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THE SEMILATTICE OF COMPACTIFICATIONS
OF A TYCHONOFF FUNCTION

Giorgio Nordo

Abstract. In this paper we continue the study of the P—funtions started in
[CN], [CFP] and [N1], in particular, for the property P = Tychonoff. We describe
a simple tecnique to obtain a Tychonofl compactification of any Tychonolf function
and we study the sel of all the Tychonoff compactifications of a Tychonoff function,
showing that il is a complete upper semilattice.

1. Introduction and preliminaries

Tt is well-known that the set K(X) of all the compactifications of a
Tychonoff space X is a complete upper semilattice and that it is a complete
lattice if and only if X is locally compact (see for example [Cn]). In this
paper we continue the study of the P—functions started in [CN], [CFP] and
[N1], obtaining a corresponding result for the set of the compactifications of
a function with the property P =Tychonoff.

For a topological property, we define a property P for a function such
that every continuous function on a space with the corresponding property
is always a P—function.

We will describe a simple tecnique to obtain a compactification of any
Tychonoff function and we will study the set K (X, f) of all the Tychonoff
compactifications of a given Tychonoff function f € C(X,Y) showing that
it is a complete upper semilattice.

In the following, all the functions are assumed to be continuous unless it
is stated otherwise.
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If X is a topological space, 7(X) will denote the set of the open sets of
X, o(X) will denote the set of the closed sets of X, C*(X) will be the set
of all the real-valued bounded continuous functions on X and, if z € X, we
will use AV, to denote the filter of the neighbourhoods of z.

For notations, definitions or basic properties not explicitly mentioned
here we refer to [PW] and [E].

2. Tychonoff functions and compactifications

Let f € C(X,Y) be a function. We will say that f is Hausdorff [U, P3]
if for every z,z' € X such that f(z) = f(z') there are some U,V € 7(X)
such that z € U, ' € V and U NV = ; that f is completely regular [P3]
if for every F € o(X) and z € X\F there exist O € Ny, and ¢ € C*(X)
such that ¢(z) = 1 and (F N f~1(0)) € {0} and that f is Tychonoff [P3]
if it is completely regular and Hausdorff.

Remark 2.1. The notions above defined are valid definitions of P-
functions in the sense of [CN]. In fact, every continuous function defined
on a Hausdorff (respectively, completely regular, Tychonoff) space is Haus-
dorff (respectively, completely regular, Tychonoff).

We will say that a function is compact if it is perfect, i.e. closed and
fibre-wise compact.

Let us note that, recently in [Ng], the author — generalizing some re-
sults contained in [D], [W1] and [W3] — has obtained a filter based method
which allow us to build a perfect extension of any function (not necessariely
continuous) between two arbitrary topological spaces.

Remark 2.2 We observe that, in general, a compact Hausdorff function
is not Tychonoff. In fact, it was proved in [Cb] (see also [HI]) that the
property T; 1 is not an. inverse invariant of the class of perfect functions
and it is known by Proposition 1.5 [P3] that if a space ¥ and a function
f: X — Y are both Tychonoff then the domain X is Tychonoff too.

In despite of this limitation, we will prove that it is possible to build a
dense compact Tychonoff extension of any Tychonoff function.

Definition 2.3 Let f € C(X,Y), we will say that F € C(Z,Y) is a
Tychonoff compactification of f if F is compact Tychonoff, X is dense in Z
and F|x = f.

Let f € C(X,Y) be a Tychonoff function.
The tecnique we use to obtain a compactification of f requires a partic-
ular extension of the domain X obtained in the following way.
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Let ®x : X — (Tlyec+(x) Iy) X ¥ be the function defined by Bx(z) =
(ex(z), f(z)) for each z € X, where [y = [0,1] and ex : X = Tlsec(x) Lo
is the evaluation function on X usually defined by myoex = ¢ for any
g € C*(X). '

Lemma 2.4. The function ®x is an embedding.

Proof. Tt is clear that ®x is continuous and 1-1. Moreover, it is open
(respect to @ x (X)) as for each z € U € 7(X), said y = f(z), by complete
regularity of f, there are O € Ny and g € C*(X) such that g(z) = 1 and
g (X\U)Nf1(0)) C {0}. Let T = m ! (]%,1]) x 0, it is easy to verify

that ®x(z) € T € 7 ((Tgecr(x) I,) x Y) and that 7' N @x(X) C @x(U).
This proves that @ x is an embedding. O

Now, we define

ﬁ(X')f):d( )xy(‘I’X(X))

[lyecs 01

and Bf : B(X, ) = Y by setting Af = 7y |g(x,5)-

Clearly, ®x(X) is dense in B(X, f) and, as ®x is an embedding, we can
identify @ x(X) with X (relabelling the points ®(z) = (ex(z), f(z)) simply
with z ) to say that X is dense in B(X, f). Further, it results Bf o ®x = F
and, identifying X with its homeomorphics image ® x(X), we can say that
Bflx =f.

The next easy Lemma extends to non-Hausdorff space the Theorem 3.7.1
[E].

Lemma 2.5. Let K be a compact space, then the projection my : K XY —
Y is compact.

Proof. Obviously, the function 7y is fibrewise compact. Moreover, it is
a closed function. In fact, ixed F € o(K x Y), for any y € Y\my(F) and
k€ K., it results (k,y) € (K x Y)\F € 7(K x Y. So, there are Uy € 7(K)
and Vi, € 7(Y) such that k € Uy, y € Vy and (Up x Vi) N F = . Thus
{Ui}rer is an open cover of the compact set K and it admits an open
subcover {Ug}rea. Then V = Ngea Vi 1s an open neighbourhood of y in
Y such that (K x U) N F = (. Hence, V C Y\ny(F). This proves that
Yiry(F) € 7(Y) and so that the function 7y : K x Y is closed and hence
perfect. O

The following useful property can be found in [E].
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Lemma 2.6. A restriction of a compact function to a closed set, is compact
Loo.

Proposition 2.7. The function ff : B(X, f) = Y is compact Tychonoff.

Proof. Clearly, Bf is continuous and, by Lemmas 2.5 and 2.6, it is also
compact.

Moreover, 8f is Hausdorff, as for each py = (z1,4), p2 = (22, y) such that

p1 # p2 and Bf(p1) = Bf(ps2) it follows that z; # z ie. (z19)gec+(x) 7
{(#2¢)gec+(x) and so there is some g € C™(X, I) such that z;, # z,. Since
the unit interval I = [0, 1] is Hausdorff, there are disjoint U,V € 7(I) such

that 215 €U, 22, € Vand UNV = (). Hence U’ = (ﬂf;l(U) X Y) NA(X, f)
and V' = (TTQTI(V) X Y) N B(X, f) are two disjoint open sets of B(X, f)
containing respectively p; and ps.

To show that Gf is completely regular, let (z,4) € W € 7(8(X, f))
with z € [[pecexyfy and y € Y. There are U € 7 (ngc*(X] Ig) and
V € 7(Y) such that (z,y) € (U x V)N B(X, f) C W. Since [Tyecn(x) Ly is
completely regular, there is some h € C* (ngc* (X) Ig) such that h(z) =1
Let A (ngc*(X) Ig) x Y — I be the mapping defined by R ((g,n)) = h(¢&)
for each (£,7) € (ngc,(X) Ig) x Y. Since for each A € 7(I), h™1(4) =
h='(A) x Y is open in (ngc*(x) Ig) x Y, by the continuity of A it follows
that h is continuous.

Let H = hlgx,5y € C*(B(X, f)). Observed that V € N, we have that
H((2,9)) = h((z,9)) = h(z) =1 and that:

H ((B(X, F\W) 0 Bf~H(V))
c H(BX, AN x V)N BX, 1) N BFYV))
= R{BECINO X V)0 (mvlsuen)” 01)

h( 11 Ig\U) C {0}

9€C*(X)

N

and this shows that Gf is completely regular. O
So, we have proved that each Tychonoff function f € C(X,Y) has a
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Tychonoff compactification 8f € C (B(X, f),Y) that we will call the Stone— '
Cech compactification of f.

Proposition 2.8. If g € C(D,Y) is a compact function and G € C(X,Y) |
is a Hausdorff function such that G|p = g and D is dense in X (i.e. Gisa |
Hausdorff extension of g) then X = D and so G = g.

Proof. First we observe that \
G(X) = G (clx (D)) € cly (G(D)) = cly (9(D)) = g(D) € G(X) |

and so that g(D) = G(D) = G(X).

Now, to prove that X C D, we start observing that for each y € g(D) it
results g7 ' ({y}) = G ({y}). In fact, it is clear that ¢~ ({y}) € G {({y})
and we have also that G~*({y}) € ¢~ *({y}) as if, by contradiction, there
exists some £ € G~ ({y})\¢~ ({y}), for any = € g~'({y}) we have that ‘
z # £ and G(z) = G(£). Since G is Hausdorff, there are U, V; € 7(X) such
that z € Uy, £ € V, and U, NV, = (. Then {Um}meg-—l({y}) is an open cover
of the compact set g~!({y}) and so there are z1, ...z, € g~ ({y}) such that
g ({y}) CUL, Uy, =U € 7(X) and, said V =, Vi, we also have that
EeVer(X)withUNV =0. Note that

and so that g(D\U) = G (clx (D\U)).
Now y ¢ g(D\U) as otherwise from g 1({y}) C U follows D\U C D\g~*({y}) =
g 1(Y\{y}) and so it should be y € g(D\U) C g (¢~ (Y\{y})) ie. y €
Y\{y} that is a contradiction. So, y € Y\g(D\U) = Y\G(D\U) and
G ({y)) € GTT(Y\G(D\U)) = X\G™1 (G(D\D))
= X\G™' (G (elx(D\D))) € X\elx (D\D)

Le. that G 1({y}) € X\cix (D\U) with X\clx(D\U) € 7(X).

g(D\U) € G (cx(D\U)) € dy (G(D\U)) = dy (¢(D\U)) = g(D\U)
Hence, D N (X\elx (D\U)) C U and it results

clx (DN (X\clx (D\U))) clx (clx (D) N (X\clx (D\U)))

= dx (X\cx(D\U)) |
and thus

GT'({y}) <€ X\cx(D\U) C elx (X\clx (D\U))
= cx (DN (X\elx(D\U))) C elx (V)
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Since ¢ € G ({y}) it follows that £ € clx(U). A contradiction as { € V
and elx(U) NV = 0. This proves that g71({y}) = G~ ({y}) for each y €
(D) = G(X).

Finally, we have that

X = G'l(G(X))=G_1(g(D))=G‘1( U {y}) U ¢7'(dwh

yeg(D) y€g(D)

= I] & {y}—gl(U{y}) ! (g(D)) =

yeg(D) yEg(D)
i.e. that X = D and, consequently, that G = g. O
Corollary 2.9. For every compa,ct.Tychonoﬂ" function f, it results 8f = f.
The following two properties are well-known (see for example [PW]).

Lemma 2.10. Every continuous function from a compact space to a Haus-
dorff space is compact.

Lemma 2.11. The product of compact functions is compact.

Lemma 2.12. Let g € C(X,Y) be a function on a Tychonoff space and Z
be a space, then the product function g xidz : X x Z — Y x Z is Tychonofl.

Proof. Since the space X is Hausdorff, g is a Hausdorff function (see Re-
mark 2.1). Since idz is clearly a Hausdorff function, by Theorem 3.2 [Ny},
g % idz is Hausdorff too.

Now, let (z,2) e UxV withU € 7(X) and V € 7(Z). Since X is completely
regular, there is ¢ € C*(X) such that p(z) = 1 and (X\U) C {0}. So,
defined $ € C*(X x Z) by setting gory = @ and O =Y xV, it is clear that
(z,2) € 0 € T(Yx2Z), 5 ((z,2)) =Land & (X x Z\U x V)(g x idz) *(0)) C
{0}. This proves that the function g x idz is completely regular. O

Proposition 2.13. Let f € C(X,Y) be a Tychonoff function and F €
C(Z,Y) be a Tychonoff compactification of f, then there exists a compact
Tychonoff function ¢ € C (8(X, f), Z) ¢ ¢ = idx.

Proof. Let i : X — Z the usual embedding from X to Z defined by
i(x) = z for every z € X. We consider the continuous functions ¢*
C*(Z) — C*(X) defined by setting :*(h) = hoi for each h € C*(Z)
and ¢** : [lyec-(xy Ly = Ilnecr(z) In defined by i**(a) = a o i* for each
a € [ljeov(x)ly- From 2.10 follows that «** is compact and so, by 2.11,




The semilattice of compactifications of a Tychonoff function 15

the product function i** X idy : (ngc*(x) Ig) XY — (Hhec*(z) Ih) xY is
compact. Moreover, by 2.12, i** x idy is Tychonoff.
Now, for cach z € X it results

(i** x idy) (@x(2)) = (i xidy) (ex(z), f(2))
(@™ (ex(z)) ,idy (f(2)))
= (ez(z), f(z))
= (ez(2),F(z))
= dyz(x).

Hence, (** x idy) (®x (X)) C @z(X) and it results

T X, 1) = (% xid cl Dx(X

(i x idy) (B(X, £)) = (& x idy) ( M) ¢ )))
(1** x 1dy) (Dx (X))

(@z(X))

-

cl
(nhEG*(Z) Ih) XY

CE(HheO*(z) [h) XY
= [(Z,F).

c

So, we can consider the corestriction ¢ = (i** x idy) |g(x 5y : B(X, f) =
B(Z, F) which is still continuous, compact and Tychonoff.

As F is compact Tychonoff, by 2.9, it results BF = F and Z = 3(Z, F),
so that ¢ € C (B(X, ), Z).

Since F o = Bf and ¢ (®x(z)) = ¢z(z) for each z € X, identifying
both ®x(X) and ®z(X) with X, we have that ¢|x = idx. This completes
the proof. O

Lemma 2.14. Let g € C(K, L) be a compact Hausdorff function such that
glx = idx and X be a dense subspace of K and L. Then g is onto and
g (K\X)=L\X.

Proof. Since X C g(K) C L and g(K) is closed, it follows that g(K) = L.

So, to show that g (K\X) = L\X it suffices to show that g (K\X) C
I\X. If not, there are y € K\X and z € X such that g(y) = z. Since
g(z) = idx(z) = z and ¢ is Hausdorfl, there are U,V € 7(K) such that
z €U, yeVand UNV =0. Now, z € UNX € 7(X) and there is
some W & 7(L) such that UNX = W N X. By continuity of g : K — L,
we can assume without loss of generality that g(V) C W and this implies
that 0 # VNX CW. Hence, 0 #VNX CWNX =UNX whichis a
contradiction. O
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In the following will be useful to give a new definition for the functions
which is similar to the properties R, C and 7 defined and studied in [U].

Definition 2.15. We say that f € C(X,Y) has the property U/ if for
each 71,72 € X such that f(z1) = f(z2) there are U,V € 7(X) such that
1 €U, w9 € V and clx(U) Nelx (V) = 0.

Lemma 2.16. Fach Tychonoff function has the property U.
Proof. In fact, if f € C(X,Y) is a Tychonoff function, for each z;,z9 €
X such that =1 # z2 and f(z1) = f(z2) since f is Hausdorff there is

some W € 7(X) such that zo € W and z; ¢ clx(W). Moreover, as
[ is completely regular, there are O € N,y and g € C*(X) such that

g(z9) = 1 and g (X\clx(W)) N f71(0)) C {0}. So, set U = g ! ([U,%D
and V = g7t (}%,1]), it is clear that U,V € 7(X), 21 € U, 3 € V and
dx(U)Nex(V) = @. O

In general the composition of two Tychonoff functions is not Tychonoff
but the following weaker result holds.

Lemma 2.17. The composition of two functions with the property U is still
a function with the property U.

Proof. Let f € C(X,Y) and g € C(Y, Z) be two functions holding the
property U and xq,z2 € X such that z; # z9 and g(f(z1)) = g(f(z2)). If
f(z1) = f(xs9), the assertion follows from the fact that f has the property
U. Tf f(z1) # f(z2), since g has the property U, there are U, V' € 7(Y)
such that f(z1) € U', f(z2) € V' and dy(U') Ny (V') = 0. Hence, said
U= f~Y(U") and V = f~1(V’), by continuity of f, it is clear that z; € U,
9 € V and clx(U) Nelx(V) = 0. This proves that go f : X — Z has the
property . O

Definition 2.18. Let F € C(K,Y) and G € C(L,Y) be two Tychonoft
compactifications of f € C(X,Y). We say that

e F is projectively larger than G and we write that F' >; G if there is
some compact Tychonoff function h : K — L such that Goh = F and
hlx =idx.

e F and (G are equivalent and we write F' =5 (& if there is a homeomor-
phism h : K — L such that Go h = F and h|x = idy.

Proposition 2.19. Let F € C(K,Y) and G € C(L,Y) be two Tychonoff
compactifications of f € C(X,Y). Then F =y Giff F>; G and G > F.

Proof. (=) It is manifest.
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(«<=) Suppose F >; G and G >; F. Then there are two compact
Tychonoff functions h : K — L and & : L — K such that Go h = F,
Fok =@ and h|x = k|x = tdx. Hence, koh : K — K is compact. By 2.14,
h is onto, while by 2.16 and 2.17, k o A has the property I4. So, it suffices
to show that ko h is 1-1. If not, there are y,z € K such that y # z and
(koh)(y) = (koh)(z). Since koh has the property U, there are U,V € 7(K)
such that y e U, z € V and e (U) Nclg (V) = 0.

Hence, y € dg(U) = clg(U N X) implies

(ko h)(y) (ko h) (cg(UNX))

ci ((koh)(UNX))
cig(UnNX)
cg(U).

N N N m

Likewise, (k o h)(2) € clg(V). Since clg(U) Nclg(V) = 0, it follows that
(koh)(y) # (koh)(z). A contradiction. O

Definition 2.20. If f € C(X,Y) is a Tychonoff function, K (X, f) will
denote the set of all the Tychonoff compactifications of f which belong to
different equivalence classes (respect to =j).

It can easily be seen that >; and =y are respectively an order relation
and an equivalence relation on the set K (X, f).

Finally we prove the following main result.

Theorem 2.21. (K(X, f),>y) is a complete upper senilattice and its max-
imum is 3f.

Proof. Let {Fy}aen C K(X,f) be a family of Tychonoff compactifica-
tions Fyy € C(Z4,Y) of the Tychonoff function f € C(X,Y).
For each a € A, let C, = {g € C*(X) : 3G € C*(Z,) G|x = g} and
ea : X = [lyec, Iy defined by 7y 0 eq = g for every g € C,.

Let us consider the space P = (Hae % (HgECa Ig)) x Y and the function
®: X — P defined by @(z) = ({ea(Z))ach, f(z)) for each z € X.
The same tecnique used in the proof of Lemma 2.4 shows that ® : X — P
is an embedding. , ;

Now, let Z = elp (®(X)) and, if Ty : P = Y is the projection of P onto
Y, we may consider the function F = 7y |z € C(Z,Y).

Llkewise in the proof of Proposition 2.7, we can prove that F is a Ty-
chonoff compactification of f, i.e. that F € K(X, f).

We claim that sup{F, : a € A} = F.
In fact, if for every o € A, 7o : P — []gec, Iy denote the a—th projection of
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= (Hae A (ngCa Ig)) x Y onto []gec, g, using similar reasonings of the
proof of 2.13, it is possible to prove that the function @, = (7o X idy) |z €
C(Z,Z,) is compact and Tychonoff and that it results F o g, = F and
Waolx = idx, i.e. that F > F, for every a € A. '
Now, we suppose that there is some some Tychonoff compactification H &
C(W,Y) of f such that H > F, for each @ € A, i.e. that there are h, €
C(W, Z,) compact and Tychonoff such that F, o hy = H and hg|x = idx.
Let Cw = {g € C*(X) : 3G € C*(W) G|x = g} and consider the func-
tion ¥ = ([Taea hs') X tdy : (ngCw Ig) — P. Likewise in the proof of
Proposition 2.13, we can see that ¢ (dw(W)) = 8(Z, F) = Z and so that
the function h = |y € C(W, Z) is compact Tychonoff and that it results
Foh=H and h|x =idx, i.e. that H >; F.

Thus, it is proved that the poset (K (X, f), >y) is a complete upper semilat-
tice.

From Proposition 2.13 and Definition 2.18, it is clear that for each F' €
K(X,f) it results Gf >; F, i.e. that the Stone-Cech compactification Bf
of the function f is the maximum of (K (X, f),>¢).

This concludes the proof. O

Remark 2.22 The Stone-Cech compactification of a function is a gen-
eralization of the corresponding notion for spaces. In fact, if the space Y is
a singleton, to say that a function f : X — Y is Tychonoff is equivalent to
say that the space X is Tychonoff and, from Theorem 2.21 follows that the
Stone—Cech compactification BX of X coincides with the domain 3(X, f) of
the Stone-Cech compactification 8f of the funtion f.

From Theorem 2.21 arises in a natural way the following
Question. Which property must have the function f : X — Y because
(K(X, f),>y) be a complete lattice ?

Acknowledgements. The author is grateful to Prof. J.R. Porter for
his valuable suggestions and to Prof. A. Zouboff to have drew his attention
to the papers [Cb] and [HI].

Refrences

[Cb] ‘Chaber J., Remarks on open-closed mappings, Fund. Math. 74 (1972),
197-208.

[Cn] Chandler R.E., Hausdorff compactifications, Marcel Dekker, New
York, 1976.




The semilattice of compactifications of a Tychonoff function 19

[CFP] Cammaroto F., FEDORCHUK V.V., PORTER J.R., H-closed func-

[CN]

[W1]

[W2]

tions, Comment. Math. Univ. Carolinae 39 (1998).

Cammaroto F., NORDO G., On Urysohn, almost regular and
semiregular functions, Filomat n. 8 (1994), 71-80.

Dickman R.F. Jr., On closed eztensions of functions, Proc. Nat.
Acad. Sci. U.S.A. 62 (1969), 326-332.

Engelking R., General Topology, Heldermann, Berlin, 1989.

Henriksen M., ISBELL J. R., Some properties of compactifications,
Duke Math. J. 25 (1958), 83-106.

Nordo G., On Product of P-functions, Atti Accad. Pelor. Cl. Sc.
MM.FF.NN., Vol. LXXII (1996), Messina, 465-478.

Nordo G., A note on perfectification of mappings, Q & A in General
Topology, Vol. 14 (1996), 107-110.

Pasynkov B.A., On extension to mappings of certain notions and as-
sertions concerning spaces, in: Mapping and Functors, Izdat. MGU,
Moscow (1984), 72-102 (in Russian).

Porter J.R., Woods R.G., Extensions and absolutes of Hausdorff
spaces, Springer, 1988.

Uljanov V.M., Compect extensions with the first aziom of countabil-
ity and continuous mappings, Mat. Zametki 15 (1974), 491-499 (in
Russian) = Math. Notes 15 (1974), 287-291.

Whyburn G.T., A unified space for mappings, Trans. A.M.S. T4
(1953), 344-350.

Whyburn G.T., Compactification of mappings, Math. Ann. 166
(1966), 168-174.

Dipartimento di Matematica, Universita’ di Messina, Contrada Papardo,
salita Sperone, 31 98166 Sant’Agata, Messina, Italy




	1.pdf (p.1-31)
	2.pdf (p.32-53)
	3.pdf (p.54-93)
	4.pdf (p.94-123)



