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Abstract. Tauberian theorem provides a criterion for the convergence of non convergent (summable)
sequences. In this paper, we established a Tauberian theorem for n” real sequences via Cesaro summability
by using de la Vallée Poussin mean and slow oscillation. The discussion and findings are capable to
unify several useful concepts in the literature, and should also provide nontrivial extension of several
results. Some examples are incorporated in support of our definitions and results. The findings are further
expected to be helpful in designing and study several other interesting problems in summability theory
and applications.

1. Introduction and Definitions

Tauberian theorems for single sequences, that an Abel summable sequence is convergent under certain
suitable conditions was introduced by Tauber [12]. A few researchers like Landau [7], Hardy and Little-
wood [4], and Schmidt [10] obtained some classical Tauberian theorems for Cesaro and Abel summability
methods of single sequences. Later on, Knopp [6] introduced some classical type of Tauberian theorems for
Abel and (C, 1,1) summability methods of double sequences and obtained that Abel and (C, 1, 1) summa-
bility methods are equivalent for the set of bounded sequences. Méricz [8], and Jena et al. [5] proved some
Tauberian theorems for Cesaro (C,1,1) summable double sequences. Very recently, Canak and Totur [2]
has extended some classical type of Tauberian theorems from double sequences to triple sequences and
thereby established Tauberian theorems via (C, 1,1, 1) mean. In this paper, we aim at establishing classical
Tauberian theorems via (C,1,1,...,1) mean for n'" real sequences and that will generalize earlier existing
results and unify several ideas. Aasma et al. [1] may be consulted for basic notions and ideas and Dutta
and Rhoades [3] for some topics of current interest in summability theory and its applications.

th

Let (Umy m,,..,m,) be a n'" real sequence. We have,

Aml (umhmzlwmu) = Umy,ma,...my =~ Wiy, my,..mys

Aoy Uty m,.imy) = Uy iyt = Wy ity ..y
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Ay Uiy s, 1) = Uiy .y = Wy iy
Aml/mZ(qulrmZ/m/mn) = Aml (Amzumhmz,m,mn) = Amz(Aml um1/m2/~-~,mn);

Aoy sy WUy i) = Dy Bt Uy iy, imy) = Doy (Do, Uy ., )-

Similarly,

3994

A given sequence (U, m,,.m,) is said to be convergent (in Pringsheims sense) to L (see [9]), if for each
given ¢ > 0, there exists a positive integer Ny such that |(4, m,,.,m,) — L| < €, for all nonnegative integers

my, My, ..., My, > Np.

In this case, we write

lim (U, my,...m,) = L.
1,11 .e. 1y —00

Note that, a n'” real sequence (U, ms,,..,m,) 15 said to be bounded, if there exists a constant, K > 0 such that

|ty my,....m, )| < K, for all nonnegative integers my, mj, ..., my,.

The (C, 1,1, ..., 1) mean of nth sequence, denoted by (0, m,..m, (1)) is defined as

1 my My My
I (4) = G D G T 1) e 71 Z_:.) Z& Z—S irty.d-
1= 2= n=—

The sequence (U, m,,..m,) is (C,1,1,...,1) summable to L, if

lim Omymy..amy, (M) =L.
my,my,..., 1M, —>00

Clearly, a bounded sequence (i, m,,...m,) is P-convergent to L, if

lim Unmymy..m, = L.
my,my,..., My —>00

1)

()

Also, existence of (2) implies the existence of (1) but not conversely. To prove the converse part, we use
some conditions such as slow oscillation and de la Vallée Poussin mean of n'* sequence. Such conditions
are called Tauberian conditions and theorems with Tauberian conditions are called Tauberian theorems.

It is known that from [5], a double sequence can written as,
Unn — Omn = vm,nA(u)/
where

1 m n o
U A(U) = mEDmED Z Z 10 Aiyi, (Uiyiy)-

il =0 iz =0
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Similarly, here for n* sequence, we may write

Uy, = Oy, = Oy, A1),

where

1 my my
’Uml,m,m”A(M) = Z Z il-"inAil...i,l (uil...i,l)-
i1=0  i,=0

(m +1)...(m, + 1)

=

3995

Now, we present below an illustrative example to show that a sequence is (C, 1,1, ...,1) summable but

not P-convergent
Example 1.1. Let us consider a bounded sequence

1 (m; =even)

Umymy..m, =
0 (otherwise).

Now

mp my my

1

(m1 + 1)(my +1)...(my + 1) 1=0 ;=0  i,=0

Gnﬁmz...mn (u) = oo uiliz...i,,

(my—1)my...m, . _
Mooy L i = odd,

mimy...ny
2{(m1+1)(ma+1)...(m,+1)}/

if m = even.

Clearly, the sequence is (C, 1,1, ..., 1) summable to % But it is not P-convergent.

Next, it will be interesting to see that unlike single sequences, every P- convergent n'" sequence need
not be bounded and further every P- convergent nth sequence does not have to be (C, 1,1, ..., 1) summable.

It can be illustrated in the following example.

Example 1.2. Let us consider a sequence

my, (mp=..=m,=0,m=0,12,..)

m, =0, my=0,1,2,..,)

Upnimy...m, = ma, (ml =
0, (otherwise).

Obviously, the sequence is unbounded but P-convergent to 0.

Furthermore,
myp  mp my
=, im ) 3
o = i1io i
-t 1,2, My —>00 (m1 + 1)(Tﬂ2 + 1)(771” + 1) == = M2
1=V 2= n=

(m? + my)(m3 + my)...(m3 + ny,)

s sty —sco (1L + V)1(t + 1)(2 + 1), ., (1 + 1))



P. Parida et al. / Filomat 32:11 (2018), 3993-4004 3996

does not tend to a finite limit. Therefore, it is not (C, 1,1, ..., 1) summable.

Now, the definition of slow oscillation for n'" sequences is introduced in the sense of Stanojevi¢ [11] as
follows:

A nth sequence (Up,,..m,) is said to be slowly oscillating in sense (0, 0,0, ...1, ...,0) with 1 is in the Kt place if,
i

lim lim sup max
A—=1t mymy...my—o0 mp+1<i<A

=0. 3)

Arurm2m3,..mn

" |r=n+1

>

Next, the de la Vallée Poussin mean 7, ,,. . (1) of the n™ sequence (u,,..,

1 Am] /‘mz /\m,,
YooY Y (i) (4)
Ay = m12) Ay = 1112).. (A, =) £ A 2
and for0 < A < 1as,
1 mq my my
Z Z Z (uilriZ/--~/i»1)' )
(ml - /\ml)(mZ - Amz)-"(mn - Amn) =+l = Ay 1 i =y +1

Moreover, now we define the Cesaro mean for each sequence of non-negative integers (k1, ko, ..., k),

1 m My k=1, k=1
(mi+1)...(my+1) Zh:O Z“in:O o ’

oklrkZ,--~/kn —
Umymy...m, s for k1, ey kn =0.

A sequence (U,

.....

m,) is said to be (C, ki, ..., k,) summable to L, if lim gtk (u) = L.
Remark 1.1If k; = ... =k, = 1 then (C, ki, ..., k,) summability reduces to (C, 1, ..., 1) summability.
The following is a list of some known theorems.

Theorem 1.1 (see [13]) If () is Cesaro (C, 1, 1) summable to s and (u,, ) is slowly oscillating, then limy, e (Um) =
S.

Theorem 1.2 (see [5]) If (14, ) is Cesaro (C, k, r) summable to s and (uy, ) is slowly oscillating, then limy,—,co (Up,n) = S.

Theorem 1.3 (see [2]) If (tyns) is Cesaro (C,1,1,1) summable to L and (Uy,ys) is slowly oscillating, then
limn—wo(um,n,s) =L
2. Main Theorems

The objective of the present paper is to prove the generalized Littlewood-Tauberian theorem [2] for
(C,1,...,1) summability of a n'" sequence by using slow oscillations and de la Vallée mean.

Theorem 2.1 Let (U my..m,) be (C, 1,1, ..., 1) summable to L. If (yym,..m,) is slowly oscillating in sense (1,0,0,0, ...,0),
0,1,0,0,..,0),...,(0,0,0,0, ..., 1); then (Umym,..m,) is P-convergent to L.
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The following lemmas give two representations of the difference t,m,..m, — Omym,..m, (1) and are required
for the proof of our main Theorem 2.1.

Lemma 2.1 (see [2], p. 4, Lemma 4.1) Let Ay, Am,, ..., Am, denote the integral part of Amy, Amy, ..., Amy, re-
spectively.

(i) IfA > 1, then

Umymy..my, — Omymy...my, (Ll)

Ay + DA, + 1)ec(Ay, + 1)
T Ay = 1) Ay — M) (A, — 111)

(O Aty iy (W) = T 2y Ay (W) = e = Oy Aoy, (1)

+G/\m1 Mamg... Ay, (u) + Gml/\mz m3...Amy (u) +..+ U/\ml Am2»~-/\m”,2 My—11My (u)

e — Omlmz...mn (u)]

Ay + DAy +1)ecc(Apyy,, + 1)
(Aml - ml)(/\mz - mZ)"-(/\mn—l - mn—l) % [ 0'/\,,,1 Ao <Ay P (u)

F0111 Ay Ay gy 1 () F e F O Ny Ay (W) = Oy, (10)]

_ Ay + DAy +1)ec(Ayyy, + 1)
Ay = mM2) Ay — M3)...(Ap, — 11y)

X [_GmlAn,2m3.../\m,, (Ll)

+omlAmzAm3-~-mn(u) +..+ GmlmZAngu-/\mn,l /\mn (u) t...- Om1m2m3---mn (u)]

Ay +1
LA+ D

+ (/\7111 + 1) X
/\Hh—m]

(N mizecny (1) = Oy, (1)) + .. 1
My =y

[6m1 My... Ay, (u) — Omymy...my, (M)]

/\’”1 Amz /\mn

1
_()\m1 = 1m1)ee(Am, — My) . Z Z (Miyiy...iy = Unymy...m, )-

i1=m+1 ip=my+1  i,=m,+1
(i) If 0 < A < 1, then

um1 Mmy..m, Gm1 my...my (u)

Ay + DA, + 1)e(Ay, + 1) o
T (= Ay (112 = Ay)en (A, — 1)

[o/\ml Amzw/\mn (u) - amlAmzn-/\mn (u) T T UAml /\mz---Am”_l my (u)
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F0 N,y (W) F Ot Ay iz Ay (W) F s O N Ay Ay 1y, (1)

- Umlmz...m,, (u)]

(/\nn + 1)(/\,112 + 1)-“(/\%14 + 1) X [ o (u)
— TO Ny Ay A oA n
(my = Ay )(m2 = Ay )oe(My-1 = Apm,,_y) Vit

+OmlAmzAm3-~/\m ( ) +..+ OAml /\mz-nAmn,zAmn_l my (u) T T Gmlmmen (u)]

Vl—l

Ay + DAy +1)ecc(Ayyy, + 1)

- (mo = A, )(m3 = Ay )y — Ay,

X [_GmIAmZ m3~~/\m,, (u)

+om1Am2Am3...mn(u) +..+ Umlmz)\ms.“/\ A (M) t oo = Omymams...m, (u)]

My -1

(Am, +1)
+mll_—/\m](0/\m1 e () = Oy, (W)) + oo + P——

X[Gmlmz.../\m,, (u) = Omymy...my, (u)]

Am Am Am
1 1 2 n

B (ml ml) (my, — /\m,,)

(um1m2~~mn — Uiiy.... in)‘
i1=mp+1 ip=my+1  i,=m,+1

Proof (i) For A > 1, by the definition of de la Vallée Poussin means of (i4y,m,..m,), we have

”’1 ,,,n

1
Tmymy..amy, (M) = (/\m1 — ml)(Amz — le)(A — mn) Z Z (uiliz...in)

ii=mi+1  i,=m,+1

Ay 1My Ay "y,
B (A, = m1)(Am, —le) (A, — my) Z Z {Z Z] Uiyiy...dy

=l i1=0 iy iy
1
= X
(Aml - ml)(/\mz - mZ)"‘(/\mn - mn)

’”1 n12 Y"n my /\m ml mz m” 1 My
LY -2 Y Y [ry L 0 | o
i1z =0 i,= 11=0 i,=0 1,=0 11=0 i,=0 i,-1=01,=0

+ 1 X
Ay = m1) (A, — m2)eec (A, — 1)
my myp ’”3 mrz Aml my My—1 My
DIDIDIED M Ll DIDIED DD N
=0 i,=0 i3=0 1,=0 11=0 i,=0 1,-1=01,=0
1

+... +

X
Amy = m1)(Ap, — m2)..(Ap, — my)

25200 N1 1300 0 2 80

i1=0 =0  i,= i1=0 =0  i,-1=01,=0 i1=0 i;=0

3998
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Hence,

1
Ay = m1) (A, — M2)...(Ap, — my,)

Timymy...my, (u) = X [((Aﬂﬂ + 1)(/\1112 + 1)

Aoty = 10))0 8, 2y, (W) = (111 + DAy + 1A, = 10)) Oy Ay,
= (A + DAy + DAy + D01y + 1)) 00, 10, (1)
= (01 + DAy + DA,y + DA, + 1)) O, A, (1)

—eee = (A + DAy + Dottt + 1) (A, + 1)) Gyt 10, (1)

+((m1 + 1)(mz + DAy + DOty ) @) + oo+ Ay + 1) (A, + 1)...
(A + D1 + 1)1 + 1)Omy 2, gy = e —

Ay + 1)ec(my + D)on,, my.m, () = o = (M1 + 1)ec(Ap, + D)o, .0

mn

—(my + 1)(my + 1)...(my + 1)0wmymy...m, ()]

and

Ay + DAy, +1)ec(Ayyy, + 1) W
(/\ml — ml)(Amz — mz)“.(/\mn — mn)a/lnxl /\nlz‘nAmn

Tmlmz.“my, (u) =

Ay + DA, +1)c(Apy, + 1) Ay + DAy +1)eec(Apy, +1)
B [(/\ml —1111) Ay = 112)e(Ay, — 1) (A, — 112) Ay — 113)er-(Apy, — mn)] Tt Ay Aoy
Ay + DAy +1)ci(Ayyy, + 1) Ay + 1)eec(Apy,, + 1)
T l(/\ml —111) (A, — 112) (A, — 1) (A, — 12) (A, — mn_l)] Oy Ay
Ay + DA, +1)cc(Apy, + 1) Ay + DAy +1).c(Apy, + 1)
[(/\ml —1111) Ay = 112)e(Ay, — 1) (A, = 111) Ay — 113)er-(Apy, — mn)] Oz Ay Ay

Gm1m2/\m3 m/\mn

o [ (A, + DAy + 1)ec(Ay, + 1) N (Am, +1)
Ay, = M)Ay — m3)c.(Ap, — 1) (A, — M1y)

[ Ay + DA, +1)cc(Apy, + 1) Ay + DAy +1)..(Apy, + 1)
A

- 0m1m2 My -,
s — 110) Ay — 12)e (A, — 1) Ay — 110) Ay — 113)or- (A, — mn)] An Ao

Ay + DAy + 1) Ay, + 1) A, +1) (A, +1)
T [(Amz =)oy = 113) Gy = 1110) oy = 111) " gy — 11)

Gm1m2/\m3 mAmn

+0m1m2...mn (u)‘
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The difference 7, m,..m, (1) = Omym,..m, can be written as

Tmimy...m, (M) — Omymy...m, (Ll)

Ay + DA, + 1)e(Ay, + 1)
B (/\?111 - ml)()\mz - mZ)"'(Amn — My)

[O-Aml An’lz"'A”Xy’ (u) - O_ml/\mz /\m3~~/\mn (u)

Teee T GAnzlA ~-/\n1n_1 my (u) + aml mZAms-n/\mn +..+ a/‘ml /\mzu-mn—]mn

my -

+U)\mlm2mg...m,, +...+ Gnnm;.../\,,,,, (u) - 07ﬂ1M2M3...A1n,1 (M)]

Ay + DAy, + 1)y, + 1) :
Ay = m1) (A, — m2)..(Apy,, — 1) Oy Ay

A My (u) + 0/\1111/\ --mn—lmn(u)

my,_q my -

+0)\m1m2...mn = Omymy..any, (u)]

a Ay + DAy, + 1)cc(Ayy, + 1)
N (/\Vm - ml)(Amz - mZ)-"(/\m,, — M)

(=011 Ay Ay Aoy ) F Oy 20y A A, (1)

my

F0m1 Ay oAy 11 (U) = . — Omy2 M3 Ay (1) = Omymy.n, (W)]

my

Amy +1
Apy —m

A, +1

[GA,nl LMy, (u) — Omy...my, (M)] T+ o + m[o‘ml...mnqm,, (u) — Omy..my, (u)]

n

It follows from the previous equation that,

umlmz...mn - amlmz...mn (M)

Ay + DA, + 1)ec(Ay, + 1)
T Ay = m1) Ay, — M) (A, — My

) (O Ay oy (1) = Ty 4, A, (1)
T T O-/\ml Amzn-/\mﬂ_l my (1/[) + 0/‘7711 mam3... Ay (u) + OmlAmzm3~--/‘mn (u)

+..t UAml Am2~~/\mn,2mn—lmn (u)"‘ - 0m1m2~~mn (u)]

Ay + DAy +1)ecc(Agyy,, + 1)
- [_GAnll Amzu-/\m _1Mn (M)
(Aml - ml)(/\mz - mz)-n(/\mn,l - mn—l) "

FO0 iy Ay Ay 100 (W) F o F O Ay A 1 (W) ee = Oy, (14)]

my my,_q

Ay + DAy + 1)ccc(Agy, + 1)

- (A _ mZ)(/\ _ mS) (/\ —m )[_Gml/\,,,zmgu.)t,,,n (M) + aml/\mz/\m3~--mn (M)
ny ms3 v my n

+...+ Gm1m2/\m3"'Amn—1 Amn (u) to - Gm1m2m3.“mn (u)]

A, +1) Ay, +1)
+— [GAml...mn ) = oy, W] + .. + - [Gm1...Am,, (1) = omy.m,W)]
/\ml—ml /\mn_mn
Aml Amz mn

1

A
- (A —m ) (/\ —m ) (uili2~~iv1 - umlmZWWIn)‘
m e M n i1=my+1 ip=my+1 iy=my+1




P. Parida et al. / Filomat 32:11 (2018), 3993-4004 4001

This completes the proof of Lemma (2.1)(i). O
(ii) The proof for 0 < A < 1 is similar to that of first part of Lemma 2.1(i).

Lemma 2.2 (see [5], Lemma 6. p. 2-3) A sequence (tmym,..m,) is slowly oscillating if and only if vy, . A)
is slowly oscillating and bounded.

Proof of Theorem 2.1 By Lemma 2.1(i) we obtain

[y, = Oy, WO < | Tongmy..m, () = O gy, ()]

1 AY?ZI /\mz
| o = 1) = ), —1,)
—m — my)... -m
" 1 m2 2 M n i1=my+1 ip=my+1
/\mn
(uili2~--in - um1m2~--mu) . (6)
iy=my+1
For the second term on the right hand side of the inequality (6), we have
ml n12 /\”’ln
(uii iy — Wmym, m)
Amy = m1) (A, — M2)..(Ayy, — 1 Zd Z‘ e e
( m 1)( mz 2) ( n) =i+l h=ma+1  iy=m,+1
l ”’2 /\,,,n
3 F—— = Z Y -
—-m —Mmy)... ,—m
( m 1)( e 2) ( n) ii=m+1 bh=m+1  iy=m,+1
nll mz Anl”
2 Ap .., 2 Ary Uiy, | + e F Ar, Upnymy...my 1,
ri=mp+1 rp=my+1 rp=my+1
and then
1 m] 7112 i ( )
- Uiriy..iy — Wmymy...m
Ay — 1) (A, — M2)...(Ay, —m Z Z 12t "
( iy 1)( 2 2) ( e ”) f1=m 41 b=my+1  iy=m,+1
i
<  max ZAu-v-+ max EAu
my+1<i<Ay, Rl my+1<ir <A, T2 Tl
Ulry=my+1 2 [ro=mp+1
in
+..+ max Z Av, Wniymyms..my 1| - (7)
My +1<i, <Ay,
rp=my+1

By taking the lim sup on both sides of the inequality (7) as m;...m, — oo, and the first term on the right hand
side of the inequality (7) vanishes by Lemma 2.1(i). We have,

< lim sup max Z Ap Upigis..i,

My, My,..., My —>00 my+1<ip <Ay

lim su |(1/lm Moty — Omy,my,...m )
My,M2,..., My —>00 P 1 R +1
ri=my

iy

+ lim sup max Ay Unrois. i,

my,my,...,My —>00 m2+1§i2§/\m2
rr=mir+1
in
+ lim sup max Av Unymy. iy a1y | -
M1, M2, My —>00 My +1<i, <Ay,
rp=my+1
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Taking limit to both sides of the last inequality as A — 1%, again since (U m,..m,) is slowly oscillating in
senses (1,0,0,...,0), (0,1,0,...,0),...,(0,0,0, ..., 1); we have

.....

.....

This completes the proof of of Theorem 2.1 ]

Corollary 2.1 Let (Upym,..m,) be (C ki, ko, ..., k,) summable to L. If (Umym,..m,) is slowly oscillating in sense
(1,0,0,0,..,0),(0,1,0,0,...,0),..,(0,0,0,0, ..., 1); then (U, m,..m,) is P-convergent to L.

Proof. Let (Uyym,..m,) be slowly oscillating, then (of1-kn) is slowly oscillating (by Lemma 2.2). Further,
since U = (Uyym,..m,) 15 (C k1, ks, ..., k;) summable to L; so by Theorem 2.1,

lim  (6"*)(u) =L. (8)

Next from the definition,

(O.kl...kn)(u) — (71'“1(u)((fkl_lmk"_l(u)) =L (9)
Clearly, (8) and (9) imply that u = (i, m,..m,) is (C k1 —1,kp =1, ..., k, — 1) summable to L. Again, (o¥1~1%~1 (1))
is also slowly oscillating (by Lemma 2.2); Thus, by Theorem 2.1, we have

lim (0" W) = L.
mymy... My —00

Continuing in this way, we get (U, m,..m,) is P-convergent to L.
This completes the proof of of Corollary 2.1 m]

Theorem 2.2 Let iy, m,..m, be (C,1,1,1, ..., 1) summable to L. If m1 Ay, Umymy..m, 2 —K, 2Dy thimymy.m, = —K,...,
My Dy, Uy .., 2 —K then (Upym,..m,) is P-convergent to L.

Proof. Taking limsup on both sides of the identity in Lemma 2.1(i) as mimy...m, — oo for A > 1, we
have

hm SUP umlmz...mn - Gmlmz...m,, (u)
M.y —>00
<l ( Ay + DAy +1)ecc(Agyy, + 1) W)
< limsu ~Omy Ay Ay (U
ml...mu—}o)o (Aml - ml)()\mz - mZ)-"(/\mn - mn) m <A

e = O Ay 1 (W) O, sy (W) + Oy s A, (1)

+..+ O-/\ml Amzn-/\mn,zmn—lmn (l/l) T e T 011117112...711” (u)]

B Ay + DAy, + D)ce(Agyy,, +1)
(A, = m1) (A, = m2). (A, — 1)

[_O-/\ml Amz Am3 "'/\”’n—l my (u)

+C7m1...)\ my (u) +...+ G/\"11"'A’"n72}\mn-1m" (u) T e T Gm1m2...mn (Ll)]

Mp—1

Ay + DAy + 1) Ay, + 1)

——.— -0 u)+o u
o = 712) o, — 713Gl = mn)[ 11 Ay 13- Ay () F Oty A Ao, (1)

oo T Omymy Ay A,y Ay (u)+...— Otmymins...y ()]

Mp—1
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T 0 E R

o u)—o u
/\ml—ml /\m,,—m,, [ ml...)\mn( ) ml‘..mn( )]

/\n11 /\’”2 Amn

. 1
+ limsup —

(Wi iy = Uy .m,)-
M.y — 00 (/\ml _ml)--'(Amn — my) et S

i1=my+1 i=my+1 i,=my+1

Since the first term on the right-hand side of the last inequality vanishes by Lemma 2.1(i), we have

Limsup U my...mn, = Omymy...m, (1)

M1 ...y —>00

1 Aml A’”Z /\mn
< limsup (- Z Z X
ety oy = 1) g, = 1) A .
1e-ln n ii=my+1 ip=my+1  iy=my,+1
Ay Ay Ay
E Arlurliz“.,in + E Arzumlrzigu.in +..+ Z Aszum1m2mmn—lrn) .
ri=m+1 ra=my+1 ry=my+1

From the given conditions of Theorem 2.2, we obtain

lim sup ,..m, — Omymsy...m, (1)

my...m;; —00

1 Aml A””Z /\mn
< limsup (- Z X
- Amy — mM1).(Ay, —m
M ..M, —>00 ( m 1) ( my n) =l =4l iy=tin+l
/\ml K Amz K ANIV[ K
Z -——+ —-—— 4.+ Z -——)
r 7 r
ri=mi+1 1 rp=my+1 2 ru=m,+1 n

for some K > 0. Hence we get,

A A
lim sup(Upymy...im, = Omymy...m, (1)) < lim sup (K1 log(%) + ... + K, log( i ))
1

1.1y M.y, my
for some K1, K5, ..., K,, > 0. Therefore, we have

limsup (Ummy..m, = Omymy...m, (1)) < Kyi1log A, for some K41 > 0.

myniy...my,; —o0

Taking the limit to both sides as A — 1%, we obtain

limsup (Ummy..m, = Omymy...m, (1)) < 0. (10)

mymniy...my, —00
Similarly, for 0 < A < 1 Lemma 2.1(ii) implies,

Hminf  (tymy..m, — Oy, (1)) > 0. (11)
mimy...my,y—00

Clearly, by the inequalities (10) and (11); (4, m,..m,) is P-convergent to L.

This completes the proof of of Theorem 2.2 ]

Acknowledgement

The authors are grateful to the referees for their useful comments and suggestions.



P. Parida et al. / Filomat 32:11 (2018), 3993-4004 4004

References

(1]
(2]

(3]
[4]

[5]

[6]
[7]
(8]

[9]
[10]
[11]

[12]
[13]

A. Aasma, H. Dutta and P. N. Natarajan, An Introductory Course in Summability Theory, Wiley, USA, 2017.

I. Canak and U. Totur, Some classical Tauberian conditions for (C, 1,1, 1) summable triple sequences, Georgian Math. |. 23 (2016),
33-42.

H. Dutta and B. E. Rhoades(Eds.) Current Topics in Summability Theory and Applications, Springer, Singapore, 2016.

G. H. Hardy and ]. E. Littlewood, Tauberian theorems concerning power series and Dirichlets series whose coefficients are
positive, Proc. Lond. Math. Soc. 13 (1914), 174-191.

B. B. Jena, S. K. Paikray and U. K. Misra, A Tauberian theorem for double Cesaro summability method Int. . Math. Math. Sci.
2016 (2016), 1-4.

K. Knopp, Limitierungs-Umkehrsitze fiir Doppelfolgen, Math. Z. 45 (1939), 573-589.

E. Landau, Uber einen Satz des Herrn Littlewood, Palermo Rend. 35 (1913), 265-276.

E. Moéricz, Tauberian theorems for double sequences that are statistically summable (C,1,1), J. Math. Anal. Appl. 286 (2003),
340-350.

A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289-321.

R. Schmidt, Uber divergente Folgen und lineare Mittelbildungen, Math. Z. 22 (1925), 89-152.

C. V. Stanojevi¢, Analysis of Divergence: Control and Management of Divergent Process, Graduate Research Seminar Lecture
Notes, University of Missouri, Rolla, 1998.

A. Tauber, Ein satz der Theorie der unendlichen Reihen, Monatsh. Math. 8 (1897), 273-277.

U. Totur, Classical Tauberian theorems for the (C,1,1) summability method, Annals of the Alexandru Ioan Cuza University
Mathematics, 2014 (DOI: 10.2478/aicu-2014-0010).



