THE SEMILATTICE OF COMPACTIFICATIONS OF A TYCHONOFF FUNCTION

Giorgio Nordo

Abstract. In this paper we continue the study of the \mathcal{P} -funtions started in [CN], [CFP] and [N₁], in particular, for the property $\mathcal{P}=$ Tychonoff. We describe a simple tecnique to obtain a Tychonoff compactification of any Tychonoff function and we study the set of all the Tychonoff compactifications of a Tychonoff function, showing that it is a complete upper semilattice.

1. Introduction and preliminaries

It is well-known that the set K(X) of all the compactifications of a Tychonoff space X is a complete upper semilattice and that it is a complete lattice if and only if X is locally compact (see for example [Cn]). In this paper we continue the study of the \mathcal{P} -functions started in [CN], [CFP] and [N₁], obtaining a corresponding result for the set of the compactifications of a function with the property \mathcal{P} =Tychonoff.

For a topological property, we define a property \mathcal{P} for a function such that every continuous function on a space with the corresponding property is always a \mathcal{P} -function.

We will describe a simple tecnique to obtain a compactification of any Tychonoff function and we will study the set K(X, f) of all the Tychonoff compactifications of a given Tychonoff function $f \in C(X, Y)$ showing that it is a complete upper semilattice.

In the following, all the functions are assumed to be continuous unless it is stated otherwise.

Received March 16, 1998

This research was supported by a grant from the C.N.R. (G.N.S.A.G.A.) and M.U.R.S.T. through "Gruppo Topologia e Geometria" (Italy).

¹⁹⁹¹ Mathematics Subject Classification: Primary 54C05, 54C10, 54C20, 54C25, 54H12.

Key words and phrases: Hausdorff function, completely regular function, Tychonoff function, compact function, Tychonoff compactification of a function, embedding, complete upper semilattice.

10 G. Nordo

If X is a topological space, $\tau(X)$ will denote the set of the open sets of X, $\sigma(X)$ will denote the set of the closed sets of X, $C^*(X)$ will be the set of all the real-valued bounded continuous functions on X and, if $x \in X$, we will use \mathcal{N}_x to denote the filter of the neighbourhoods of x.

For notations, definitions or basic properties not explicitly mentioned here we refer to [PW] and [E].

2. Tychonoff functions and compactifications

Let $f \in C(X,Y)$ be a function. We will say that f is Hausdorff [U, P_3] if for every $x, x' \in X$ such that f(x) = f(x') there are some $U, V \in \tau(X)$ such that $x \in U$, $x' \in V$ and $U \cap V = \emptyset$; that f is completely regular $[P_3]$ if for every $F \in \sigma(X)$ and $x \in X \setminus F$ there exist $O \in \mathcal{N}_{f(x)}$ and $\varphi \in C^*(X)$ such that $\varphi(x) = 1$ and $\varphi(F \cap f^{-1}(O)) \subseteq \{0\}$ and that f is Tychonoff $[P_3]$ if it is completely regular and Hausdorff.

Remark 2.1. The notions above defined are valid definitions of \mathcal{P} -functions in the sense of [CN]. In fact, every continuous function defined on a Hausdorff (respectively, completely regular, Tychonoff) space is Hausdorff (respectively, completely regular, Tychonoff).

We will say that a function is compact if it is perfect, i.e. closed and fibre-wise compact.

Let us note that, recently in $[N_2]$, the author – generalizing some results contained in [D], $[W_1]$ and $[W_2]$ – has obtained a filter based method which allow us to build a perfect extension of any function (not necessariely continuous) between two arbitrary topological spaces.

Remark 2.2 We observe that, in general, a compact Hausdorff function is not Tychonoff. In fact, it was proved in [Cb] (see also [HI]) that the property $T_{3\frac{1}{2}}$ is not an inverse invariant of the class of perfect functions and it is known by Proposition 1.5 [P₃] that if a space Y and a function $f: X \to Y$ are both Tychonoff then the domain X is Tychonoff too.

In despite of this limitation, we will prove that it is possible to build a dense compact Tychonoff extension of any Tychonoff function.

Definition 2.3 Let $f \in C(X,Y)$, we will say that $F \in C(Z,Y)$ is a *Tychonoff compactification* of f if F is compact Tychonoff, X is dense in Z and $F|_{X} = f$.

Let $f \in C(X,Y)$ be a Tychonoff function.

The tecnique we use to obtain a compactification of f requires a particular extension of the domain X obtained in the following way.

Let $\Phi_X: X \to \left(\prod_{g \in C^*(X)} I_g\right) \times Y$ be the function defined by $\Phi_X(x) = (e_X(x), f(x))$ for each $x \in X$, where $I_g = [0, 1]$ and $e_X: X \to \prod_{g \in C^*(X)} I_g$ is the evaluation function on X usually defined by $\pi_g \circ e_X = g$ for any $g \in C^*(X)$.

Lemma 2.4. The function Φ_X is an embedding.

Proof. It is clear that Φ_X is continuous and 1-1. Moreover, it is open (respect to $\Phi_X(X)$) as for each $x \in U \in \tau(X)$, said y = f(x), by complete regularity of f, there are $O \in \mathcal{N}_y$ and $g \in C^*(X)$ such that g(x) = 1 and $g((X \setminus U) \cap f^{-1}(O)) \subseteq \{0\}$. Let $T = \pi_g^{-1}(\left[\frac{1}{2}, 1\right]) \times O$, it is easy to verify that $\Phi_X(x) \in T \in \tau\left(\left(\prod_{g \in C^*(X)} I_g\right) \times Y\right)$ and that $T \cap \Phi_X(X) \subseteq \Phi_X(U)$. This proves that Φ_X is an embedding. \square

Now, we define

$$\beta(X, f) = cl_{\left(\prod_{g \in C^*(X)} I_g\right) \times Y} \left(\Phi_X(X)\right)$$

and $\beta f: \beta(X, f) \to Y$ by setting $\beta f = \pi_Y|_{\beta(X, f)}$.

Clearly, $\Phi_X(X)$ is dense in $\beta(X, f)$ and, as Φ_X is an embedding, we can identify $\Phi_X(X)$ with X (relabelling the points $\Phi(x) = (e_X(x), f(x))$ simply with x) to say that X is dense in $\beta(X, f)$. Further, it results $\beta f \circ \Phi_X = f$ and, identifying X with its homeomorphics image $\Phi_X(X)$, we can say that $\beta f|_X = f$.

The next easy Lemma extends to non-Hausdorff space the Theorem 3.7.1 [E].

Lemma 2.5. Let K be a compact space, then the projection $\pi_Y : K \times Y \to Y$ is compact.

Proof. Obviously, the function π_Y is fibrewise compact. Moreover, it is a closed function. In fact, fixed $F \in \sigma(K \times Y)$, for any $y \in Y \setminus \pi_Y(F)$ and $k \in K$, it results $(k, y) \in (K \times Y) \setminus F \in \tau(K \times Y)$. So, there are $U_k \in \tau(K)$ and $V_k \in \tau(Y)$ such that $k \in U_k$, $y \in V_k$ and $(U_k \times V_k) \cap F = \emptyset$. Thus $\{U_k\}_{k \in K}$ is an open cover of the compact set K and it admits an open subcover $\{U_k\}_{k \in A}$. Then $V = \bigcap_{k \in A} V_k$ is an open neighbourhood of y in Y such that $(K \times U) \cap F = \emptyset$. Hence, $V \subseteq Y \setminus \pi_Y(F)$. This proves that $Y \setminus \pi_Y(F) \in \tau(Y)$ and so that the function $\pi_Y : K \times Y$ is closed and hence perfect. \square

The following useful property can be found in [E].

Lemma 2.6. A restriction of a compact function to a closed set, is compact too.

Proposition 2.7. The function $\beta f: \beta(X, f) \to Y$ is compact Tychonoff.

Proof. Clearly, βf is continuous and, by Lemmas 2.5 and 2.6, it is also compact.

Moreover, βf is Hausdorff, as for each $p_1 = (z_1, y)$, $p_2 = (z_2, y)$ such that $p_1 \neq p_2$ and $\beta f(p_1) = \beta f(p_2)$ it follows that $z_1 \neq z_2$ i.e. $\langle z_{1g} \rangle_{g \in C^*(X)} \neq \langle z_{2g} \rangle_{g \in C^*(X)}$ and so there is some $g \in C^*(X, I)$ such that $z_{1g} \neq z_{2g}$. Since the unit interval I = [0, 1] is Hausdorff, there are disjoint $U, V \in \tau(I)$ such that $z_{1g} \in U$, $z_{2g} \in V$ and $U \cap V = \emptyset$. Hence $U' = \left(\pi_g^{-1}(U) \times Y\right) \cap \beta(X, f)$ and $V' = \left(\pi_g^{-1}(V) \times Y\right) \cap \beta(X, f)$ are two disjoint open sets of $\beta(X, f)$ containing respectively p_1 and p_2 .

To show that βf is completely regular, let $(z,y) \in W \in \tau(\beta(X,f))$ with $z \in \prod_{g \in C^*(X)} I_g$ and $y \in Y$. There are $U \in \tau(\prod_{g \in C^*(X)} I_g)$ and $V \in \tau(Y)$ such that $(z,y) \in (U \times V) \cap \beta(X,f) \subseteq W$. Since $\prod_{g \in C^*(X)} I_g$ is completely regular, there is some $h \in C^*(\prod_{g \in C^*(X)} I_g)$ such that h(x) = 1 and $h(\prod_{g \in C^*(X)} I_g \setminus U) \subseteq \{0\}$.

Let $\tilde{h}: \left(\prod_{g\in C^*(X)} I_g\right) \times Y \to I$ be the mapping defined by $\tilde{h}\left((\xi,\eta)\right) = h(\xi)$ for each $(\xi,\eta) \in \left(\prod_{g\in C^*(X)} I_g\right) \times Y$. Since for each $A \in \tau(I)$, $\tilde{h}^{-1}(A) = h^{-1}(A) \times Y$ is open in $\left(\prod_{g\in C^*(X)} I_g\right) \times Y$, by the continuity of h it follows that \tilde{h} is continuous.

Let $H = \widetilde{h}|_{\beta(X,f)} \in C^*(\beta(X,f))$. Observed that $V \in \mathcal{N}_y$, we have that $H((z,y)) = \widetilde{h}((z,y)) = h(z) = 1$ and that:

$$H\left((\beta(X,f)\backslash W)\cap\beta f^{-1}(V)\right)$$

$$\subseteq H\left(\beta(X,f)\backslash ((U\times V)\cap\beta(X,f))\cap\beta f^{-1}(V)\right)$$

$$= \widetilde{h}\left(\beta(X,f)\backslash (U\times V)\cap\left(\pi_Y|_{\beta(X,f)}\right)^{-1}(V)\right)$$

$$\subseteq h\left(\prod_{g\in C^*(X)}I_g\backslash U\right)\subseteq\{0\}$$

and this shows that βf is completely regular. \square

So, we have proved that each Tychonoff function $f \in C(X,Y)$ has a

Tychonoff compactification $\beta f \in C(\beta(X, f), Y)$ that we will call the Stone-Čech compactification of f.

Proposition 2.8. If $g \in C(D,Y)$ is a compact function and $G \in C(X,Y)$ is a Hausdorff function such that $G|_D = g$ and D is dense in X (i.e. G is a Hausdorff extension of g) then X = D and so G = g.

Proof. First we observe that

$$G(X) = G\left(cl_X(D)\right) \subseteq cl_Y\left(G(D)\right) = cl_Y\left(g(D)\right) = g(D) \subseteq G(X)$$

and so that g(D) = G(D) = G(X).

Now, to prove that $X \subseteq D$, we start observing that for each $y \in g(D)$ it results $g^{-1}(\{y\}) = G^{-1}(\{y\})$. In fact, it is clear that $g^{-1}(\{y\}) \subseteq G^{-1}(\{y\})$ and we have also that $G^{-1}(\{y\}) \subseteq g^{-1}(\{y\})$ as if, by contradiction, there exists some $\xi \in G^{-1}(\{y\}) \setminus g^{-1}(\{y\})$, for any $x \in g^{-1}(\{y\})$ we have that $x \neq \xi$ and $G(x) = G(\xi)$. Since G is Hausdorff, there are $U_x, V_x \in \tau(X)$ such that $x \in U_x, \xi \in V_x$ and $U_x \cap V_x = \emptyset$. Then $\{U_x\}_{x \in g^{-1}(\{y\})}$ is an open cover of the compact set $g^{-1}(\{y\})$ and so there are $x_1, \ldots x_n \in g^{-1}(\{y\})$ such that $g^{-1}(\{y\}) \subseteq \bigcup_{i=1}^n U_{x_i} = U \in \tau(X)$ and, said $V = \bigcap_{i=1}^n V_{x_i}$, we also have that $\xi \in V \in \tau(X)$ with $U \cap V = \emptyset$. Note that

$$g(D\backslash U)\subseteq G\left(cl_X(D\backslash U)\right)\subseteq cl_Y\left(G(D\backslash U)\right)=cl_Y\left(g(D\backslash U)\right)=g(D\backslash U)$$

and so that $g(D\backslash U) = G(cl_X(D\backslash U))$.

Now $y \notin g(D \setminus U)$ as otherwise from $g^{-1}(\{y\}) \subseteq U$ follows $D \setminus U \subseteq D \setminus g^{-1}(\{y\}) = g^{-1}(Y \setminus \{y\})$ and so it should be $y \in g(D \setminus U) \subseteq g(g^{-1}(Y \setminus \{y\}))$ i.e. $y \in Y \setminus \{y\}$ that is a contradiction. So, $y \in Y \setminus g(D \setminus U) = Y \setminus G(D \setminus U)$ and

$$G^{-1}(\{y\}) \subseteq G^{-1}(Y\backslash G(D\backslash U)) = X\backslash G^{-1}(G(D\backslash U))$$
$$= X\backslash G^{-1}(G(cl_X(D\backslash U))) \subseteq X\backslash cl_X(D\backslash U)$$

i.e. that $G^{-1}(\{y\}) \subseteq X \setminus cl_X(D \setminus U)$ with $X \setminus cl_X(D \setminus U) \in \tau(X)$. Hence, $D \cap (X \setminus cl_X(D \setminus U)) \subseteq U$ and it results

$$cl_X (D \cap (X \backslash cl_X(D \backslash U))) = cl_X (cl_X(D) \cap (X \backslash cl_X(D \backslash U)))$$

= $cl_X (X \backslash cl_X(D \backslash U))$

and thus

$$G^{-1}(\{y\}) \subseteq X \backslash cl_X(D \backslash U) \subseteq cl_X(X \backslash cl_X(D \backslash U))$$

= $cl_X(D \cap (X \backslash cl_X(D \backslash U))) \subseteq cl_X(U)$

14 G. Nordo

Since $\xi \in G^{-1}(\{y\})$ it follows that $\xi \in cl_X(U)$. A contradiction as $\xi \in V$ and $cl_X(U) \cap V = \emptyset$. This proves that $g^{-1}(\{y\}) = G^{-1}(\{y\})$ for each $y \in g(D) = G(X)$.

Finally, we have that

$$X = G^{-1}(G(X)) = G^{-1}(g(D)) = G^{-1}\left(\bigcup_{y \in g(D)} \{y\}\right) = \bigcup_{y \in g(D)} G^{-1}(\{y\})$$
$$= \bigcup_{y \in g(D)} g^{-1}(\{y\}) = g^{-1}\left(\bigcup_{y \in g(D)} \{y\}\right) = g^{-1}(g(D)) = D$$

i.e. that X=D and, consequently, that G=g. \square

Corollary 2.9. For every compact Tychonoff function f, it results $\beta f = f$.

The following two properties are well-known (see for example [PW]).

Lemma 2.10. Every continuous function from a compact space to a Hausdorff space is compact.

Lemma 2.11. The product of compact functions is compact.

Lemma 2.12. Let $g \in C(X,Y)$ be a function on a Tychonoff space and Z be a space, then the product function $g \times id_Z : X \times Z \to Y \times Z$ is Tychonoff.

Proof. Since the space X is Hausdorff, g is a Hausdorff function (see Remark 2.1). Since id_Z is clearly a Hausdorff function, by Theorem 3.2 [N₁], $g \times id_Z$ is Hausdorff too.

Now, let $(x, z) \in U \times V$ with $U \in \tau(X)$ and $V \in \tau(Z)$. Since X is completely regular, there is $\varphi \in C^*(X)$ such that $\varphi(x) = 1$ and $\varphi(X \setminus U) \subseteq \{0\}$. So, defined $\widetilde{\varphi} \in C^*(X \times Z)$ by setting $\widetilde{\varphi} \circ \pi_X = \varphi$ and $O = Y \times V$, it is clear that $(x, z) \in O \in \tau(Y \times Z)$, $\widetilde{\varphi}((x, z)) = 1$ and $\widetilde{\varphi}((X \times Z \setminus U \times V)(g \times id_Z)^{-1}(O)) \subseteq \{0\}$. This proves that the function $g \times id_Z$ is completely regular. \square

Proposition 2.13. Let $f \in C(X,Y)$ be a Tychonoff function and $F \in C(Z,Y)$ be a Tychonoff compactification of f, then there exists a compact Tychonoff function $\varphi \in C(\beta(X,f),Z)$ such that $F \circ \varphi = \beta f$ and $\varphi|_X = id_X$.

Proof. Let $i: X \to Z$ the usual embedding from X to Z defined by i(x) = x for every $x \in X$. We consider the continuous functions $i^*: C^*(Z) \to C^*(X)$ defined by setting $i^*(h) = h \circ i$ for each $h \in C^*(Z)$ and $i^{**}: \prod_{g \in C^*(X)} I_g \to \prod_{h \in C^*(Z)} I_h$ defined by $i^{**}(\alpha) = \alpha \circ i^*$ for each $\alpha \in \prod_{g \in C^*(X)} I_g$. From 2.10 follows that i^{**} is compact and so, by 2.11,

the product function $i^{**} \times id_Y : \left(\prod_{g \in C^*(X)} I_g\right) \times Y \to \left(\prod_{h \in C^*(Z)} I_h\right) \times Y$ is compact. Moreover, by 2.12, $i^{**} \times id_Y$ is Tychonoff. Now, for each $x \in X$ it results

$$(i^{**} \times id_Y) (\Phi_X(x)) = (i^{**} \times id_Y) (e_X(x), f(x))$$

$$= (i^{**} (e_X(x)), id_Y (f(x)))$$

$$= (e_Z(x), f(x))$$

$$= (e_Z(x), F(x))$$

$$= \Phi_Z(x).$$

Hence, $(i^{**} \times id_Y) (\Phi_X(X)) \subseteq \Phi_Z(X)$ and it results

$$(i^{**} \times id_{Y}) (\beta(X, f)) = (i^{**} \times id_{Y}) \left(cl_{\left(\prod_{g \in C^{*}(X)} I_{g}\right) \times Y} (\Phi_{X}(X)) \right)$$

$$\subseteq cl_{\left(\prod_{h \in C^{*}(Z)} I_{h}\right) \times Y} (i^{**} \times id_{Y}) (\Phi_{X}(X))$$

$$\subseteq cl_{\left(\prod_{h \in C^{*}(Z)} I_{h}\right) \times Y} (\Phi_{Z}(X))$$

$$= \beta(Z, F).$$

So, we can consider the corestriction $\varphi = (i^{**} \times id_Y)|_{\beta(X,f)} : \beta(X,f) \to \beta(Z,F)$ which is still continuous, compact and Tychonoff.

As F is compact Tychonoff, by 2.9, it results $\beta F = F$ and $Z = \beta(Z, F)$, so that $\varphi \in C(\beta(X, f), Z)$.

Since $F \circ \varphi = \beta f$ and $\varphi(\Phi_X(x)) = \Phi_Z(x)$ for each $x \in X$, identifying both $\Phi_X(X)$ and $\Phi_Z(X)$ with X, we have that $\varphi|_X = id_X$. This completes the proof. \square

Lemma 2.14. Let $g \in C(K, L)$ be a compact Hausdorff function such that $g|_X = id_X$ and X be a dense subspace of K and L. Then g is onto and $g(K\backslash X) = L\backslash X$.

Proof. Since $X \subseteq g(K) \subseteq L$ and g(K) is closed, it follows that g(K) = L. So, to show that $g(K \setminus X) = L \setminus X$ it suffices to show that $g(K \setminus X) \subseteq L \setminus X$. If not, there are $y \in K \setminus X$ and $x \in X$ such that g(y) = x. Since $g(x) = id_X(x) = x$ and g is Hausdorff, there are $U, V \in \tau(K)$ such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$. Now, $x \in U \cap X \in \tau(X)$ and there is some $W \in \tau(L)$ such that $U \cap X = W \cap X$. By continuity of $g: K \to L$, we can assume without loss of generality that $g(V) \subseteq W$ and this implies that $\emptyset \neq V \cap X \subseteq W$. Hence, $\emptyset \neq V \cap X \subseteq W \cap X = U \cap X$ which is a contradiction. \square

In the following will be useful to give a new definition for the functions which is similar to the properties \mathcal{R} , \mathcal{C} and \mathcal{T} defined and studied in [U].

Definition 2.15. We say that $f \in C(X,Y)$ has the property \mathcal{U} if for each $x_1, x_2 \in X$ such that $f(x_1) = f(x_2)$ there are $U, V \in \tau(X)$ such that $x_1 \in U, x_2 \in V$ and $cl_X(U) \cap cl_X(V) = \emptyset$.

Lemma 2.16. Each Tychonoff function has the property \mathcal{U} .

Proof. In fact, if $f \in C(X,Y)$ is a Tychonoff function, for each $x_1, x_2 \in X$ such that $x_1 \neq x_2$ and $f(x_1) = f(x_2)$ since f is Hausdorff there is some $W \in \tau(X)$ such that $x_2 \in W$ and $x_1 \notin cl_X(W)$. Moreover, as f is completely regular, there are $O \in \mathcal{N}_{f(x_1)}$ and $g \in C^*(X)$ such that $g(x_2) = 1$ and $g((X \setminus cl_X(W)) \cap f^{-1}(O)) \subseteq \{0\}$. So, set $U = g^{-1}\left(\left[0, \frac{1}{3}\right]\right)$ and $V = g^{-1}\left(\left[\frac{2}{3}, 1\right]\right)$, it is clear that $U, V \in \tau(X)$, $x_1 \in U$, $x_2 \in V$ and $cl_X(U) \cap cl_X(V) = \emptyset$. \square

In general the composition of two Tychonoff functions is not Tychonoff but the following weaker result holds.

Lemma 2.17. The composition of two functions with the property \mathcal{U} is still a function with the property \mathcal{U} .

Proof. Let $f \in C(X,Y)$ and $g \in C(Y,Z)$ be two functions holding the property \mathcal{U} and $x_1, x_2 \in X$ such that $x_1 \neq x_2$ and $g(f(x_1)) = g(f(x_2))$. If $f(x_1) = f(x_2)$, the assertion follows from the fact that f has the property \mathcal{U} . If $f(x_1) \neq f(x_2)$, since g has the property \mathcal{U} , there are $U', V' \in \tau(Y)$ such that $f(x_1) \in U'$, $f(x_2) \in V'$ and $cl_Y(U') \cap cl_Y(V') = \emptyset$. Hence, said $U = f^{-1}(U')$ and $V = f^{-1}(V')$, by continuity of f, it is clear that $x_1 \in U$, $x_2 \in V$ and $cl_X(U) \cap cl_X(V) = \emptyset$. This proves that $g \circ f : X \to Z$ has the property \mathcal{U} . \square

Definition 2.18. Let $F \in C(K, Y)$ and $G \in C(L, Y)$ be two Tychonoff compactifications of $f \in C(X, Y)$. We say that

- F is projectively larger than G and we write that $F \geq_f G$ if there is some compact Tychonoff function $h: K \to L$ such that $G \circ h = F$ and $h|_X = id_X$.
- F and G are equivalent and we write $F \equiv_f G$ if there is a homeomorphism $h: K \to L$ such that $G \circ h = F$ and $h|_X = id_X$.

Proposition 2.19. Let $F \in C(K,Y)$ and $G \in C(L,Y)$ be two Tychonoff compactifications of $f \in C(X,Y)$. Then $F \equiv_f G$ iff $F \geq_f G$ and $G \geq_f F$.

Proof. (\Longrightarrow) It is manifest.

(\iff) Suppose $F \geq_f G$ and $G \geq_f F$. Then there are two compact Tychonoff functions $h: K \to L$ and $k: L \to K$ such that $G \circ h = F$, $F \circ k = G$ and $h|_X = k|_X = id_X$. Hence, $k \circ h: K \to K$ is compact. By 2.14, h is onto, while by 2.16 and 2.17, $k \circ h$ has the property \mathcal{U} . So, it suffices to show that $k \circ h$ is 1-1. If not, there are $y, z \in K$ such that $y \neq z$ and $(k \circ h)(y) = (k \circ h)(z)$. Since $k \circ h$ has the property \mathcal{U} , there are $U, V \in \tau(K)$ such that $y \in U$, $z \in V$ and $cl_K(U) \cap cl_K(V) = \emptyset$. Hence, $y \in cl_K(U) = cl_K(U \cap X)$ implies

$$(k \circ h)(y) \in (k \circ h) (cl_K(U \cap X))$$

$$\subseteq cl_K ((k \circ h)(U \cap X))$$

$$\subseteq cl_K(U \cap X)$$

$$\subseteq cl_K(U).$$

Likewise, $(k \circ h)(z) \in cl_K(V)$. Since $cl_K(U) \cap cl_K(V) = \emptyset$, it follows that $(k \circ h)(y) \neq (k \circ h)(z)$. A contradiction. \square

Definition 2.20. If $f \in C(X,Y)$ is a Tychonoff function, K(X,f) will denote the set of all the Tychonoff compactifications of f which belong to different equivalence classes (respect to \equiv_f).

It can easily be seen that \geq_f and \equiv_f are respectively an order relation and an equivalence relation on the set K(X, f).

Finally we prove the following main result.

Theorem 2.21. $(K(X, f), \geq_f)$ is a complete upper senilattice and its maximum is βf .

Proof. Let $\{F_{\alpha}\}_{{\alpha}\in \Lambda}\subseteq K(X,f)$ be a family of Tychonoff compactifications $F_{\alpha}\in C(Z_{\alpha},Y)$ of the Tychonoff function $f\in C(X,Y)$. For each $\alpha\in \Lambda$, let $C_{\alpha}=\{g\in C^*(X):\exists G\in C^*(Z_{\alpha})\ G|_{X}=g\}$ and $e_{\alpha}:X\to \prod_{g\in C_{\alpha}}I_g$ defined by $\pi_g\circ e_{\alpha}=g$ for every $g\in C_{\alpha}$.

Let us consider the space $P = \left(\prod_{\alpha \in \Lambda} \left(\prod_{g \in C_{\alpha}} I_g\right)\right) \times Y$ and the function $\Phi: X \to P$ defined by $\Phi(x) = (\langle e_{\alpha}(x) \rangle_{\alpha \in \Lambda}, f(x))$ for each $x \in X$. The same tecnique used in the proof of Lemma 2.4 shows that $\Phi: X \to P$ is an embedding.

Now, let $Z = cl_P(\Phi(X))$ and, if $\widetilde{\pi}_Y : P \to Y$ is the projection of P onto Y, we may consider the function $F = \widetilde{\pi}_Y|_Z \in C(Z,Y)$.

LIkewise in the proof of Proposition 2.7, we can prove that F is a Tychonoff compactification of f, i.e. that $F \in K(X, f)$.

We claim that $\sup\{F_{\alpha}: \alpha \in \Lambda\} = F$.

In fact, if for every $\alpha \in \Lambda$, $\pi_{\alpha}: P \to \prod_{g \in C_{\alpha}} I_g$ denote the α -th projection of

18 G. Nordo

 $P = \left(\prod_{\alpha \in \Lambda} \left(\prod_{g \in C_\alpha} I_g\right)\right) \times Y \text{ onto } \prod_{g \in C_\alpha} I_g, \text{ using similar reasonings of the proof of 2.13, it is possible to prove that the function } \varphi_\alpha = (\pi_\alpha \times id_Y) \mid_Z \in C(Z, Z_\alpha) \text{ is compact and Tychonoff and that it results } F \circ \varphi_\alpha = F \text{ and } \varphi_\alpha \mid_X = id_X, \text{ i.e. that } F \geq_f F_\alpha \text{ for every } \alpha \in \Lambda.$

Now, we suppose that there is some some Tychonoff compactification $H \in C(W,Y)$ of f such that $H \geq F_{\alpha}$ for each $\alpha \in \Lambda$, i.e. that there are $h_{\alpha} \in C(W,Z_{\alpha})$ compact and Tychonoff such that $F_{\alpha} \circ h_{\alpha} = H$ and $h_{\alpha}|_{X} = id_{X}$. Let $C_{W} = \{g \in C^{*}(X) : \exists G \in C^{*}(W) \ G|_{X} = g\}$ and consider the function $\psi = (\prod_{\alpha \in \Lambda} h_{\alpha}^{**}) \times id_{Y} : (\prod_{g \in C_{W}} I_{g}) \to P$. Likewise in the proof of Proposition 2.13, we can see that $\psi(\Phi_{W}(W)) = \beta(Z,F) = Z$ and so that the function $h = \psi|_{W} \in C(W,Z)$ is compact Tychonoff and that it results $F \circ h = H$ and $h|_{X} = id_{X}$, i.e. that $H \geq_{f} F$.

Thus, it is proved that the poset $(K(X, f), \geq_f)$ is a complete upper semilattice.

From Proposition 2.13 and Definition 2.18, it is clear that for each $F \in K(X, f)$ it results $\beta f \geq_f F$, i.e. that the Stone-Čech compactification βf of the function f is the maximum of $(K(X, f), \geq_f)$. This concludes the proof. \square

Remark 2.22 The Stone-Čech compactification of a function is a generalization of the corresponding notion for spaces. In fact, if the space Y is a singleton, to say that a function $f: X \to Y$ is Tychonoff is equivalent to say that the space X is Tychonoff and, from Theorem 2.21 follows that the Stone-Čech compactification βX of X coincides with the domain $\beta(X,f)$ of the Stone-Čech compactification βf of the funtion f.

From Theorem 2.21 arises in a natural way the following

Question. Which property must have the function $f: X \to Y$ because $(K(X, f), \geq_f)$ be a complete lattice?

Acknowledgements. The author is grateful to Prof. J.R. Porter for his valuable suggestions and to Prof. A. Zouboff to have drew his attention to the papers [Cb] and [HI].

Refrences

- [Cb] Chaber J., Remarks on open-closed mappings, Fund. Math. 74 (1972), 197-208.
- [Cn] Chandler R.E., Hausdorff compactifications, Marcel Dekker, New York, 1976.

- [CFP] Cammaroto F., FEDORCHUK V.V., PORTER J.R., H-closed functions, Comment. Math. Univ. Carolinae 39 (1998).
- [CN] Cammaroto F., NORDO G., On Urysohn, almost regular and semiregular functions, Filomat n. 8 (1994), 71-80.
- [D] Dickman R.F. Jr., On closed extensions of functions, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 326-332.
- [E] Engelking R., General Topology, Heldermann, Berlin, 1989.
- [HI] Henriksen M., ISBELL J. R., Some properties of compactifications, Duke Math. J. 25 (1958), 83-106.
- [N₁] Nordo G., On Product of P-functions, Atti Accad. Pelor. Cl. Sc. MM.FF.NN., Vol. LXXII (1996), Messina, 465-478.
- [N₂] Nordo G., A note on perfectification of mappings, Q & A in General Topology, Vol. 14 (1996), 107-110.
- [P₃] Pasynkov B.A., On extension to mappings of certain notions and assertions concerning spaces, in: Mapping and Functors, Izdat. MGU, Moscow (1984), 72-102 (in Russian).
- [PW] Porter J.R., Woods R.G., Extensions and absolutes of Hausdorff spaces, Springer, 1988.
- [U] Ul'janov V.M., Compact extensions with the first axiom of countability and continuous mappings, Mat. Zametki 15 (1974), 491-499 (in Russian) = Math. Notes 15 (1974), 287-291.
- [W₁] Whyburn G.T., A unified space for mappings, Trans. A.M.S. 74 (1953), 344-350.
- [W₂] Whyburn G.T., Compactification of mappings, Math. Ann. 166 (1966), 168-174.

Dipartimento di Matematica, Universita' di Messina, Contrada Papardo, salita Sperone, 31 98166 Sant'Agata, Messina, Italy