that, for $i \in\left\{1,2, \ldots, 2^{k}\right\}$, there exist positive constants $C_{i, 1}, \ldots, C_{i, 2}$ such that

$$
\begin{equation*}
u_{i}(r) \leq C_{i, 1} \quad \text { for } \frac{2}{3} \leq r \leq 1 \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{i}^{\prime \prime}(1) \leq C_{i, 3} \tag{45}
\end{equation*}
$$

Indeed, we have

$$
u_{i}(r)=\int_{0}^{1} G(r, s) f_{i}\left(u_{i+1}(s)\right) \mathrm{d} s, \quad \text { for } i \in\left\{1,2, \ldots, 2^{k}-1\right\}
$$

and

$$
u_{2^{k}}(r)=\int_{0}^{1} G(r, s) f_{2^{k}}\left(u_{1}(s)\right) \mathrm{d} s
$$

The fact that $r \rightarrow G(r, s)$ is decreasing, (see (8) and (7)), gives that $u_{i}(r)$, for $i \in 1,2, \ldots, 2^{k}$, are decreasing and for arbitrary $\frac{2}{3} \leq r \leq 1$,

$$
u_{i}(r) \leq u_{i}\left(\frac{2}{3}\right)=3 \int_{\frac{1}{3}}^{\frac{2}{3}} u_{i}(s) \mathrm{d} s \leq C \int_{0}^{1} s^{N-1}(1-s)^{2} u_{i}(s) \mathrm{d} s \leq C+\int_{0}^{1} s^{N-1}(1-s)^{2} u_{i}(s) \mathrm{d} s
$$

From (5) and Lemma 2.2, we have

$$
u_{i}(r) \leq C\left(1+\int_{0}^{1} s^{N-1}(1-s)^{2} u_{i}(s) \mathrm{d} s\right) \leq C\left(1+\int_{B} \phi_{i} u_{i} d x\right)
$$

Using (36) we conclude that $u_{i}(r) \leq C_{i, 1}$ for $\frac{2}{3} \leq r \leq 1$.
To prove (45) we will use the following

$$
\begin{align*}
& u_{i}(r)=\int_{0}^{1} G(r, s) f_{i}\left(u_{i+1}(s)\right) \mathrm{d} s, \quad \text { for } i \in 1,2, \ldots, 2^{k}-1, \tag{46}\\
& u_{2^{k}}(r)=\int_{0}^{1} G(r, s) f_{2^{k}}\left(u_{1}(s)\right) \mathrm{d} s .
\end{align*}
$$

We differentiate (46) two times, we get

$$
u_{i}^{\prime \prime}(r)=\int_{0}^{1} \frac{\partial^{2} G(r, s)}{\partial r^{2}} f_{i}\left(u_{i+1}(s)\right) \mathrm{d} s \quad \text { and } \quad u_{2^{k}}^{\prime \prime}(r)=\int_{0}^{1} \frac{\partial^{2} G(r, s)}{\partial r^{2}} f_{2^{k}}\left(u_{1}(s)\right) \mathrm{d} s
$$

Taking the limit when r goes to 1 , since the integrals converge, we write

$$
u_{i}^{\prime \prime}(1)=\left.\int_{0}^{1} \frac{\partial^{2} G(r, s)}{\partial r^{2}}\right|_{r=1} f_{i}\left(u_{i+1}(s)\right) \mathrm{d} s \quad \text { and } \quad u_{2^{k}}^{\prime \prime}(1)=\left.\int_{0}^{1} \frac{\partial^{2} G(r, s)}{\partial r^{2}}\right|_{r=1} f_{2^{k}}\left(u_{1}(s)\right) \mathrm{d} s
$$

From (9), we get

$$
u_{i}^{\prime \prime}(1)=\frac{1}{2} \int_{0}^{1} s^{N-1}\left(1-s^{2}\right) f_{i}\left(u_{i+1}(s)\right) \mathrm{d} s, \quad \text { and } \quad u_{2^{k}}^{\prime \prime}(1)=\frac{1}{2} \int_{0}^{1} s^{N-1}\left(1-s^{2}\right) f_{2^{k}}\left(u_{1}(s)\right) \mathrm{d} s
$$

Using (5) and Lemma 2.2, we write, for some positive constant C, that

$$
u_{i}^{\prime \prime}(1) \leq C \int_{B} \phi_{i} f_{i}\left(u_{i+1}\right) \mathrm{d} s \text { for } i=1,2, \ldots, 2^{k}-1, \text { and } u_{2^{k}}^{\prime \prime}(1) \leq C \int_{B} \phi_{2^{k}} f_{2^{k}}\left(u_{1}\right) \mathrm{d} s .
$$

Then we obtain (45) using (34) and (35).
Step 3. We claim that, for a small number $0<l<1$, there exist positive constants C_{1}, \ldots, C_{4} such that

$$
\begin{align*}
& \int_{0}^{l} s^{N-1} f_{i}\left(u_{i+1}(s)\right) \mathrm{d} s \leq C_{1} \quad \text { for } i=1,2, \ldots, 2^{k}-1, \quad \int_{0}^{l} s^{N-1} f_{2^{k}}\left(u_{1}(s)\right) \mathrm{d} s \leq C_{2} . \tag{47}\\
& \int_{B} u_{i+1} f_{i}\left(u_{i+1}\right) \mathrm{d} x \leq C_{3} \quad \text { for } i=1,2, \ldots, 2^{k}-1, \quad \int_{B} u_{1} f_{2^{k}}\left(u_{1}\right) \mathrm{d} x \leq C_{4} . \tag{48}
\end{align*}
$$

Indeed, following Step 1, Lemma 2.1 and Lemma 2.2 we have, for $i=1,2, \ldots, 2^{k}-1$ and for small $0<l<1$,

$$
\begin{aligned}
\int_{0}^{l} s^{N-1} f_{i}\left(u_{i+1}(s)\right) \mathrm{d} s & \leq \int_{0}^{l} s^{N-1} \frac{(1-s)^{2}}{(1-l)^{2}} f_{i}\left(u_{i+1}(s)\right) \mathrm{d} s \\
& \leq \frac{1}{(1-l)^{2}} \int_{0}^{l} s^{N-1}(1-s)^{2} f_{i}\left(u_{i+1}(s)\right) \mathrm{d} s \\
& \leq C \int_{0}^{1} s^{N-1} \phi_{i}(s) f_{i}\left(u_{i+1}(s)\right) \mathrm{d} s=C \int_{B} \phi_{i} f_{i}\left(u_{i+1}\right) \mathrm{d} x \leq M_{i}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{l} s^{N-1} f_{2^{k}}\left(u_{1}(s)\right) \mathrm{d} s & \leq \int_{0}^{l} s^{N-1} \frac{(1-s)^{2}}{(1-l)^{2}} f_{2^{k}}\left(u_{1}(s)\right) \mathrm{d} s \\
& \leq \frac{1}{(1-l)^{2}} \int_{0}^{l} s^{N-1}(1-s)^{2} f_{2^{k}}\left(u_{1}(s)\right) \mathrm{d} s \\
& \leq \bar{C} \int_{0}^{1} s^{N-1} \phi_{2^{k}}(s) f_{2^{k}}\left(u_{1}(s)\right) \mathrm{d} s=\bar{C} \int_{B} \phi_{2^{k}} f_{2^{k}}\left(u_{1}\right) \mathrm{d} x \leq M_{2^{k}}
\end{aligned}
$$

where $M_{i}, 1 \leq i \leq 2^{k}$, are some positive constants. This shows (47).
For the proof of (48), using the identity (18) of Lemma 2.3, considering the fact that $\sum_{i=1}^{2^{k}} \alpha_{i}=N-4$, as

$$
\begin{aligned}
\sum_{i=1}^{2^{k}-1} \int_{B} N F_{i}\left(u_{i+1}\right)-\alpha_{i+1} u_{i+1} f_{i}\left(u_{i+1}\right) \mathrm{d} x & +\int_{B} N F_{2^{k}}\left(u_{1}\right)-\alpha_{1} u_{1} f_{2^{k}}\left(u_{1}\right) \mathrm{d} x \\
& =\sum_{i=1}^{2^{k}-1} \int_{\partial B}\left(\Delta u_{i}, \Delta u_{i+1}\right)(x . v) \mathrm{d} \sigma_{x}
\end{aligned}
$$

Using condition (II) of Theorem 3.1 for the left hand side of the last equality and after some computations on the right hand side we obtain, for a positive constant C,

$$
\sum_{i=1}^{2^{k}-1} \theta_{i+1} \int_{B} u_{i+1} f_{i}\left(u_{i+1}\right) d x+\theta_{1} \int_{B} u_{1} f_{2^{k}}\left(u_{1}\right) d x \leq C \sum_{i=1}^{2^{k}} u_{i}^{\prime \prime}(1) u_{i+1}^{\prime \prime}(1)
$$

Therefore

$$
\sum_{i=1}^{2^{k}-1} \theta_{i+1} \int_{B} u_{i+1} f_{i}\left(u_{i+1}\right) d x+\theta_{1} \int_{B} u_{1} f_{2^{k}}\left(u_{1}\right) d x \leq C
$$

we obtain (48) since all terms in the left hand side are positive.
Step 4. We claim that there exist positive constants C_{i} for $i=1, \ldots, 2^{k}$, such that, for any solution $\left(u_{1}, \ldots, u_{2^{k}}\right)$ of problem (1)-(2),

$$
\begin{equation*}
\left\|u_{i}\right\|_{\infty} \leq C_{i} \quad \text { for } i=1, \ldots, 2^{k} \tag{49}
\end{equation*}
$$

Indeed, for $u_{i+1}, i=1, \ldots, 2^{k}-1$, we have

$$
\begin{aligned}
\left\|u_{i+1}\right\|_{\infty} & \leq u_{i+1}(0) \leq \int_{0}^{1} G(0, s) f_{i}\left(u_{i+1}(s)\right) \mathrm{d} s \\
& \leq C \int_{0}^{1} s^{3}(1-s)^{2} f_{i}\left(u_{i+1}(s)\right) \mathrm{d} s \\
& \leq C \int_{0}^{1} s^{3} f_{i}\left(u_{i+1}(s)\right) \mathrm{d} s \\
& \leq C \int_{0}^{t} s^{3} f_{i}\left(u_{i+1}(s)\right) \mathrm{d} s+C \int_{t}^{1} s^{3} f_{i}\left(u_{i+1}(s)\right) \mathrm{d} s
\end{aligned}
$$

where $t \in(0,1)$ is arbitrary and C is a generic positive constant for the rest of this step.
Let $\tilde{f_{i}}(m)=\max _{s \in[0, m]} f_{i}(s)$ for $m \in(0, \infty)$, by Hölder's inequality, we obtain

$$
\begin{aligned}
\left\|u_{i}\right\|_{\infty} & \leq C t^{4} \| \tilde{f_{i}}\left(\left\|u_{i+1}\right\|_{\infty}\right)+C\left(\int_{t}^{1} s^{\gamma_{i+1}\left(q_{i}^{*}+1\right)} \mathrm{d} s\right)^{\frac{1}{q_{i}^{*}+1}}\left(\int_{t}^{1} s^{N-1} f_{i}\left(u_{i+1}(s)\right)^{\frac{q_{i}^{*}+1}{q_{i}^{*}}} \mathrm{~d} s\right)^{\frac{q_{i}^{*}}{q_{i}^{*}+1}} \\
& \leq C t^{4} \tilde{f_{i}}\left(\left\|u_{i+1}\right\|_{\infty}\right) \\
& +C\left(\int_{t}^{1} s^{\gamma_{i+1}\left(q_{i}^{*}+1\right)} \mathrm{d} s\right)^{\frac{1}{q_{i}^{q_{i}+1}}}\left(\int_{t}^{1} s^{N-1}\left(f_{i}\left(u_{i+1}(s)\right)\right)\left(f_{i}\left(u_{i+1}(s)\right)\right)^{\frac{1}{q_{i+1}^{*}}} \mathrm{~d} s\right)^{\frac{q_{i+1}^{*}}{q_{i+1}+1}}
\end{aligned}
$$

where $\gamma_{i+1}=3-(N-1) \frac{q_{i+1}^{*}}{q_{i+1}^{i}+1}$. From Remark 3.2, we have the existence of a positive constant M such that

$$
\begin{equation*}
f_{i}(s)<M(1+s)^{q_{i+1}^{*}}, \quad \text { for all } s \geq 0 \tag{50}
\end{equation*}
$$

Then

$$
\begin{aligned}
\left\|u_{i}\right\|_{\infty} & \leq C t^{4} \tilde{f_{i}}\left(\left\|u_{i+1}\right\|_{\infty}\right)+C\left(\int_{t}^{1} s^{\gamma_{i+1}\left(q_{i+1}^{*}+1\right)} \mathrm{d} s\right)^{\frac{1}{q_{i+1}^{*}+1}}\left(\int_{t}^{1} s^{N-1} f_{i}\left(u_{i+1}(s)\right)(1+v(s)) \mathrm{d} s\right)^{\frac{q_{i}^{*}}{q_{i+1}^{*+1}}} \\
& \leq C t^{4} \tilde{f}_{i}\left(\left\|u_{i+1}\right\|_{\infty}\right) \\
& +C\left(\int_{t}^{1} s^{\gamma_{i+1}\left(q_{i+1}^{*}+1\right)} \mathrm{d} s\right)^{\frac{1}{q_{i+1}^{*}+1}}\left(\int_{B}\left(f_{i}\left(u_{i+1}(s)\right)\right) d x+\int_{B}\left(f_{i}\left(u_{i+1}(s)\right)\right) u_{i+1}(x) d x\right)^{\frac{q_{i+1}^{*}}{q_{i+1}+1}}
\end{aligned}
$$

Using (47) and (48), we get

$$
\left\|u_{i}\right\|_{\infty} \leq C t^{4} \tilde{f}_{i}\left(\left\|u_{i+1}\right\|_{\infty}\right)+C\left(\int_{t}^{1} s^{\gamma_{i+1}\left(q_{i+1}^{*}+1\right)} \mathrm{d} s\right)^{\frac{1}{q_{i+1}+1}}, \quad \text { for } i=1, \ldots, 2^{k}-1
$$

Similarly, we have for $u_{2^{k}}$,

$$
\left\|u_{2^{k}}\right\|_{\infty} \leq C t^{4} \tilde{f}_{2^{k}}\left(\left\|u_{1}\right\|_{\infty}\right)+C\left(\int_{t}^{1} s^{\gamma_{1}\left(q_{1}^{*}+1\right)} \mathrm{d} s\right)^{\frac{1}{q_{1}^{2}+1}}, \text { where } \gamma_{1}=3-(N-1) \frac{q_{1}^{*}}{q_{1}^{*}+1}
$$

After some manipulations, we get

$$
\begin{equation*}
\left\|u_{i}\right\|_{\infty} \leq C t^{4} \tilde{f_{i}}\left(\left\|u_{i+1}\right\|_{\infty}\right)+C t^{\frac{4+\left(4-N q_{i+1}^{*}\right.}{q_{i+1}^{*}+1}}, \quad \text { for } i=1, \ldots, 2^{k}-1 \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|u_{2^{k}}\right\|_{\infty} \leq C t^{4} \tilde{f_{2}^{k}}\left(\left\|u_{1}\right\|_{\infty}\right)+C t^{\frac{4+\left(4-N q_{1}^{*}\right.}{q_{1}^{q_{1}+1}}} . \tag{52}
\end{equation*}
$$

Note that if $\tilde{f_{i}}$, for $i=1, \ldots, 2^{k}$, are bounded then (49) comes directly. Nevertheless, if $\tilde{f_{i}}$ is not bounded then there exist a positive M_{i}, see (50) such that $\tilde{f_{i}}(m) \leq M_{i} m^{q_{i+1}^{*}}$ for $i=1, \ldots, 2^{k}-1$ and $\tilde{f_{2}^{k}}(m) \leq M_{2^{k}} m^{q_{1}^{*}}$ where $m \geq 1$.
Therefore (51) becomes

$$
\begin{equation*}
\left\|u_{i}\right\|_{\infty} \leq C t^{4}\left(\left\|u_{i+1}\right\|_{\infty}\right)^{q_{i+1}^{*}}+C t^{\frac{4+\left(4-N q_{q_{i+1}^{*}}\right.}{q_{i+1}+1}}, \quad \text { for } i=1, \ldots, 2^{k}-1 . \tag{53}
\end{equation*}
$$

We rewrite (52) and all the equations appearing in (53) as

$$
\begin{align*}
\left\|u_{1}\right\|_{\infty} & \leq C t^{4}\left(\left\|u_{2}\right\|_{\infty}\right)^{q_{2}^{*}}+C t^{\frac{4+(4-N) q_{2}^{*}}{q_{2}^{*}+1}}, \tag{54}\\
\left\|u_{2}\right\|_{\infty} & \leq C t^{4}\left(\left\|u_{3}\right\|_{\infty}\right)^{q_{3}^{*}}+C t^{\frac{4+(4-N) q_{3}^{*}}{q_{3}^{*+1}}}, \\
& \vdots \tag{55}\\
\left\|u_{2^{k}-1}\right\|_{\infty} & \leq C t^{4}\left(\left\|u_{2^{k}}\right\|_{\infty}\right)^{q_{2}^{*}}+C t^{\frac{4+\left(4-N q_{2^{*}}^{*}\right.}{q_{2}^{*} k^{+1}}}, \\
\left\|u_{2^{k}}\right\|_{\infty} & \leq C t^{4}\left(\left\|u_{1}\right\|_{\infty}\right)^{q_{1}^{*}}+C t^{\frac{4+\left(4-N q_{1}^{*}\right.}{q_{1}^{*}+1}}
\end{align*}
$$

Combining the previous inequalities and using the inequality $(a+b)^{n} \leq C_{n}\left(a^{n}+b^{n}\right)$ for $a, b, n \geq 0$ where C_{n} is a positive constant depending only on n, we obtain

$$
\begin{equation*}
\left\|u_{1}\right\|_{\infty} \leq C t^{4+4\left(\sum_{j=2}^{2^{k}-1} \prod_{l=2}^{j} q_{i}^{*}\right)}\left(\left\|u_{2^{k}}\right\|_{\infty}\right)^{\prod_{i=2}^{k} q_{i}^{*}}+C \sum_{j=2}^{2^{k}-1} t^{m_{j}^{*}\left(\prod_{l=2}^{j} q_{i}^{*}\right)+4\left(\sum_{i=2 l=2}^{j-1} \prod_{i}^{j} q_{i}^{*}\right)+4}+C t^{m_{1}^{*}} \tag{56}
\end{equation*}
$$

where $m_{j}^{\star}=\frac{4+(4-N) q_{j+1}^{*}}{q_{j+1}^{*}+1}$ for $j=1, \ldots, 2^{k}-1$.
Now, putting (52) into (56) and using again the inequality $(a+b)^{n} \leq C_{n}\left(a^{n}+b^{n}\right)$, we get

$$
\begin{equation*}
\left\|u_{1}\right\|_{\infty} \leq C t^{4+4\left(\sum_{j=2 l=2^{2}}^{2^{k}} \eta_{i}^{*}\right)}\left\{\tilde{f}_{2^{k}}\left(\left\|u_{1}\right\|_{\infty}\right)\right\}^{\prod_{l=2}^{k} q_{l}^{*}}+C \sum_{j=3}^{2^{k}} t^{m_{j}^{*}\left(\prod_{l=2}^{j} q_{i}^{*}\right)+4\left(\sum_{i=2=1=2}^{j-1_{i}} q_{i}^{*}\right)+4}+C t^{m_{2}^{*} q_{2}^{*}+4}+C t^{m_{1}^{*}} \tag{57}
\end{equation*}
$$

We note $M_{j}=m_{j}^{*}\left(\prod_{l=2}^{j} q_{l}^{*}\right)+4\left(\sum_{i=2=2}^{j-1} \prod_{l=2}^{i} q_{l}^{*}\right)+4$, for $j=3, \ldots, 2^{k}-1, M_{2}=m_{2}^{*} q_{2}^{*}+4$ and $M_{1}=m_{1}^{*}$.

We remark that

$$
\begin{aligned}
M_{2}-M_{1} & =-N \sum_{\substack{j=2, j \neq 2,3}}^{2^{k}} \frac{q_{2}^{*}}{q_{j}^{*}+1}, \\
& \vdots \\
M_{i}-M_{i-1} & =-N \sum_{\substack{j=2, j \neq i, i+1}}^{2^{k}} \frac{\prod_{l=2}^{i} q_{l}^{*}}{q_{j}^{*}+1}, \\
& \vdots \\
M_{2^{k}-1}-M_{2^{k}-2} & =-N \sum_{j=2,}^{j=2^{k}-1,2^{k}} \prod_{i=2}^{q_{j}^{*}+1}
\end{aligned}
$$

Noting $\gamma_{i}=N \quad \sum_{j=2,}^{2^{k}} \quad \begin{gathered}\frac{i}{l} q_{i}^{*} \\ q_{j}^{*}+1\end{gathered}$, for $i=1, \ldots, 2^{k}-1$.

$$
j \neq i, i+1
$$

We deduce that $M_{i}=M_{2^{k}-1}+\sum_{j=i+1}^{2^{k}-1} \gamma_{j}$ for $i=1, \ldots, 2^{k}-1$.
Using this relation with (57) and the fact that $t^{\gamma} \leq 1$ for $\gamma>0$, we write

$$
\begin{equation*}
\left\|u_{1}\right\|_{\infty} \leq C t^{4+4\left(\sum_{j=2}^{2^{k}} \prod_{i=2}^{j} q_{i}^{*}\right)}\left\{\tilde{f}_{2^{k}}\left(\left\|u_{1}\right\|_{\infty}\right)\right\}^{\prod_{i=2}^{k} q_{i}^{*}}+C t^{M_{2^{k}-1}} \tag{58}
\end{equation*}
$$

For convenient calculations, we define $r=\frac{M_{2^{k}-1}\left(1-\prod_{l=1}^{2^{k}} q_{l}^{*}\right)}{q_{1}^{*}}$. Since $t \in(0,1)$, we write

$$
\begin{equation*}
\left\|u_{1}\right\|_{\infty} \leq C t^{r}\left\{\tilde{f_{2}}\left(\left\|u_{1}\right\|_{\infty}\right)\right\}^{\prod_{1=2}^{\prod^{k}} q_{i}^{*}}+C t^{M_{2^{k}-1}} \tag{59}
\end{equation*}
$$

In order to have the best estimate for $\left\|u_{1}\right\|_{\infty}$ we take the infimum with respect to t in the right expression of (59). Then we define the function

$$
\begin{equation*}
h(t)=t^{r}\left\{\tilde{f_{2}^{k}}\left(\left\|u_{1}\right\|_{\infty}\right)\right\}^{\prod_{1=2}^{\eta_{i}^{k}} q_{l}^{*}}+t^{M_{2^{k}-1}} . \tag{60}
\end{equation*}
$$

The function h attains its infimum at $t_{0}=C\left(\tilde{f^{k}}\left(\left\|u_{1}\right\|_{\infty}\right)\right)^{\substack { 2^{k} \\ \begin{subarray}{c}{1 \\ M_{2^{k}-1_{i}^{*-r}}^{*}{ 2 ^ { k } \\ \begin{subarray} { c } { 1 \\ M _ { 2 ^ { k } - 1 _ { i } ^ { * - r } } ^ { * } } }\end{subarray}}$ and has the following value

$$
h\left(t_{0}\right) \leq C\left(\tilde{f_{2^{k}}}\left(\left\|u_{1}\right\|_{\infty}\right)^{\frac{r \prod_{l=2}^{2^{k}} q_{l}^{*}}{M_{2^{k}-1}-r}}+\prod_{l=2}^{2^{k}} q_{l}^{*}+C\left(\tilde{f_{2^{k}}}\left(\left\|u_{1}\right\|_{\infty}\right)^{\frac{M_{2^{k}-1} \prod_{l=2}^{2^{k}} q_{l}^{*}}{M_{2^{k}-1}-r}}\right.\right.
$$

The choice of r gives that $\frac{r \prod_{l=2}^{2^{k}} q_{l}^{*}}{M_{2^{k}-1}-r}+\prod_{l=2}^{2^{k}} q_{l}^{*}=\frac{M_{2^{k}-1} \prod_{l=2}^{2^{k}} q_{l}^{*}}{M_{2^{k}-1}-r}=\frac{1}{q_{1}^{*}}$. Then

$$
h\left(t_{0}\right) \leq C+C\left(\tilde{f^{k}}\left(\left\|u_{1}\right\|_{\infty}\right)^{\frac{1}{\varphi_{1}}} .\right.
$$

From Remark 3.2 we have $\tilde{f^{k}}(x)=o\left(x^{q_{1}^{*}}\right)$ for $x \rightarrow+\infty$ then we obtain

$$
\left\|u_{1}\right\|_{\infty} \leq C\left(1+o\left(\left\|u_{1}\right\|_{\infty}\right)\right)
$$

this shows that $\left\|u_{1}\right\|_{\infty}$ is bounded. Replacing the bound of $\left\|u_{1}\right\|_{\infty}$ into (56) we deduce that $\left\|u_{i}\right\|_{\infty}$ is bounded for $i=1, \ldots, 2^{k}$.
This finish Step 4 and complete the prove of Theorem 3.4.

We end this section by giving a non-existence theorem.
Theorem 3.5. Assume that f_{i}, for $i=1,2,3, \ldots, 2^{k}$, verify for $t>0$

$$
\begin{equation*}
N F_{i}(t)-\alpha_{i+1} t f_{i}(t) \leq 0, i=1,2,3, \ldots, 2^{k}-1, \quad \text { and } \quad N F_{2^{k}}(t)-\alpha_{1} t f_{2^{k}}(t) \leq 0 \tag{61}
\end{equation*}
$$

Then there is no nontrivial solution of the system (1)-(2) in $\left(C^{2}(B) \cap C^{1}(\bar{B})\right)^{2}$.
Proof. Taking $\sum_{i=1}^{2^{k}} \alpha_{i}=N-4$ in the identity (18). Since $u_{i}=0=\frac{\partial u_{i}}{\partial v}$ for $i=1, \ldots, 2^{k}$, we have $\left(\Delta u_{i}, \Delta u_{i+1}\right)=$ $\frac{\partial^{2} u_{i}}{\partial v^{2}} \frac{\partial^{2} u_{i+1}}{\partial v^{2}}$ for $i=1, \ldots, 2^{k}-1$.
If $\left(u_{1}, \ldots, u_{2^{k}}\right)$ is a nontrivial solution of (1)-(2), since B is star-shaped domain about 0 , then $x . v \geq 0$ on ∂B. Then the identity (18) gives a contradiction in the case of the condition (61). This finishes the proof.

4. Examples of Some Numerical Solutions

In this section, we give some examples to illustrate the study of the general system (1)-(2). We fix the dimension of the space $N=5$ and $k=2$ that means we consider the following system.
with the boundary conditions

$$
\left\{\begin{array}{lll}
u_{1}^{\prime}(0)=0, u_{3}^{(3)}(0)=0, & u_{1}(1)=c_{1}, & u_{1}^{\prime}(1)=0 \tag{63}\\
u_{2}^{\prime}(0)=0, u_{2}^{(3)}(0)=0, & u_{2}(1)=c_{2}, & u_{2}^{\prime}(1)=0 \\
u_{3}^{\prime}(0)=0, u_{3}^{(3)}(0)=0, & u_{3}(1)=c_{3}, & u_{3}^{\prime}(1)=0 \\
u_{4}^{\prime}(0)=0, u_{4}^{(3)}(0)=0, & u_{4}(1)=c_{4}, & u_{4}^{\prime}(1)=0
\end{array}\right.
$$

where c_{1}, c_{2}, c_{3}, and c_{4} are constants.

In order to obtain a numerical solution, we write the system (62)-(63) as a system of first order ODEs

$$
\left\{\begin{array}{l}
u_{1}^{\prime}=u_{1,1} \tag{64}\\
u_{1,1}^{\prime}=u_{1,2} \\
u_{1,2}^{\prime}=u_{1,3} \\
u_{1,3}^{\prime}=f_{1}\left(u_{2}\right)-\left(u_{1,3}+\frac{(N-1)(N-3)}{r^{2}} u_{1,2}-\frac{(N-1)(N-3)}{r^{3}} u_{1,1}\right) \\
u_{2}^{\prime}=u_{2,1} \\
u_{2,1}^{\prime}=u_{2,2} \\
u_{2,2}^{\prime}=u_{2,3} \\
u_{2,3}^{\prime}=f_{2}\left(u_{3}\right)-\left(u_{2,3}+\frac{(N-1)(N-3)}{r^{2}} u_{2,2}-\frac{(N-1)(N-3)}{r^{3}} u_{2,1}\right) \\
u_{3}^{\prime}=u_{3,1} \\
u_{3,1}^{\prime}=u_{3,2} \\
u_{3,2}^{\prime}=u_{3,3} \\
u_{3,3}^{\prime}=f_{3}\left(u_{4}\right)-\left(u_{3,3}+\frac{(N-1)(N-3)}{r^{2}} u_{3,2}-\frac{(N-1)(N-3)}{r^{3}} u_{3,1}\right) \\
u_{4}^{\prime}=u_{4,1} \\
u_{4,1}^{\prime}=u_{4,2} \\
u_{4,2}^{\prime}=u_{4,3} \\
u_{4,3}^{\prime}=f_{4}\left(u_{1}\right)-\left(u_{4,3}+\frac{(N-1)(N-3)}{r^{2}} u_{4,2}-\frac{(N-1)(N-3)}{r^{3}} u_{4,1}\right)
\end{array}\right.
$$

subject to boundary conditions

$$
\left\{\begin{array}{llll}
u_{1,1}(0)=0 & u_{1,3}(0)=0 & u_{1}(1)=c_{1}, & u_{1,1}(1)=0 \tag{65}\\
u_{2,1}(0)=0 & u_{2,3}(0)=0 & u_{2}(1)=c_{2}, & u_{2,1}(1)=0 \\
u_{3,1}(0)=0 & u_{3,3}(0)=0 & u_{3}(1)=c_{3,} & u_{3,1}(1)=0 \\
u_{4,1}(0)=0 & u_{4,3}(0)=0 & u_{4}(1)=c_{4}, & u_{4,1}(1)=0
\end{array}\right.
$$

The numerical solutions obtained using the Matlab program bvp5c [16] which requires initial guess for the solution on a given mesh.

Example 4.1.

Let $f_{1}(u)=u^{2}, f_{2}(u)=u^{3}, f_{3}(u)=u^{4}, f_{4}(u)=u^{5}$ and $c_{1}=1, c_{2}=\frac{1}{2}, c_{3}=\frac{1}{4}, c_{4}=\frac{1}{8}$. Easily we see that the f_{i}, $1 \leq i \leq 4$ verify the condition (I) and (II) of Theorem 3.1. The numerical solution computed by choosing the initial guess

$$
u_{1}=x, u_{2}=\frac{x^{2}}{2}, u_{3}=\frac{x^{3}}{4}, \text { and } u_{4}=\frac{x^{4}}{8}
$$

and is presented in Figure 1 on a mesh of 100 points and relative error tolerance RelTol $=10^{-9}$.

Example 4.2. Let $f_{1}(u)=u^{2}+u, f_{2}(u)=u^{3}+u^{2}+u, f_{3}(u)=u^{4}+u^{3}+u^{2}+u, f_{4}(u)=u^{5}+u^{4}+u^{3}+u^{2}+u$. We note that the functions $f_{i}, 1 \leq i \leq 4$ verify the conditions (I) and (II) of Theorem 3.1. Therefore, the numerical solution computed by choosing the initial guess

$$
u_{1}=\frac{1}{x+1}, u_{2}=\frac{1}{x^{2}+1}, u_{3}=\frac{1}{x^{3}+1}, \text { and } u_{4}=\frac{1}{x^{4}+1}
$$

and is presented in Figure 2 on a mesh of 1000 points and maximum error 10^{-3}.

Figure 1: Numerical Solution for Example 1 obtained on a mesh of 100 points and RelTol $=10^{-9}$

Figure 2: Numerical Solution for Example 2 obtained on a mesh of 1000 points

References

[1] H. Afshari, H.R. Marasi and H. Aydi, Existence and uniqueness of positive solutions for boundary value problems of fractional diferential equations, Filomat 31 :9 (2017), 2675-2782.
[2] H. Brezis and R.E.L. Turner, On a class of superlinear elliptic problems, Comm. in P.D.E. 2 (1977) 601-614.
[3] L. Boccardo and D.G. de Figueiredo, Some remarks on a system of quasilinear elliptic equations, Nonl. Diff. Eq. Appl. 9 (2002) 309-323.
[4] Ph. Clement, D.G. de Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Part. Diff. Eq. 17 (1992) 923-940.
[5] C. Cosner, Positive solutions for superlinear elliptic systems without variational structure, Nonlinear. Anal. T.M.A. 8 (1984) 1427-1436.
[6] L. Dung, Global L^{∞} estimates for a class of reaction-diffusion systems, Journal of Math. Ana. and Apl. 217 (1998) 72-94.
[7] R. Demarque, O. Miyagaki, Radial solutions of inhomogeneous fourth order elliptic equations and weighted Sobolev embeddings, Adv. Nonlinear Anal. 4 (2015), no. 2, 135-151.
[8] D.E. Edmunds, D. Fortunato and E. Janelli, Critical exponents, critical dimensions and the biharmonic operator, Arch. Rat. Mech. Anal. 112 (1990) 269-289.
[9] D.G. de Figueiredo, P.L. Lions and R.D. Nussbaum, A Priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. P. Appl. 61 (1982) 41-63.
[10] M. Jleli, V. Cojbasic Rajic, B. Samet, C. Vetro, Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations, Journal of Fixed Point Theory and Applications 12 (2012) 175-192.
[11] F. Gazzola, H.C. Grunau and G. Sweers, Polyharmonic boundary value problems, Lecture notes in Mathematics 1991, Springer, Berlin (2010).
[12] D.D. Joseph and T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rat. Mech. Anal. 49 (1972) 241-269.
[13] P. Pucci, V. Radulescu, Remarks on a polyharmonic eigenvalue problem, C. R. Math. Acad. Sci. Paris 348 (2010), no. 3-4, 161-164.
[14] P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math., J. 35 (1986) 681-703.
[15] L.A. Peletier and R.C.A.M. Van Der Vost, Existence and non-existence of positive solutions of non-linear elliptic systems and The Biharmonic equation, Diff. Int. Eq. 5(4) (1992) 447-467.
[16] L. F. Shampine, J. Kierzenka and M. W. Reichelt, Solving Boundary Value Problems for Ordinary Differential Equations in Matlab with bvp4c, October 26, 2000.
[17] F. Soltani and H. Yazidi, Existence of solutions for a non-variational system of elliptic PDE's via topological methods, Electronic Journal of Diferential Equations 2016 (2016), No. 309, 1-13.
[18] P. Oswald, On a priori estimates for positive solutions of a semilinear biharmonic equation in a Ball, Comm. Math. Univ. Carol. 26(3) (1985) 565-577.
[19] R.C.A.M. Van Der Vost, Variational identities and applications to differential systems, Arch. Rat. Mech. Anal. 116 (1990) $375-398$.

[^0]: 2010 Mathematics Subject Classification. Primary 35B45; Secondary 35P30, 35J65, 35J55
 Keywords. Bi-harmonic equation; non-variational system; a priori estimates; topological methods.
 Received: 30 November 2017; Accepted: 22 February 2018
 Communicated by Calogero Vetro
 Corresponding author: Habib Yazidi
 Email addresses: imechai@jazanu. edu (Idir Mechai), malghamdi@jazanu.edu.sa (Metib Alghamdi), hyazidi@jazanu.edu, habib.yazidi@gmail.com (Habib Yazidi)

