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Abstract. We prove existence of a positive solution for a system of non-variational bi-harmonic equations.
Furthermore, we give some a priori estimates of solutions and a non-existence result. In addition we
compute numerical solutions to illustrate the theoretical results.

1. Introduction

We consider the following 2k, k ≥ 1 strongly coupled elliptic system

 ∆2ui = fi(ui+1), ui > 0 in B, i = 1, 2, . . . , 2k
− 1,

∆2u2k = f2k (u1), u2k > 0 in B,
(1)

with the boundary conditions ui = 0, ∂ui
∂ν = 0, on ∂B, i = 1, 2, . . . , 2k

− 1,

u2k = 0,
∂u2k

∂ν = 0, on ∂B
(2)

where B is the unit ball inRN (N > 4), the functions fi: [0,∞)→ [0,∞) are continuous, verifying fi(0) = 0
for i = 1, 2, 3, . . . , 2k.

The system described by (1)-(2) is ubiquitous in physics and chemistry where steady-states are answers to
problematic questions in a great variety of systems of reaction-diffusion equations. These equations interact
everywhere in nature. This interaction takes place in such disparate phenomena as the proliferation of virile
mutants over a substantially wide habitat, the dispersion of fire flames in spacious forests, in combustion
chambers, or in nuclear reactors where neutron populations evolve and develop. Hence, the reaction-
diffusion equations represent a significant research area in mathematics see [6] and the references therein.
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The non-variational Laplacian systems are extensively studied in several research papers. Existence,
non existence, and a priori estimates for solutions are addressed in many papers [2], [4], [5] and [15].
Similar results are obtained for the bi-Laplacian systems, fractional differential equations and nonlinear
elastic beam equations using topological methods, namely fixed point theorem and degree theory [1], [7],
[10], [11], [13], [18].

The particular case of the system (1)-(2), corresponding to k = 1 was treated in ([17]). The authors
established the existence of a non-trivial solution provided that a priori estimates on the L∞-norm of
solutions holds true. In the present work, we propose to study the general strongly coupled elliptic system
(1)-(2). We carry out a detailed analysis of the expected solutions for our problem, and we extract suitable
conditions on the source terms fi for i = 1, 2, 3, . . . , 2k, which allow us to prove existence and non-existence
results.

This paper is organized as follows. In Section 2 we recall some preliminary results related to the bi-
laplacian problem. Furthermore, we study the eigenvalue problem associate to the system (1)-(2) and prove
some properties of its solutions. The main results are presented and proved in Section 3. We end the paper,
Section 4, by giving examples and computing numerical solutions related to the system (1)-(2).

2. Preliminary Results

In this work, we seek a positive radial summetric solution to system (1)-(2). Then, let r = |x| ∈ [0, 1),
ui = ui(r) for i = 1, 2, 3, . . . , 2k

− 1, and u2k = u2k (r)

 u(4)
i +

2(N−1)
r u(3)

i +
(N−1)(N−3)

r2 u′′i −
(N−1)(N−3)

r3 u′i = fi(ui+1), ui > 0,

u(4)
2k +

2(N−1)
r u(3)

2k +
(N−1)(N−3)

r2 u′′
2k −

(N−1)(N−3)
r3 u′

2k = f2k (u1), u2k > 0,
(3)

with the following boundary conditions u′i (0) = 0, u(3)
i (0) = 0, ui(1) = 0, u′i (1) = 0,

u′
2k (0) = 0, u(3)

2k (0) = 0, u2k (1) = 0, u′
2k (1) = 0.

(4)

It’s well known that any solution (u(r), v(r)) ∈ C4(0, 1) × C4(0, 1) of (3)-(4) is a radial symmetric solution
of (1)-(2).

The eigenvalue problem for the operator ∆2 plays a crucial a role in studying our problem, we cite the
following result from [18, Lemma 2].

Lemma 2.1. There is a µ1 > 0 such that the problem

∆2v = µ1v in B, v =
∂v
∂ν

= 0 on ∂B

possesses a positive, radial symmetric solution ϕ1(x) which satisfies, for some positive constants C1 and C2,

C1(1 − |x|)2
≤ ϕ1(x) ≤ C2(1 − |x|)2, x ∈ B. (5)

We recall the Green function G(r, s) for the operator ∆2, N > 4, see [11] and [18],

G(r, s) =

 aN(s) + r2bN(s), for 0 ≤ r ≤ s ≤ 1

( s
r )N−1(aN(r) + s2bN(r)), for 0 ≤ s ≤ r ≤ 1,

(6)
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where

aN(t) =
t3

4(N − 2)(N − 4)

[
2 + (N − 4)tN−2

− (N − 2)tN−4
]
,

and
bN(t) =

t
4N(N − 2)

[
NtN−2

− (N − 2)tN
− 2

]
.

The following proprieties of the kernel G(r, s) are in [18]. There exists a positive constant C such that

0 ≤ G(r, s) ≤ CsN−1(1 − s)2 (max(r, s))4−N , (7)

∂
∂r

G(r, s)(r, s) ≤ 0, (8)

and

∂2

∂r2 G(r, s)
∣∣∣
r=1

=
1
2

sN−1(1 − s2). (9)

Hence, the problem (3)-(4) is transformed into the integral equations
ui(r) =

∫ 1

0
G(r, s) fi(ui+1(s))ds, for i = 1, 2, . . . , 2k

− 1

u2k (r) =

∫ 1

0
G(r, s) f2k (u1(s))ds.

(10)

It’s natural that problem (3)-(4) and problem (10) are equivalent.
Consider the following eigenvalue problem,

∆2φi = λi+1 φi+1, i = 1, 2, . . . , 2k
− 1 in B,

∆2φ2k = λ1 φ1

φi = 0,
∂φi

∂ν
= 0, i = 1, 2, . . . , 2k

− 1

φ2k = 0,
∂φ2k

∂ν
= 0.

(11)

where λi > 0, i = 1, 2, 3, . . . , 2k.
Note ϕ1 the corresponding eigenfunction of µ1 the first eigenvalue of ∆2 on the unit ball B, we prove the
following result.

Lemma 2.2. Assume that
2k∏

i=1

λi = µ2k

1 , then the problem (11) has a positive solution (φ1, φ2, φ3, . . . , φ2k ) verifying

(modulo a constant) φ1 = ϕ1, φi =
λ1λi+1 . . . λ2k

µ2k−(i−1)
1

ϕ1 for i = 2, 3, . . . , 2k
− 1, φ2k =

λ1

µ
ϕ1.

Proof. We define

w1 = φ1, wi =
µ2k
−(i−1)

1

2k

Π
l = 1,

l ,, 2, 3, . . . , i

λl

φi, for i = 2, . . . , 2k
− 1, and w2k =

µ1

λ1
φ2k . (12)
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We put (12) in the problem (11), after some simplifications, we obtain
∆2wi = µ1 wi+1, ∆2w2k = µ1 w1 in B,

wi =
∂wi

∂ν
= 0, w2k =

∂w2k

∂ν
= 0 on ∂B.

(13)

for i = 1, 2, 3, . . . , 2k
− 1.

Adding all the equations, we get
∆2

 2k∑
i=1

wi

 = µ1

2k∑
i=1

wi in B,

2k∑
i=1

wi = 0,
∂
∂ν

 2k∑
i=1

wi

 = 0 on ∂B.

(14)

Applying (∆2)2k−1
−1 on the ith and (i + k)th equations of the system (13) for i = 1, 2, 3, . . . , 2k−1, yields

(∆2)2k−1
−1wi = µ2k−1

−1
1 wi+2k−1 in B,

wi = 0,
∂wi

∂ν
= 0 on ∂B,

(15)

and 
(∆2)2k−1

−1wi+2k−1 = µ2k−1
−1

1 wi in B,

wi+2k−1 = 0,
∂wi+2k−1

∂ν
= 0 on ∂B.

(16)

Next, subtracting the equation (16) from (15), gives


(∆2)2k−1

−1(wi − wi+2k−1 ) = µ2k−1
−1

1 (wi+2k−1 − wi) in B,

wi − wi+2k−1 = 0,
∂
∂ν

(wi − wi+2k−1 ) = 0 on ∂B.
(17)

We multiply (17) by wi − wi+2k−1 and we make a 2k integration by parts, we obtain∫
B
|∆(wi − wi+2k−1 )|2

k
dx = −µ2k−1

−1
1

∫
B
|wi − wi+2k−1 |

2dx,

this proves that wi = wi+2k−1 for i = 1, 2, 3, . . . , 2k−1 in B, which reduce the system (13) to 2k−1 equations.
Repeating the same argument k − 1 times, where at each jth iteration we apply the operator (∆2)2k− j

−1 to
the reduced system with 2k− j equations and following the same steps as the previous iteration. Finally, we
obtain w1 = w2 = w3 = . . . = w2k .

The properties of the eigenvalue problem for the bi-Laplacian, imply that the only solution of the system
(14) is the first eigenfunction ϕ1. Looking at (14), we have, modulo a positive constant, w1 = . . . = w2k = ϕ1.
Then we deduce directly the desired result.

Let us, now, give the following identity which is important in studying our problem. Let Fi be the primitive
of fi such that Fi(0) = 0, for i = 1, . . . , 2k.
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Lemma 2.3. Let (u1,u2,u3, . . . ,u2k ) a solution of the system (1)-(2) and αi for i = 1, 2, . . . , 2k are some positive
constants. We have the following

2k
−1∑

i=1

∫
∂B

(∆ui,∆ui+1)(x.ν)dσx =

2k
−1∑

i=1

∫
B

N Fi(ui+1) − αi+1ui+1 fi(ui+1)dx

+

∫
B

NF2k (u1) − α1u1 f2k (u1)dxdx (18)

+

2k
−1∑

i=1

(N − 4 −
l=2k∑
l=1

αl)
∫

B
(∆ui,∆ui+1)dx.

Proof. Looking at [14, Proposition 4], [15, Theorem 2.1] and by some adaptations, we write the following
general identity

∂
∂xi

[
xiL −

(
xk
∂ul

∂xk
+ alul

) (
Lpi −

∂
∂x j

Lri j

)
−

∂
∂x j

(
xk
∂ul

∂xk
+ alul

)
Lri j

]
= NL + xiLxi − alulLul − (al + 1)

∂ul

∂xi
Lpi − (al + 2)

∂2ul

∂xi∂x j
Lri j ,

(19)

where L = L(x,U, p, r) is a lagrangian with U = (u1,u2, . . . ,u2k ), p = (pk
i ), pk

i = ∂uk
∂xi

, r = (ri j), i, j = 1, . . . N and
al for l = 1, 2, 3, . . . , 2k, are constants. Applying the identity (19) to the Lagrangian of the problem (1)-(2);

L = L(x,U,∇U,∆U) =

m=2k
−1∑

m=1

[(∆um,∆um+1) + Fm(um+1)] + (∆u2k ,∆u1) + F2k (u1),

and al = αl for l = 1, 2, 3, . . . , 2k.
Integrating (19) over B and using the condition ul = 0, ∂ul

∂ν = 0 on ∂B for l = 1, 2, 3, . . . , 2k, we get (18).

Remark 2.4. If we take Σl=2k

l=1 αl = N − 4 in (18), we remark that the critical conditions on fi, i = 1, 2, 3, . . . , 2k are
NF2k (u1) − α1u1 f2k (u1) = 0 and NFi(ui+1) − αi+1ui+1 fi(ui+1) = 0 for i = 1, 2, 3, . . . , 2k

− 1 therefore

f2k (u1)
F2k (u1)

=
N/α1

u1
and

fi+1(ui)
Fi+1(ui)

=
N/(αi+1)

ui+1
, for 1, 2, 3, . . . , 2k

− 1.

Hence, for some positive constants ci,

f2k (u1) = c2k u
N
α1
−1 and fi(ui+1) = ci u

N
αi+1
−1

i+1 , for 1, 2, 3, . . . , 2k
− 1.

3. Main Results and Proofs

We define the following critical exponents associated to the system (1)-(2) by

q?i =
N − αi+1

αi+1
and q?2k =

N − α1

α1
, where αi, αi+1 ∈ ((N − 4)/2, N/2), for i = 1, 2, 3, . . . , 2k

− 1. (20)

A simple computation shows that
i=2k∑
i=1

1
q∗i + 1

=
N − 4

N
.

We state our first main result.
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Theorem 3.1. Suppose that fi for i = 1, 2, 3, . . . , 2k, verify the following conditions
(I) lim inf

s→∞
fi(s)s−1 > λi, lim sup

s→0
fi(s)s−1 < λi,

(II) NFi(s) − αi+1s fi(s) ≥ θi+1 s fi(s), s > 0, for some θi+1 ≥ 0, i = 1, 2, 3, . . . , 2k
− 1,

NF2k (s) − α1s f2k (s) ≥ θ1 s f2k (s), s > 0, for some θ1 ≥ 0, whereα j, j = 1, 2, 3, . . . , 2k

are positive reals such that
j=2k∑
j=1

α j = N − 4.

In addition, we suppose that:

(H)
There exists a constant C > 0 such that for every solution (u1,u2,u3, . . . ,u2k )
of the system (1)-(2) verifies ‖ui‖∞ ≤ C, for i = 1, 2, 3, . . . , 2k.

Then there exists a non-

trivial solution of the system (1)-(2).

Remark 3.2. Let fi, i = 1, 2, 3, . . . , 2k verifying the conditions (I) and (II) of Theorem 3.1.
we have

lim
t→∞

fi(t)
tq∗i+1

= 0, for i = 1, 2, 3, . . . , 2k
− 1 and lim

t→∞

f2k (t)
tq∗1

= 0.

Indeed, from condition (I), there exists t0 > 0 such that fi(t) > 0 for t > t0. Then, looking at condition (II) we
write

NFi(t) ≥ −θi + ηit fi(t) for t > t0, (21)

where ηi = αi + θi,2.
Hence

F′i (t) −
N
ηit

Fi(t) ≥
θi

ηit
.

Multiplying the last inequalities, respectively, by t−
N
ηi , we obtain

d
dt

(
t−

N
ηi Fi(t)

)
≤
θi

ηi
t−1− N

ηi .

Then, for some positive constants Ci, we have

Fi(t) ≤ Cit
N
ηi . (22)

Replacing (22) into (21), we get for t large enough that,

fi(t) ≤ Ct
N
ηi
−1.

for some positive constant C. Since
2k∑

i=1

αi = N − 4 and ηi = αi + θi,2, then we have
2k∑

i=1

ηi > N − 4.

The proof of Theorem 3.1 relies on a variant of fixed point theorem, see [9] and [12].

Theorem 3.3. Let C be a cone in a Banach space X and Φ : C → C a compact map such that Φ(0) = 0. Assume
that there exist numbers 0 < r < R such that

(a) x , λΦ(x) for 0 ≤ λ ≤ 1 and ‖x‖ = r,

(b) there exists a compact map F : BR × [0, ∞)→ C such that
F(x, 0) = Φ(x) if ‖x‖ = R,

F(x, µ) , x if ‖x‖ = R and 0 ≤ µ < ∞,

F(x, µ) , x if x ∈ BR and µ ≥ µ0.
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Then if U = {x ∈ C : r < ‖x‖ < R} and Bρ = {x ∈ C : ‖x‖ < ρ}, we have

iC(Φ, BR) = 0, iC(Φ, Br) = 1 iC(Φ, U) = −1,

where iC(Φ, Ω) denotes the index of Φ with respect to Ω. In particular, Φ has a fixed point in U.

Proof of Theorem 3.1 Applying Theorem 3.3, Let C∗([0, 1]) denote the space of continuous bounded functions
defined on [0, 1]. Consider the Banach space X = (C∗((0, 1)))2k

endowed with the norm ‖u‖ = sup
t∈[0,1]
{|u(t)|}.

The cone C is defined by
C =

{
w ∈ X : w(t) ≥ 0 for all t ∈ [0, 1]

}
,

where w = (y1, . . . , y2k ) ≥ 0 means that yi ≥ 0 for i = 1, . . . , 2k.
We define the compact map Φ : X→ X by

Φ(w)(r) =

∫ 1

0
G(r, s)h(w(s)) ds, h(w) = ( f1(u2), . . . , f2k−1(u2k ), f2k (u1)).

It’s clear that a fixed point of Φ is a solution of (10). So, it will be a solution of (3)-(4) as well.
Verification of condition (a): From hypothesis (I) of Theorem 3.1 we have that fi(ui+1(x)) ≤ qiλiui+1(x),
i = 1, . . . , 2k

− 1 and f2k (u1(x)) ≤ q2kλ2k u1(x) where qi < 1 for i = 1, . . . , 2k. Then

λ1

∫
φ1u2dx =

∫
u2∆

2φ2k dx =

∫
∆2u2 φ2k dx =

∫
f2(u3)φ2k dx < λ2q2

∫
φ2k u3dx, (23)

λ2k

∫
φ2k−i+3uidx =

∫
ui∆

2φ2k−i+2dx =

∫
∆2ui φ2k−i+2dx =

∫
fi(ui+1)φ2k−i+2dx

< λiqi

∫
φ2k−i+2ui+1dx, for i = 3, . . . , 2k

− 1,
(24)

λ3

∫
φ3u2k dx =

∫
u2k∆2φ2dx =

∫
∆2u2k φ3dx =

∫
f2k (u1)φ2dx < λ2k q2k

∫
φ2u1dx, (25)

λ2

∫
φ2u1dx =

∫
u1∆

2φ1dx =

∫
∆2u1 φ1dx =

∫
f1(u2)φ1dx < λ1q1

∫
φ1u2dx. (26)

Multiplying (23), (24) for i = 3, . . . , 2k
− 1, (25) and (26) each other. Since the integrals are nonzero, we

get, after some simplifications,

2k

Π
i=1
λi <

2k

Π
i=1

qi
2k

Π
i=1
λi,

which leads to a contradiction, since
2k

Π
i=1

qi < 1. Also, if ui for i = 1, . . . , 2k are replaced by λui in the previous

inequalities, for λ ∈ [0, 1], then similarly a contradiction follows and hence

w(t) , λΦ(w(t)) with λ ∈ [0, 1], ‖w‖ = r, w ∈ C.

Verification of (b): Set the compact mapping F : C × [0,∞)→ C such that

F(w, µ)(r) = Φ(w + µ)(r) (27)

Clearly we have F(w, 0) = Φ(w). From condition (i) of Theorem 3.1, there exist constants ki > λi for
i = 1, . . . , 2k, and µ0 > 0 such that fi(yi + µ) ≥ kiyi if µ ≥ µ0 for all yi ≥ 0. We have

λ1

∫
φ1u2dx =

∫
u2∆

2φ2k dx =

∫
∆2u2 φ2k dx =

∫
f2(u3)φ2k dx ≥ k2

∫
φ2k u3dx, (28)
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λ2k

∫
φ2k−i+3uidx =

∫
ui∆

2φ2k−i+2dx =

∫
∆2ui φ2k−i+2dx =

∫
fi(ui+1)φ2k−i+2dx

≥ kiqi

∫
φ2k−i+2ui+1dx, for i = 3, . . . , 2k

− 1,
(29)

λ3

∫
φ3u2k dx =

∫
u2k∆2φ2dx =

∫
∆2u2k φ3dx =

∫
f2k (u1)φ2dx ≥ k2k

∫
φ2u1dx, (30)

λ2

∫
φ2u1dx =

∫
u1∆

2φ1dx =

∫
∆2u1 φ1dx =

∫
f1(u2)φ1dx ≥ k1

∫
φ1u2dx. (31)

Multiplying all the previous inequality each other, since the integrals
∫

uiφi, for i, j ∈ {1, 2, . . . , 2k
}, are

nonzero, we obtain

2k

Π
i=1
λi ≥

2k

Π
i=1

ki.

The last inequality leads to a contradiction since ki > λi for every i = 1, 2, . . . , 2k.
Then, there exists a constant µ0 > 0 such that

w(t) , F(w, µ)(t) for all w ∈ C and µ ≥ µ0. (32)

Therefore the last condition of (b) is verified. Now, in order to prove the second condition of (b), we take
the family of nonlinearities

(
f1(y1 + µ), . . . , f2k (yk

2 + µ)
)

for µ ∈ [0, µ0]. Using the a priori estimates (H) which
does not depend on µ and choosing R > r large enough, we have

w(r) , F(w, µ)(r) for all µ ∈ [0, µ0], w ∈ C, ‖w‖ = R. (33)

The relations (32) and (33) prove the second condition of (b).
Finally, all conditions of Theorem 3.3 are fulfilled, then we obtain the existence of a nontrivial positive
solution of problem (10). Therefore we deduce the existence of positive solution of problem (1)-(2) as well.

�

Theorem 3.4. Suppose that fi for i = 1, 2, 3, . . . , 2k, satisfy the conditions (I) and (II). Then every solution of the
system (1)-(2) is bounded in L∞, namely the hypothesis (H) is verified.

Proof. We will proof it in four steps.
Step 1. We claim that there exist positive constants Ci,1, Ci,2, for i = 1, . . . , 2k such that∫

B
fi(ui+1)φidx ≤ Ci,1, for i = 1, . . . , 2k

− 1, (34)∫
B

f2k (u1)φ2k dx ≤ C2k,1, (35)∫
B

ui φidx ≤ Ci,2, for i = 1, . . . 2k. (36)

Indeed, from the equations (1) and (11) one can write∫
B

fi(ui+1)φidx =

∫
B

∆2uiφidx =

∫
B

ui∆
2φidx

= λi+1

∫
B

uiφi+1dx for i = 1, . . . , 2k
− 1,∫

B
f2k (u1)φ2k dx =

∫
B

∆2u2kφ2k dx =

∫
B

u2k∆2φ2k dx

= λ1

∫
B

u2kφ1dx.
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Next, from condition (I) of Theorem 3.1, there exist ki > λi and Ai > 0, for every i ∈ {1, . . . , 2k
}, such that

fi(ui+1) ≥ kiui+1 − Ai for i = 1, . . . , 2k
− 1 and f2k (u1) ≥ k2k u1. Thus, for generic constant C, we have

∫
B

f1(u2)φ1dx = λ2

∫
B

u1φ2dx ≤ C +
λ2

K2k

∫
B

f2k (u1)φ2dx, (37)∫
B

f2k (u1)φ2dx = λ3

∫
B

u2kφ3dx ≤ C +
λ3

K2k−1

∫
B

f2k−1(u2k )φ3dx, (38)∫
B

f2k−i(u2k+1−i)φ2+idx = λ3+i

∫
B

u2kφ3dx (39)

≤ C +
λ3+i

K2k−1−i

∫
B

f2k−1−i(u2k−i)φ3+idx, for i = 1, . . . 2k
− 3,∫

B
| f2(u3)|φ2k dx = λ1

∫
B

u2kφ1dx ≤ C +
λ1

K1

∫
B

f1(u2)φ1dx (40)

Combining (37)-(40) we get, for a generic constant C,∫
B

f2k− j(u2k+1− j)φ2+ jdx ≤ C +
λ3+ jλ3+ j−1

k2k−1− jk2k−2− j

∫
B

f2k−2− j(u2k−1− j)φ3+ j−1dx

...

≤ C +

2k

Π
i=1
λi

2k

Π
i=1

ki

∫
B

f2k− j(u2k+1− j)φ2+ jdx (41)

also ∫
B

f1(u2)φ1dx ≤ C +
λ2λ3

k2k k2k−1

∫
B

f2k−1(u2k )φ3dx

...

≤ C +

2k

Π
i=1
λi

2k

Π
i=1

ki

∫
B

f1(u2)φ1dx (42)

and ∫
B

f2(u3)φ2k dx ≤ C +
λ1λ2

k1k2k

∫
B

f2k (u1)φ2dx

...

≤ C +

2k

Π
i=1
λi

2k

Π
i=1

ki

∫
B

f2(u3)φ2k dx (43)

Since
2k

Π
i=1
λi

2k
Π
i=1

ki

< 1, this implies (34) and (35).

From condition (I) of Theorem 3.1, (34) and (35) we deduce (36).
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Step 2. We claim that, for i ∈ {1, 2, . . . , 2k
}, there exist positive constants Ci,1,. . . , Ci,2 such that

ui(r) ≤ Ci,1 for
2
3
≤ r ≤ 1 (44)

and

u′′i (1) ≤ Ci,3. (45)

Indeed, we have

ui(r) =

∫ 1

0
G(r, s) fi(ui+1(s))ds, for i ∈ {1, 2, . . . , 2k

− 1},

and

u2k (r) =

∫ 1

0
G(r, s) f2k (u1(s))ds.

The fact that r→ G(r, s) is decreasing, (see (8) and (7)), gives that ui(r), for i ∈ 1, 2, . . . , 2k, are decreasing and
for arbitrary 2

3 ≤ r ≤ 1,

ui(r) ≤ ui(
2
3

) = 3
∫ 2

3

1
3

ui(s)ds ≤ C
∫ 1

0
sN−1(1 − s)2ui(s)ds ≤ C +

∫ 1

0
sN−1(1 − s)2ui(s)ds.

From (5) and Lemma 2.2, we have

ui(r) ≤ C
(
1 +

∫ 1

0
sN−1(1 − s)2ui(s)ds

)
≤ C

(
1 +

∫
B
φiuidx

)
.

Using (36) we conclude that ui(r) ≤ Ci,1 for 2
3 ≤ r ≤ 1.

To prove (45) we will use the following

ui(r) =

∫ 1

0
G(r, s) fi(ui+1(s))ds, for i ∈ 1, 2, . . . , 2k

− 1,

u2k (r) =

∫ 1

0
G(r, s) f2k (u1(s))ds.

(46)

We differentiate (46) two times, we get

u′′i (r) =

∫ 1

0

∂2G(r, s)
∂r2 fi(ui+1(s))ds and u′′2k (r) =

∫ 1

0

∂2G(r, s)
∂r2 f2k (u1(s))ds.

Taking the limit when r goes to 1, since the integrals converge, we write

u′′i (1) =

∫ 1

0

∂2G(r, s)
∂r2

∣∣∣
r=1

fi(ui+1(s))ds and u′′2k (1) =

∫ 1

0

∂2G(r, s)
∂r2

∣∣∣
r=1

f2k (u1(s))ds.

From (9), we get

u′′i (1) =
1
2

∫ 1

0
sN−1(1 − s2) fi(ui+1(s))ds, and u′′2k (1) =

1
2

∫ 1

0
sN−1(1 − s2) f2k (u1(s))ds.

Using (5) and Lemma 2.2, we write, for some positive constant C, that

u′′i (1) ≤ C
∫

B
φi fi(ui+1)ds for i = 1, 2, . . . , 2k

− 1, and u′′2k (1) ≤ C
∫

B
φ2k f2k (u1)ds.
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Then we obtain (45) using (34) and (35).
Step 3. We claim that, for a small number 0 < l < 1, there exist positive constants C1, . . . , C4 such that∫ l

0
sN−1 fi(ui+1(s))ds ≤ C1 for i = 1, 2, . . . , 2k

− 1,
∫ l

0
sN−1 f2k (u1(s))ds ≤ C2. (47)∫

B
ui+1 fi(ui+1)dx ≤ C3 for i = 1, 2, . . . , 2k

− 1,
∫

B
u1 f2k (u1)dx ≤ C4. (48)

Indeed, following Step 1, Lemma 2.1 and Lemma 2.2 we have, for i = 1, 2, . . . , 2k
− 1 and for small 0 < l < 1,∫ l

0
sN−1 fi(ui+1(s))ds ≤

∫ l

0
sN−1 (1 − s)2

(1 − l)2 fi(ui+1(s))ds

≤
1

(1 − l)2

∫ l

0
sN−1(1 − s)2 fi(ui+1(s))ds

≤ C
∫ 1

0
sN−1φi(s) fi(ui+1(s))ds = C

∫
B
φi fi(ui+1)dx ≤Mi

and ∫ l

0
sN−1 f2k (u1(s))ds ≤

∫ l

0
sN−1 (1 − s)2

(1 − l)2 f2k (u1(s))ds

≤
1

(1 − l)2

∫ l

0
sN−1(1 − s)2 f2k (u1(s))ds

≤ C̄
∫ 1

0
sN−1φ2k (s) f2k (u1(s))ds = C̄

∫
B
φ2k f2k (u1)dx ≤M2k ,

where Mi, 1 ≤ i ≤ 2k, are some positive constants. This shows (47).

For the proof of (48), using the identity (18) of Lemma 2.3, considering the fact that
2k

Σ
i=1
αi = N − 4, as

2k
−1∑

i=1

∫
B

NFi(ui+1) − αi+1ui+1 fi(ui+1)dx +

∫
B

NF2k (u1) − α1u1 f2k (u1)dx

=

2k
−1∑

i=1

∫
∂B

(∆ui,∆ui+1)(x.ν)dσx.

Using condition (II) of Theorem 3.1 for the left hand side of the last equality and after some computations
on the right hand side we obtain, for a positive constant C,

2k
−1∑

i=1

θi+1

∫
B

ui+1 fi(ui+1)dx + θ1

∫
B

u1 f2k (u1)dx ≤ C
2k∑

i=1

u′′i (1)u′′i+1(1),

Therefore

2k
−1∑

i=1

θi+1

∫
B

ui+1 fi(ui+1)dx + θ1

∫
B

u1 f2k (u1)dx ≤ C,

we obtain (48) since all terms in the left hand side are positive.
Step 4. We claim that there exist positive constants Ci for i = 1, . . . , 2k, such that, for any solution (u1, . . . ,u2k )
of problem (1)-(2),

‖ui‖∞ ≤ Ci for i = 1, . . . , 2k. (49)
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Indeed, for ui+1, i = 1, . . . , 2k
− 1, we have

‖ui+1‖∞ ≤ ui+1(0) ≤
∫ 1

0
G(0, s) fi(ui+1(s))ds

≤ C
∫ 1

0
s3(1 − s)2 fi(ui+1(s))ds

≤ C
∫ 1

0
s3 fi(ui+1(s))ds

≤ C
∫ t

0
s3 fi(ui+1(s))ds + C

∫ 1

t
s3 fi(ui+1(s))ds,

where t ∈ (0, 1) is arbitrary and C is a generic positive constant for the rest of this step.
Let f̃i(m) = max

s∈[0,m]
fi(s) for m ∈ (0,∞), by Hölder’s inequality, we obtain

‖ui‖∞ ≤ Ct4
‖ f̃i(‖ui+1‖∞) + C

(∫ 1

t
sγi+1(q∗i +1)ds

) 1
q∗i +1

(∫ 1

t
sN−1 fi(ui+1(s))

q∗i +1

q∗i ds
) q∗i

q∗i +1

≤ Ct4 f̃i(‖ui+1‖∞)

+ C
(∫ 1

t
sγi+1(q∗i +1)ds

) 1
q∗i +1

(∫ 1

t
sN−1( fi(ui+1(s)))( fi(ui+1(s)))

1
q∗i+1 ds

) q∗i+1
q∗i+1+1

,

where γi+1 = 3 − (N − 1)
q∗i+1

q∗i+1+1 . From Remark 3.2, we have the existence of a positive constant M such that

fi(s) < M(1 + s)q∗i+1 , for all s ≥ 0 (50)

Then

‖ui‖∞ ≤ Ct4 f̃i(‖ui+1‖∞) + C
(∫ 1

t
sγi+1(q∗i+1+1)ds

) 1
q∗i+1+1

(∫ 1

t
sN−1 fi(ui+1(s))(1 + v(s))ds

) q∗i
q∗i +1

,

≤ Ct4 f̃i(‖ui+1‖∞)

+ C
(∫ 1

t
sγi+1(q∗i+1+1)ds

) 1
q∗i+1+1

(∫
B
( fi(ui+1(s)))dx +

∫
B
( fi(ui+1(s)))ui+1(x)dx

) q∗i+1
q∗i+1+1

.

Using (47) and (48), we get

‖ui‖∞ ≤ C t4 f̃i(‖ui+1‖∞) + C
(∫ 1

t
sγi+1(q∗i+1+1)ds

) 1
q∗i+1+1

, for i = 1, . . . , 2k
− 1.

Similarly, we have for u2k ,

‖u2k‖∞ ≤ C t4 f̃2k (‖u1‖∞) + C
(∫ 1

t
sγ1(q∗1+1)ds

) 1
q∗1+1

, where γ1 = 3 − (N − 1)
q∗1

q∗1 + 1
.

After some manipulations, we get

‖ui‖∞ ≤ C t4 f̃i(‖ui+1‖∞) + C t
4+(4−N)q∗i+1

q∗i+1+1 , for i = 1, . . . , 2k
− 1 (51)
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and

‖u2k‖∞ ≤ C t4 f̃2k (‖u1‖∞) + C t
4+(4−N)q∗1

q∗1+1 . (52)

Note that if f̃i, for i = 1, . . . , 2k, are bounded then (49) comes directly. Nevertheless, if f̃i is not bounded then
there exist a positive Mi, see (50) such that f̃i(m) ≤ Mi mq∗i+1 for i = 1, . . . , 2k

− 1 and f̃2k (m) ≤ M2k mq∗1 where
m ≥ 1.
Therefore (51) becomes

‖ui‖∞ ≤ C t4(‖ui+1‖∞)q∗i+1 + C t
4+(4−N)q∗i+1

q∗i+1+1 , for i = 1, . . . , 2k
− 1. (53)

We rewrite (52) and all the equations appearing in (53) as

‖u1‖∞ ≤ C t4(‖u2‖∞)q∗2 + C t
4+(4−N)q∗2

q∗2+1 , (54)

‖u2‖∞ ≤ C t4(‖u3‖∞)q∗3 + C t
4+(4−N)q∗3

q∗3+1 ,

...

‖u2k−1‖∞ ≤ C t4(‖u2k‖∞)q∗
2k + C t

4+(4−N)q∗
2k

q∗
2k +1

, (55)

‖u2k‖∞ ≤ C t4(‖u1‖∞)q∗1 + C t
4+(4−N)q∗1

q∗1+1 .

Combining the previous inequalities and using the inequality (a + b)n
≤ Cn(an + bn) for a, b, n ≥ 0 where Cn

is a positive constant depending only on n, we obtain

‖u1‖∞ ≤ C t
4+4

2k
−1

Σ
j=2

j
Π
l=2

q∗l


(‖u2k‖∞)

2k

Π
l=2

q∗l + C
2k
−1
Σ
j=2

t
m∗j

(
j

Π
l=2

q∗l

)
+4

(
j−1
Σ
i=2

i
Π
l=2

q∗l

)
+4

+ C tm∗1 , (56)

where m?
j =

4+(4−N)q∗j+1

q∗j+1+1 for j = 1, . . . , 2k
− 1.

Now, putting (52) into (56) and using again the inequality (a + b)n
≤ Cn(an + bn), we get

‖u1‖∞ ≤ C t
4+4

 2k

Σ
j=2

j
Π
l=2

q∗l

 {
f̃2k (‖u1‖∞)

} 2k

Π
l=2

q∗l + C
2k

Σ
j=3

t
m∗j

(
j

Π
l=2

q∗l

)
+4

(
j−1
Σ
i=2

i
Π
l=2

q∗l

)
+4

+ Ctm∗2q∗2+4 + C tm∗1 . (57)

We note M j = m∗j

(
j

Π
l=2

q∗l

)
+ 4

(
j−1
Σ
i=2

i
Π
l=2

q∗l

)
+ 4, for j = 3, . . . , 2k

− 1, M2 = m∗2q∗2 + 4 and M1 = m∗1.
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We remark that

M2 −M1 = −N
2k∑

j = 2,
j , 2, 3

q∗2
q∗j + 1

,

...

Mi −Mi−1 = −N
2k∑

j = 2,
j , i, i + 1

i
Π
l=2

q∗l

q∗j + 1
,

...

M2k−1 −M2k−2 = −N
2k∑

j = 2,
j , 2k

− 1, 2k

2k
−1

Π
l=2

q∗l

q∗j + 1
.

Noting γi = N
2k

Σ
j = 2,

j , i, i + 1

i
Π
l=2

q∗l
q∗j+1 , for i = 1, . . . , 2k

− 1.

We deduce that Mi = M2k−1 +
2k
−1
Σ

j=i+1
γ j for i = 1, . . . , 2k

− 1.

Using this relation with (57) and the fact that tγ ≤ 1 for γ > 0, we write

‖u1‖∞ ≤ C t
4+4

 2k

Σ
j=2

j
Π
l=2

q∗l

 {
f̃2k (‖u1‖∞)

} 2k

Π
l=2

q∗l + CtM2k−1 . (58)

For convenient calculations, we define r =
M2k−1(1−

2k

Π
l=1

q∗l )

q∗1
. Since t ∈ (0, 1), we write

‖u1‖∞ ≤ C tr
{

f̃2k (‖u1‖∞)
} 2k

Π
l=2

q∗l + CtM2k−1 . (59)

In order to have the best estimate for ‖u1‖∞ we take the infimum with respect to t in the right expression of
(59). Then we define the function

h(t) = tr
{

f̃2k (‖u1‖∞)
} 2k

Π
l=2

q∗l + tM2k−1 . (60)

The function h attains its infimum at t0 = C ( f̃2k (‖u1‖∞))

2k
Π

l=2
q∗l

M
2k−1

−r and has the following value

h(t0) ≤ C ( f̃2k (‖u1‖∞)

r
2k

Π
l=2

q∗l

M2k−1 − r
+

2k

Π
l=2

q∗l
+ C ( f̃2k (‖u1‖∞)

M2k−1

2k

Π
l=2

q∗l

M2k−1 − r .
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The choice of r gives that
r

2k

Π
l=2

q∗l

M2k−1 − r
+

2k

Π
l=2

q∗l =

M2k−1

2k

Π
l=2

q∗l

M2k−1 − r
=

1
q∗1

. Then

h(t0) ≤ C + C ( f̃2k (‖u1‖∞)
1

q∗1 .

From Remark 3.2 we have f̃2k (x) = o(xq∗1 ) for x→ +∞ then we obtain

‖u1‖∞ ≤ C (1 + o(‖u1‖∞)),

this shows that ‖u1‖∞ is bounded. Replacing the bound of ‖u1‖∞ into (56) we deduce that ‖ui‖∞ is bounded
for i = 1, . . . , 2k.
This finish Step 4 and complete the prove of Theorem 3.4.

We end this section by giving a non-existence theorem.

Theorem 3.5. Assume that fi, for i = 1, 2, 3, . . . , 2k, verify for t > 0

NFi(t) − αi+1t fi(t) ≤ 0, i = 1, 2, 3, . . . , 2k
− 1, and NF2k (t) − α1t f2k (t) ≤ 0. (61)

Then there is no nontrivial solution of the system (1)-(2) in
(
C2(B) ∩ C1(B̄)

)2
.

Proof. Taking
2k

Σ
i=1
αi = N − 4 in the identity (18). Since ui = 0 = ∂ui

∂ν for i = 1, . . . , 2k, we have (∆ui,∆ui+1) =

∂2ui
∂ν2

∂2ui+1
∂ν2 for i = 1, . . . , 2k

− 1.
If (u1, . . . ,u2k ) is a nontrivial solution of (1)-(2), since B is star-shaped domain about 0, then x.ν ≥ 0 on ∂B.
Then the identity (18) gives a contradiction in the case of the condition (61). This finishes the proof.

4. Examples of Some Numerical Solutions

In this section, we give some examples to illustrate the study of the general system (1)-(2). We fix the
dimension of the space N = 5 and k = 2 that means we consider the following system.

u(4)
1 +

2(5−1)
r u(3)

1 +
(5−1)(5−3)

r2 u′′1 −
(5−1)(5−3)

r3 u′1 = f1(u2),
u(4)

2 +
2(5−1)

r u(3)
2 +

(5−1)(5−3)
r2 u′′2 −

(5−1)(5−3)
r3 u′2 = f2(u3),

u(4)
3 +

2(5−1)
r u(3)

3 +
(5−1)(5−3)

r2 u′′3 −
(5−1)(5−3)

r3 u′3 = f3(u4),
u(4)

4 +
2(5−1)

r u(3)
4 +

(5−1)(5−3)
r2 u′′4 −

(5−1)(5−3)
r3 u′4 = f4(u1),

(62)

with the boundary conditions
u′1(0) = 0,u(3)

1 (0) = 0, u1(1) = c1, u′1(1) = 0,
u′2(0) = 0,u(3)

2 (0) = 0, u2(1) = c2, u′2(1) = 0,
u′3(0) = 0,u(3)

3 (0) = 0, u3(1) = c3, u′3(1) = 0,
u′4(0) = 0,u(3)

4 (0) = 0, u4(1) = c4, u′4(1) = 0,

(63)

where c1, c2, c3, and c4 are constants.
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In order to obtain a numerical solution, we write the system (62)-(63) as a system of first order ODEs

u′1 = u1,1
u′1,1 = u1,2

u′1,2 = u1,3

u′1,3 = f1(u2) −
(
u1,3 +

(N−1)(N−3)
r2 u1,2 −

(N−1)(N−3)
r3 u1,1

)
,

u′2 = u2,1
u′2,1 = u2,2

u′2,2 = u2,3

u′2,3 = f2(u3) −
(
u2,3 +

(N−1)(N−3)
r2 u2,2 −

(N−1)(N−3)
r3 u2,1

)
,

u′3 = u3,1
u′3,1 = u3,2

u′3,2 = u3,3

u′3,3 = f3(u4) −
(
u3,3 +

(N−1)(N−3)
r2 u3,2 −

(N−1)(N−3)
r3 u3,1

)
,

u′4 = u4,1
u′4,1 = u4,2

u′4,2 = u4,3

u′4,3 = f4(u1) −
(
u4,3 +

(N−1)(N−3)
r2 u4,2 −

(N−1)(N−3)
r3 u4,1

)
,

(64)

subject to boundary conditions
u1,1 (0) = 0 u1,3 (0) = 0 u1(1) = c1, u1,1 (1) = 0,
u2,1 (0) = 0 u2,3 (0) = 0 u2(1) = c2, u2,1 (1) = 0,
u3,1 (0) = 0 u3,3 (0) = 0 u3(1) = c3, u3,1 (1) = 0,
u4,1 (0) = 0 u4,3 (0) = 0 u4(1) = c4, u4,1 (1) = 0.

(65)

The numerical solutions obtained using the Matlab program bvp5c [16] which requires initial guess for
the solution on a given mesh.

Example 4.1.
Let f1(u) = u2, f2(u) = u3, f3(u) = u4, f4(u) = u5 and c1 = 1, c2 = 1

2 , c3 = 1
4 , c4 = 1

8 . Easily we see that the fi,
1 ≤ i ≤ 4 verify the condition (I) and (II) of Theorem 3.1. The numerical solution computed by choosing the initial
guess

u1 = x, u2 =
x2

2
,u3 =

x3

4
, and u4 =

x4

8

and is presented in Figure 1 on a mesh of 100 points and relative error tolerance RelTol = 10−9.

Example 4.2. Let f1(u) = u2 + u, f2(u) = u3 + u2 + u, f3(u) = u4 + u3 + u2 + u, f4(u) = u5 + u4 + u3 + u2 + u.
We note that the functions fi, 1 ≤ i ≤ 4 verify the conditions (I) and (II) of Theorem 3.1. Therefore, the numerical
solution computed by choosing the initial guess

u1 =
1

x + 1
, u2 =

1
x2 + 1

,u3 =
1

x3 + 1
, and u4 =

1
x4 + 1

and is presented in Figure 2 on a mesh of 1000 points and maximum error 10−3.
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Figure 1: Numerical Solution for Example 1 obtained on a mesh of 100 points and RelTol = 10−9
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Figure 2: Numerical Solution for Example 2 obtained on a mesh of 1000 points
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