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WHEN IS KURATOWSKI
CONVERGENCE TOPOLOGICAL?

Paolo Vitolo

Abstract. It is known that if a topological space X is locally compact then
the Kuratowski convergence on the closed subsets of X is topological. We
show that the converse is true, provided that X is quasi-sober.

We also show that the Kuratowski convergence is topological if and only
if it is pretopological.

1. Introduction

Let X be a topological space. It is not difficult to show that if X is locally
compact, in the sense that every point has a neighborhood base consisting of
compact sets, then the upper Kuratowski convergence on the closed subsets
of X agrees with the co-compact topology [4;p. 353] and therefore both the
upper Kuratowski and the Kuratowski convergences are topological.

Conversely, suppose that the Kuratowski (or the upper Kuratowski) con-
vergence is topological. The question is: must then X be locally compact?

One can easily see [12;Prop. 4] that the answer is yes, if we also assume
that X is regular (not necessarily Tp). On the other hand, we will give an
example (due to Hofmann and Lawson [6]) which shows that the answer is
no in general.

On the contrary, some authors, begining with Choquet [2], believed that
the answer was yes in general: for example, see the paper of Mréwka [9],
who probably was not aware of the work Choquet did ten years before, and
the book [8], where the theorem of Mréwka is reported, with more or less
the same proof (which works only if the space is regular).

In 1970, Mréwka [10] showed that the question has a positive answer
assuming T'p.

In this paper we show, inspired by the ideas of the book [5], that the
answer is yes with the only assumption that X is quasi-sober.
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Moreover we show that the Kuratowski and upper Kuratowski conver-
gences are topological whenever they are pretopological.

Most of the results presented here were obtained in the author Ph.D.
thesis [11] (which was written in Italian and not published).

2. Convergences

The appoach to abstract convergences given here has been influenced by
the systematic paper of Choquet [2], and also by the more recent article [3].

Let F be a set and denote by @(E) the set of all filters on E: a convergence
on E is a mapping 9: E — 2%F). Given a filter F on F and an element
z € E, we say that F is ¥-convergent to z if F € ¥(z).

If a convergence ¥ has been defined on E we say that a net (a;);es in
E is ¥-convergent to a point z € E if the filter generated by the family
{a; |7 > k }res belongs to ¥(z).

We will denote by Z(E) the set of all convergences on E.

Given a topology 7 on E, we can define a convergence in the usual way.
This (topological) convergence will be identified with 7, so that the set @(F)
of all topologies on F is regarded as a subset of Z(E).

Thus, for every z € E, 7(z) is the set of all filters which 7-converge to z,
and therefore [ 7(z) coincides with the filter N, (z) of all T-neighborhoods
of z.

We say that the convergence ¢ is coarser than 9" if #'(z) D 9"(z) for
every z € E. If both ¥ and 9" are topologies this definition agrees with the
usual one.

This ordering makes Z(F) a complete lattice (in fact a Boolean algebra):
one can easily see that, given any subset ¥ of E(E), the supremum [respec-
tively, the infimum| of ¥ is the convergence which maps every z € E into

(Npex 0(2)) [resp. (Upex 8())]-
Proposition 2.1. Let E be a set. Then ©(E) is closed under sups in E(E).

Proof. Let £ be a subset of ©(FE) and let 7 be the topology generated by
the union of ¥, that is the sup of 2 in ©: we clearly have 7(z) C [Nyex 9(x)
for every z € E. We show the opposite inclusion.

Let U(z) be the filter generated by | Jyex Mo(x). For every 7-neighborhood
U of z, there exist V1, V3,..., V,,, where V; is 7;-open and 7; € X for each i =
1,2,...,n, such that x € Vi NVaN---NV,, C U; since V; is a 7;-neighborhood
of z, we have V; € | Jyex No(x) for each @: therefore Vi NVoN---NV, € U(z)
so that U € U(z), too. As U was arbitrary we conclude that N, (z) C U(z).
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Now if ' € (\pepf(x) then F D Ny(z) for every § € X, thus F O
Uges Ma(z). Tt follows that JF contains 2/(z): hence it contains N, (z) and
we have F € 7(z), which completes the proof. O

On the other hand, ©(E) is not closed under infs in Z(F), not even finite
infs, except for trivial cases.

Proposition 2.2. Let E be a set. The following are equivalent:
(1) ©(E) is closed under finite infs in E(E);
(2) ©(E) is a sublattice of E(E);

(3) ©(E) is a distributive lattice;
(4) E has at most two elements.

Proof. From the previous proposition it follows that (1) implies (2) and,
since Z(E) is distributive we have (2) = (3); since it is easy to check that
(4) implies (1), it remains to prove that (3) implies (4).

Suppose that a, b and ¢ are distinct elements of E and consider the fol-
lowing topologies on E:

= {@,{ﬂ},E} y
T2 = {&, {a,b}, E},
73 = {@,{a,c}, E};
then
To V13 = {@,E} U{{a},{a,b}, {a,c}, {a, b,C} }1

so that 71 A (15 V 73) = 71; on the other hand,
Tl/\TZI{Q,E} =11 N\ T3:,

therefore 71 A (12 V'73) % (11 A 13) V (11 A 73).

In view of Proposition 2.1, we can define, for every convergence ¥, a
topology T4 (called the topologization of ¥) as the supremum of all topologies
which are coarser than ¢. Thus for a convergence 9 to be topological (i.e.

to coincide with a topology) it is necessary and sufficient that 79 = ¢ or,
equivalently, T > .

The topologization of a convergence can also be described by means of
open sets.

Proposition 2.3. Let 9 be a convergence on E. A subset A of E is T-open
if and only if

(2.1) VoA (?9(a) > A.
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Proof. It is easily seen that the subsets A of E satisfying (2.1) form the
collection of open sets of a topology. Call this topology 7: we first show that
T < 4.

Let z € E and consider a filter F which ¥-converges to z: from the
definition of T it follows that every T-neighborhood of z is in the filter (] 9(z)
and hence in F, so that F is T-convergent to z. This proves the claim.

It remains to show that 7 is finer than every topology 7' < 9. BSo, let
7' € O(E) be coarser than 9: for every 7'-open set A and every a € A we
have 7/(a) 2 9¥(a), whence

Ae Ny (a) = ﬂ?'(a) C mi‘}(a):,

therefore A satisfies (2.1), i.e. A is 7-open. As A was arbitrary, the proof is
complete. O

Among all convergences, topologies can be characterized as follows.

Theorem 2.4. A convergence ¥ on a set E is a topology if and only if it
satisfies the following conditions:
(1) Yz € E, the principal filter generated by {x} is ¥-convergent to x;
(2) Yz € E, if F € 9(z) and G is a filter finer than F, then G € ¥(z);
(3) YV € E, the family 9(z) is closed under intersections;
(4) Vz € B: YU € Nd(z): IV € N9(z) such that U € ¥(v) for each
vevV.

Proof. If 9 is a topology then all the conditions are clearly satisfied (to verify
(4) take as V the d-interior of U).

Conversely suppose that 1 satisfy the four conditions: we have to prove
that T > 9. To this end, take a point € F and a filter F not ¥-converging
to z: we will show that F is not T'¥-convergent to x.

The first three conditions imply that a filter ¥ converges to x if and only if
it is finer than (i.e. contains) the filter (] 9(z): hence there exists U € (?(z)
with U ¢ F. Denote by V(z,U) the collection of all sets of the form U N v,
where V € (9(z) and U € 9(v) for each v € V: it follows from (4) that
V(z,U) is nonempty.

Let A = |JV(z,U): we claim that satisfies (2.1) that is A is T'0-open.
Indeed, if a € A, then U € 9(a); so, let A’ = AU W, where W €
V(a,U): we have W C U and W € (¥(a) (since W is the intersection of U
with another member of the filter [9(a)); thus A’ C U and A" € (¥(a).
Moreover A’ € (¥(z), as A’ D A; now, since U € [ 9(2) for every z € A',
it follows that A’ € V(z,U) and therefore A’ = A: hence A € ()9(a), as
claimed.
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Thus A is T'd-open; also A € [¥(z), whence z € A by (1). It follows
that 7 cannot T¥-converge to 2: otherwise we should have A € F, which is
impossible because A CU. O

We say that ¢ is a pseudotopology (or Choguet convergence) on E if it
satisfies (1) and (2) in Theorem 2.4 and the condition:
(2.2)
Ve e E: YVF e @E) [VF DF: 37" > F': F'ed(z) = Fed)

Equivalently  is a pseudotopology if, besides (1) and (2) in Theorem 2.4, it
has the following property (where Y (E) denotes the set of all ultrafilters on
E):
(2.3)

Ve e E: VFERE) VUET(E)[UDF=> Ued(z)] & Fedz)].

Hence, a pseudotopology can be viewed as a mapping which associate to
every £ € E a set of ultrafilters.

We are going to see that the set of all pseudotopologies on F is closed
under sups.

Lemma 2.5. The properties (1) and (2) of Theorem 2.4 are stable under
sups and infs.

Proof. Consider a collection {¢; | j € J} of convergences on E, whose
supremum and infimum are denoted by ¢ and 7, repsectively, and let z be
any point of E.

If the principal filter generated by {z} belongs to ¥, j(z) for every 5 € J,
then it clearly belongs to ¢(z) and to n(z). Hence (1 ) of Theorem 2.4 is
stable.

Now suppose that every ¥; satisfies (2) of Theorem 2.4. If the filter F
belongs to o(z) [resp. to n(z )] and F' O F, then we have F € 9;(z), hence
F' € ¥;(z), for all [resp. for some] j € J and therefore F' also is in o(x)
[resp. 'n( ). O

Proposition 2.6. The supremum o of a collection {9, | j € J} of pseudo-
topologies on E is again a pseudotopology.

Proof. In view of Lemma 2.5 we have only to prove that o satisfies (2.2).

Let z be any point of E and let F be any filter on E. If for every
F' > F there exists 7 O F' such that F” € o(z), then "' € 9,(z), so that
F €d;(z), for all j € J: thus F € o(z). O

On the other hand, if F has at least three distinct points a, b and ¢, there
exist even two topologles ¥ and 9" on E whose infimum in Z(E) is not a
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pseudotopology. Indeed, let the open sets of ¢ [resp. V'] be @, E, {a,c}
[resp. {b,c}] and all singletons {x} with z # ¢; let ¢ denote the infimum
of ¥ and 9" as convergences, and let F be the principal filter generated by
{a,b,c}: all the ultrafilters finer than F are ¥-convergent to ¢, while F is
not.

A convergence 1 on E satisfying the first three conditions of Theorem 2.4
is called a pretopology. To define a pretopology ¥ on E one can assign to
every point = of E a single filter Ay(z) (of “neighborhoods” of z): it turns
out that F € 9(z) iff Ny(z) C F and Ny(z) = N ¥ (z).

It is easy to see that every pretopology is a pseudotopology.

Proposition 2.7. The supremum of o collection of pretopologies is a pre-
topology.

Proof. Let {¥; | j € J} be a collection of pretopologies on E and denote its
supremum by o. In view of Lemma 2.5 we have only to show that o satisfies
(3) in Theorem 2.4.

Let z € F; consider a collection A of filters o-converging to z, and denote
by F the intersection of A. For each G € A, as G € o(z), we have G € 9;(z)
for every j € J. Therefore F also is ¢;-convergent to z for every j € J, and
hence o-convergent. [J

A similar result for infima does not hold in general (see the remark fol-
lowing Proposition 2.6).

We say that a convergence ¥ on E is Hausdorff (or separated) if 9(z') N
9(z") = @ whenever 2’ and z” are distinct. A convergence is compact if every
ultrafilter converges to some point. When we are considering topologies these
terms are obviously consistent with the usual ones.

Clearly every convergence finer than a Hausdorff convergence is Hausdorff
and every convergence coarser than a compact convergence is compact.

Proposition 2.8. Let ¥ and 9" be pseudotopologies on E, with ' < 9",
If 9" is Hausdorff and 9" is compact then ¢ = 9".

Proof. Let z € E and consider a filter F in ¥'(z). We have to prove that
F € ¢"(z) and, since ¢” is a pseudotopology, it suffices to show that every
ultrafilter &4 D F converges to z.

Let U be an ultrafilter finer than F. By compactness we have U € 9"(z)
for some z € E, hence U € ¥'(z), too, as ¥’ is coarser. Now F € ¥'(z)
implies that U also is 9'-convergent to z. Since ¢ is Hausdorff, we conclude
that z =z. O
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From the above proof it follows that ¢ and #” are not required to be
pseudotopologies, a priori: it suffices for 9 to satisfy (2) of Theorem 2.4
and for 9" to satisfy (2.2) (or (2.3)).

3. Lim-inf convergence and continuous lattices

This section and the next one are greatly indebted to [5], where some of
the material has been taken from. Anyway, we have preferred to give as
many details as possible, in order to make the exposition reasonably self-
contained.

In the sequel we will denote by L a complete lattice. If U is a subset of
L, the upper set of U is

tU={zeLl|Fuel: ulz}

A subset T of L is upper if T = U for some U C L or, equivalently, if
+T = T'. Similarly one defines the lower sets.

Let L be a complete lattice and F be a filter on L. The lim inf of F is
defined as
liminf F = sup{inf F' | F € F }.

The lim-inf convergence on L, denoted by £, maps each z € L to to
fx)={Fe®L)|z<lminfF}.

Proposition 3.1. The lim-inf convergence satisfies (1) and (2) of Theorem
2.4.

Proof. For every @ € L, the lim-inf of the principal filter generated by {z}
is z, and this gives (1) of Theorem 2.4. To verify (2) from Theorem 2.4 it
suffices to observe that, whenever F' and F" are filters on L with ' C F",
we have lim inf 7' < liminf F".

The topologization of £ will be called the Scott topology of the complete
lattice L, and the Té-open (T'é-closed) sets are usually called Scott-open
(resp. Scott-closed).

From Proposition 2.3 we can deduce a characterization of Scott-open sets.
Recall that subset D of a lattice L is directed if it is nonempty and for
every =,y € D there exists z € D) such that both z < z and y < z.
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Proposition 3.2. A subset U of a complete lattice L is Scott-open if and
only if

(1) 1U =U, i.e. U is upper;

(2) for every directed subset D of L such that sup D € U, we have DNU #
.

Proof. Suppose that U is Scott-open. For every v € U and every v > u,
since the principal filter P, generated by {v} is £-convergent to u, we have
U € N€(u) C Py so that v € U: hence U satisfies (1). Now let D be
a directed subset of L and suppose that s = sup D belongs to U; denote
by Fp the filter generated by all sets of the form 1{d} with d € D; since
liminf Fp = s, we have U € (€(s) C Fp, hence U contains 1{d} for a
suitable d € D and in particular d € U: therefore U satisifies (2).

Conversely suppose that (1) and (2) hold, and take any z € U: we will
show that U € {(z), i.e. U € F for every F € £(z). So, let F be a filter
§-converging to z; we have liminf 7 € U by (1), and therefore, by (2), U
intersects {inf F' | ' € F'} because this is a directed set: as U is upper, it
follows that U € F, which completes the proof. [

Observe that, since complements of upper set are lower and vice versa, it
follows from the previous proposition that a subset ¢ of a complete lattice
L is Scott-closed if and only if it is a lower set which is closed under sups of
directed subsets.

Now we are going to introduce an auxiliary relation, by means of which
we will define the concept of continuous lattice.

Recall that an ideal of a lattice I is a subset I which is both lower and
directed; equivalently T is the lower set of some nonempty sublattice of L.

Proposition 3.3.. Let a, b be elements of the complete lattice L. The
following are equivalent:

(1) for every S C L with sup S > b there exists a finite set F' C S such
that sup F' > a;

(2) every directed D C L with sup D > b contains some d > a;

(3) every ideal I of L with supI > b contains a.

Proof. It suffices to to show that (3) implies (1), and we may also assume
that b is not the smallest element of L. Let S C L such that supS > b
(note that S is nonempty), and denote by I the lower set of the sublattice
generated by S; as I is an ideal and supl > b, we have a € by (3), and
therefore a < ¢ for a suitable ¢ of the form ctVea V... Ve, with g € S:
thus we get (1), where F = {¢1,¢2,... ,¢,}. 0O

If a and b are elements of a complete lattice L satisfying one of the equiv-
alent conditions above, we say that a is way below b, and write a < b.
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Proposition 3.4. Let L be a complete lattice and denote by 0 the smallest
element of L. The way-below relation on L satisfies the following properties:
(1) Va,be L: [a<kb = a<b];
(2) Vae L 0K ay
(3) Va,b,c,d € L: [a<b, b<Lc and c<d = a<kd;
(4) Va,b,ce L: [a<Kc and b<Kc = aVb<cl

Proof. We prove the fourth statement. Let a, b and ¢ be such that a < ¢
and b < ¢ for every ideal I such that sup! > ¢, we have both a € I and

bel: henceaVbel.
The other properties can be proved in a similar way. O

Denote by 1 z [respectively |} z] the set of all u € L such that z < u [resp.
u & z): if supllz = z for every z € L we say that L is a continuous lattice.

On a continuous lattice the Scott topology has some additional properties.

Lemma 3.5. Let L be a continuous lattice. Then

Ve,zeL: [tz = Jyel: <y and y <L z).

Proof. Givenz,z € Lwithz < z,let I ={vel |FyeL: vy and y K
. : . . l .

z }: then [ is an ideal of L, as one can easily check by applying the properties

listed in Proposition 3.4. We have to prove that z € I and, by Proposition

3.3, it suffices to show that supl > z.
Suppose not: as L is a continuous lattice, there should exist ¢ € L such

that t < z and sup I # t; by continuity again, since sup |}t = t there should
be u < t with sup % u; but now u € I and we get a contradiction, 0O

Proposition 3.6. If L is a continuous lattice then, for every x € L, the sub-
sets of the form fru, where u < z, form a base of Scott-open neighborhoods

at x.

Proof. Let U be a Scott-open neighborhood of z; since supz =z and |z
is directed, by Proposition 3.4, it follows from Proposition 3.2 that there
exists some u € Lz NU and therefore

zefucfuyCctU=U.

It remains to prove that f}u is Scott-open.

First observe that ftu is an upper set, by (3) of Proposition 3.4. Now let
D be a directed subset of L with supD = s € ftu, i.e. u < st by Lemma
3.5 there exists ¢ € L such that u < t and ¢ < s; it follows from (1) in
Proposition 3.4 and Proposition 3.3 that D contains a d > t: consequently
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we have u < d (by (3) in Proposition 3.4 again) so that DN fu # @ and
the conclusion follows from Proposition 3.2. O

Continuous lattices are precisely the ones on which lim-inf convergence
and Scott topology coincide.

Theorem 3.7. Let L be a complete lattice. The following are equivalent:
(1) lim-inf convergence on L is topological;
(2) lim-inf convergence on L is a pretopology;
(3) L is a continuous lattice.

Proof. Since (1)=-(2) is trivial, we first prove that (2) implies (3).

For every a € L let J(a) be the set of all ideals J of I, with supJ > a.
Since | a = [} J(a), we have to show that N J(a) € J(a).

We associate to every ideal I of L the filter Fr on L generated by all
sets of the form 1{i} with ¢ € 7. Then a filter G on L is §-convergent to
an element a of L if and only if there exists J € J (@) such that F; C G:
indeed, letting J = {inf G | G € G} defines an ideal such that F 7 C G and,
since sup J = liminf G > a, we have J € J(a); conversely, if J € J(a) and
F; CG, then

liminfG = sup{infG | G € G } >sup{inf F | F € F;}
> sup{inff{j} | j € J} =supJ > g,

so that G € £(a).

Now, as ¢ is a pretopology, we have (£(a) € ¢ (a) and hence there exists
H € J(a) such that Fy C [)€(a); on the other hand we must have Fu €
¢(a) and therefore Fir = £(a). Since F; C F; if and only if I C J we
have H C J for every J € J(a), that is H C N7 (a), and it follows that
NJ(a) = H € J(a).

We conclude with the proof of the implication (3)=(1). To this end it
suffices to show that ¢ < T¢.

So, let = be any point of L and let F be a filter Té-converging to z. If
u < z then ftu is a T¢-neighborhood of 1, by Proposition 3.6; hence ffu € F
so that t{u} € F, too. Therefore

liminf 7 = sup{inf F | F € F} > inf t{u} = u;
as u is arbitrary and L is continuous, we have lim inf F >z O

4. The lattice of open sets

In this section we focus our attention on the (complete) lattice A(X) of
all open subsets of a given topological space X ordered by inclusion. In the
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sequel we will consider also the lattice C(X) of all closed subsets of X ordered
by reverse inclusion. These lattices are isomorphic via complementation.
Our aim is to find necessary and sufficient conditions for A(X) to be
continuous. We begin with the way-below relation: first observe that U <V
in A(X) means that every open cover of V' contains a finite open cover of U.

Proposition 4.1. Let U and V be open subsets of a topological space X.
Consider the following conditions:

(1) UV in A(X);

(2) every filter F on X, with U € F, has a cluster point in V;

(3) there ezists a compact set Q C X such that U Cc Q C V.
Then the third one implies the first two, which are equivalent; moreover, if
X is locally compact, all three conditions are equivalent.

Our definition of locally compact (not necessarily Hausdorff) topological
space is: Each point has a neighborhood base consisting of compact sets.

Proof. (1) = (2): Let F be a filter with U € F and suppose that F has
no cluster point in V; then, for every z € V, there exist an open set W (z)
containing z and a member F(z) of F such that W(z) N F(z) = &. Since
the collection { W(z) | z € V' } is an open cover of V, we can find z;, s,
..., Zp in V such that |J_, W(z;) D U; now letting F = (_; F(z;) we
have F' € F and FNU = @, in contrast with the assumption that U € F.

(2) = (1): Let V be an open cover of V' and suppose that no finite
subcollection of V covers U. The sets of the form U—W with W € V generate
a filter F, and we have U € F. Hence there exists some z € V which is
a cluster point of F. Thus, if W(z) is any member of V containing z then
W (z) meets every F' € F, but this is impossible because the complement of
W(z) is in F.

(3) = (1): Let V be an open cover of V; then it is an open cover of @, so
there exists a finite subcollection I/ of V which covers ¢} and hence U.

Finally, let X be a locally compact topological space.

(1) = (3): For each v € V, denote by Q(v) a compact neighborhood
of v contained in V' and let W (v) be the interior of @(v). The collection
W = {W() | v €V} is an open cover of V and hence there exist vy, vs,

..y Up in V such that |J_; W(v;) D U. Letting Q = J]_, Q(v;) defines a
compact set suchthat U c QCc V. 0O

As a consequence we can readily establish a sufficient condition for the
lattice of open sets to be continuous.

Corollary 4.2. If X is a locally compact topological space, then A(X) is a
continuous lattice.
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Proof. Let V be an open subset of X and, for each z € V, let Q(z) be a
compact neighborhood of = contained in V. Denoting by U(z) the interior
of Q(z), we have U(z) < V for every z € V and |J,y U(z) =V. O

The converse does not hold, in general, as we are going to see.

Example 4.3. Consider the set E = [0, 1] [0, 1[ endowed with the topology
whose open sets have the form Ay = {(z,y) | ¥ < f(z)}, where f runs
through the lower semicontinuous functions of [0,1] into itself. Let D be
a (dense) subset of [0, 1] which intersects every nonempty open subinterval
of [0,1] in a non-Borel set. Define X as the set of all (z,y) € E such that
either z € D and y is rational or ¢ D and y is irrational, with the topology
inherited as a subspace of E. Then X is a Ty-space in which every compact
set has empty interior, yet A(X) is a continuous lattice (see [6;Sect. 7]).

Nevertheless, it is easy to establish the following result.

Proposition 4.4. Let X be a regular topological space. If A(X) is a con-
tinuous lattice then X s locally compact.

Proof. Let x € X and let V' be an open neighborhood of z. Since A(X)
is continuous there exists U < V such that z € U and, by regularity, we
can find another open neighborhood W of = whose closure is contained in
U. Now consider an open cover V of W; the open cover VU {V — W} of V
contains a finite subcollection & which covers U and therefore U — {V — W}
is a finite open cover of W contained in V. Hence W is compact.

As x and V were arbitrary, we conclude that X is locally compact. [

Example 4.3 shows that in the above propostion we cannot drop the
assumption of regularity. But such assumption can be weakened, and this is
what the remainder of this section is concerned in.

Let L be a complete lattice, whose greatest element is denoted by 1. We
say that p € L is prime if p # 1 and, for every z,y € L with z Ay < p, we
have either z < p or y < p.

The spectrum of L, denoted by SpecL, is the topological space whose
points are the prime elements of L and whose open sets have the form

a) ={p€ L |pisprime and p ¥ a },

where a runs through the elements of L. It is easy to check that they just are
the open sets of a topology: indeed J,.5 2(s) = Q(sup S) for every § C L
and §2(z) N Q(y) = Az Ay) for every =,y € L.
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Lemma 4.5. Let G be an open subset of SpecL. Then
G = Q (inf ((SpecL) — G)),
where the inf is computed in L.
Proof. Let G' = Q (inf((SpecL) — G)). If p € G’ then p is prime and p #
inf((SpecL) — G), so that p € G.
Conversely, let * € L such that G = Q(z). For every ¢ € G we have
q 7 x; on the other hand,

z < inf{p € SpecL | p > = } = inf ((SpecL) — 2(x)) = inf ((SpecL) — G)

and therefore g # inf ((Specl) — G),ie.g€ G'. O
Now we can establish a compactness criterion for subspaces of SpecL.

Proposition 4.6. Let L be a complete lattice and @ a subspace of SpecL.
Iftheset | Q={ze€ L|3dge€Q: z<gq} is Scott-closed in L, then Q is
compact.

Proof. Let G be a collection of open subsets of SpecL whose union covers ;
we may assume that G is closed under finite unions, thus we have to show
that @ is contained in some member of G.

Suppose on the contrary that, for every G € G, we have @ — G # @ and
hence inf ((SpecL) — G) €] Q. Then the set

D = {inf ((SpecL) —G) |Ge G}

is contained in J. (}; moreover the above lemma implies that

U g = U{Q (inf ((SpecL) — Q) |G e G} = U Q(d) = Q(sup D);

deD
finally D is a directed set: indeed if G',G"” € G then G' UG"” € G and
inf ((SpecL) — G') V inf ((SpecL) — G”) < inf ((SpecL) — (G' UG")).

As | Q is closed under sups of directed sets (see the remark following Propo-
sition 3.2), we have sup D €| @) i.e. there exists ¢ € ) such that sup D < ¢;
it follows that g ¢ Q(sup D) = |JG, which is impossible. [

Now we are going to show that SpecL is a locally compact topological
space, provided that L is a distributive continuous lattice.

Recall that a dual ideal of L is a nonempty upper set ¥ C L such that
for every z,y € F there exists z € F with 2 < z and z < y (i.e. F is an ideal
in the reversed ordering).




96 P. Vitolo

Lemma 4.7. Let K be a Scott-closed subsetl of a complete distributive lattice
L. If L — K is a dual ideal then | ((SpecL) N K) = K.

Proof. Take any k € K; since K is closed under sups of directed subsets,
we may apply Zorn’s lemma and find a maximal m € K such that m > k.
Observe that m # 1 because 1 ¢ K: otherwise K = L and L — K = & could
not be a dual ideal. We complete the proof by showing that m is prime in
L.

Indeed, if m were not prime we would have z Ay < m for suitable z,y € L
with 2 £ m and y £ m, so that zVm > m and y Vm > m; hence z V m
and y V m would belong to L — K, because m is maximal. Since L — K is
a dual ideal it follows that (z Vm) A (y Vm) € L — K, too, but applying
distributivity we get (zVm)A (yVm) = (zAy)Vm =msothat me L — K,
a contradiction. O

Proposition 4.8. Let L be a distributive continuous lattice. Then SpecL is
a locally compact topological space.

Proof. Consider a point ¢ in SpecL and an open neighborhood U of g; let
a € L be such that U = Q(a), so that a £ ¢; as L is continuous, there exists
b < a with b £ ¢, so that g € Q(b).

By Proposition 3.5, we can construct inductively a sequence (z,, )nen such
that z; = a and b < 2, € Tp_1 for every n > 1. Let F = |72, t{z.};
observe that F' is a dual ideal: it is clearly an upper set and, given y', 3" € F,
there exists a positive integer k such that y' Ay" >z, € F.

Denote by K the complement of F. We claim that K is Scott-closed:
indeed let D be a directed subset of K and let s = sup D; if s ¢ K then
5 € H{zn} for some n € N; consequently z,,; < s and hence 2,1 < d for a
suitable d € D; but this means that d € 1{z,41} C F, which is impossible.

Now if we put @ = (SpecL) N K, the above lemma implies that | Q = K
thus () is a compact subspace of SpecL, by Proposition 4.6.

Given p € Q(b), since p # b, we have p »# z, for each n € N so that
p € K; hence Q(b) C Q. On the other hand if p € @ then p is prime and
p 2 a = x; hence Q C Q(a) = U. Therefore Q is a compact neighborhood
of ¢ contained in U. As g and U were arbitrary, the proof is complete. O

Let C be a closed subset of a topological space X. We say that C is
irreducible if C' # @ and whenever A and B are closed sets with AUB = C
we have either A = C or B = C. The space X is quasi-sober [T;Def. 2.1] if
every irreducible closed subset of X is the closure of a singleton.

One easily sees that regular (not necessarily Ty) spaces are quasi-sober
and that Hausdorff spaces are sober, i.e. quasi-sober and T.
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Proposition 4.9. Let X be a quasi-sober space. The mapping
e: X = SpecA(X), z+ X — {z}

is continuous open and onto; moreover @~ (p(U)) = U for every open set

UcCX. If X is sober then @ is a homeomorphism.

Proof. One immediately sees that a closed set C' C X is irreducible if and
only if the complement is a prime element of the lattice A(X). Since closures
of singletons are always irreducible, the mapping ¢ is well defined. Moreover
i is onto, as X is quasi-sober.

Now let U be an open subset of X. We have

o(U) = {o(z) |meU}:{X—{‘w}”1Xfsz}
={P e SpecAX) | P2U}=Q(U

thus ¢(U) is open in SpecA(X); conversely every open subset V of A(X)
has the form Q(U) for some U € A(X), so that

W) =T QUU) = e THeU) = {z€ X |ueU: [} =Tu}}=U.
Hence ¢ is continuous and open, and ¢~ (p(U)) = U for every open subset
U of X.

Finally, if X is also a Tq-space then ¢ is clearly one-to-one and therefore
it is a homeomorphism. O

We are now able to obtain the desired generalization of Proposition 4.4.

Theorem 4.10. Let X be a quasi-sober space. The lattzce A(X) s contin-
uous if and only if X is locally compact.

Proof. In view of Proposition 4.2 only necessity has to be proved. So suppose
that A(X) is a continuous lattice; local compactess of Spec.A(X) follows
from Proposition 4.8. Now, given z € X and an open neighborhood U of
z, we have to find a compact neighborhood of z contained in U; to this end
consider the mapping ¢ defined in the above proposition: ((U) is an open
neighborhood of () and therefore it contains a compact neighborhood Q;
the set @ = ¢~1(Q) is a neighborhood of z by continuity, and we also have
QC o Hp(U)) =U.

It remains to show that @ is compact. If G be an open cover of Q then
{9(G) | G € G} is an open cover of Q, thus there exist Gy, Go, ..., G, €C
such that |J;_; ¢(G;) D @ and we have

QCyp™ (U ‘P(Gi)) = U 0 o(Gy) = U Gi

which completes the proof. O
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5. Kuratowski convergence

Let X be a topological space. We define the upper Kuratowski conver-
gence, denoted by K+, as the lim-inf convergence on the lattice C(X). Tf,
for a subcollection & of C(X), we put LsZ = () Sezm, then a necessary
and sufficient condition for a filter I in C(X) to K*-converge to C € C(X)
is that LsI' C C.

For every open set A C X, consider the collection A~ of all C' € C(X) such
that the intersection C'N A is nonempty: the topology V'~ on C(X), having
{A~ | A is an open subset of X } as a subbase, is called lower Vietoris
topology.

Finally, the Kuratowski convergence is, by definition, K = KTV V™.

The reader can easily verify that the usual presentation of K+ and K in
terms of nets agrees with our definition.

It is useful to characterize also lower Vietoris topology in terms of filters.
To this end recall that the grill [1] of a filter T is the collection I'* of all sets
which intersect every member of I

Proposition 5.1. A filter T on C(X) is V™ -convergent to C € C(X) if and
only if C C LsI'*.

Proof. Suppose that C' C LsI'™: we have to show that every V ~-neighborhood
U of C is a member of the filter I'; we may assume that C' is nonempty and
that I = A, where A is an open set which meets C. Let H be the comple-
ment of U with respect to C(X) and let z be a point in C' N A, which must
exist by our assumptions: since A is a neighborhood of z disjoint from every
member of H, we have © & U—’H—[, so that C ¢ U_’H It follows that HNG = @
for some G € I': therefore G C U, whence U € T.

Conversely suppose that the filter I' is V™ -convergent to C' € C(X) and
let # € I'*: we will show that C C |JH. Take a point z € C (if C is
empty there is nothing to prove) and an open neighborhood A of z. As A~
is a V~-neighborhood of C, we have A~ € I', hence H and A~ have some
members in common: therefore |J# intersects A, so that z € [JH and it
follows that C' C U_'H, as required. O

As a consequence we can characterize K-convergence.

Proposition 5.2. A filter ' on C(X) is K-convergent to C € C(X) if and
only if LsT' = LsT* = C.

Proaf. Since T' C T, we have LsI™ C Lsl', and the conclusion follows from
the previous proposition. [




When is Kuratowski convergence topological? 99

Corollary 5.3. An ultrafillter ¥ on C(X) is K-convergent to C € C(X) +f
and only if C = LsU.

Proof. Tt suffices to observe that, since ¥ is an ultrafilter, we have U* =
. O

In view of the preceding corollary one may ask if K is a pseudotopology.
The answer is yes, as shown by Choquet [2], but even more is true.

Proposition 5.4. The upper Kuratowski convergence s a pseudotopology.

Proof. By Proposition 3.1 it suffices to show that, given a filter T' on C (X)
and a C € C(X) with LsT" ¢ C, there exists an ultrafilter which refines T
and is not K *-convergent to C.

Let z be a point in LsI" and not in C. Given any G € I and any open
neighborhood V' of &, denote by Z(G, V) the collection of all G € G such
that VNG # @: as z € LsI', this collection is always nonempty; moreover
(G V') NZ(G", V") D I(G' N G", V' N V") so that the set of all I{G, V),
where G is a member of I and V is an open set containing z, generates a
filter T',.

Since (G, X) = G for every G € I, the filter I',, is finer than I". Further-
more it is clear that T'; is V' ~-convergent to {z}.

Now let ¥ be any ultrafilter finer than I',: then ¥ also V ~-converges to
{z}, so that € Ls¥* = Ls¥ and therefore ¥ cannot K*-converge to C. O

Corollary 5.5. The Kuratowski convergence s a pseudotopology.
Proof. It follows from Proposition 2.6 and the previous proposition. [

Now we can give a necessary and sufficient condition for TK to be a T,
topology.

Proposition 5.6. The topologization of K is always compact. Moreover it
15 Hausdorff if and only if it coincides with K.

Proof. From Proposition 5.2 and Corollary 5.3 it follows that K is compact
and Hausdorff and therefore TK is compact; now apply Proposition 2.8. O

We conclude with a theorem which summarizes the main results of the
paper.

Theorem 5.7. Let X be a topological space. The first of the following six
statements implies the other five, which are equivalent:
(1) X is locally compact;
(2) C(X) is a continuous lattice (in the reverse inclusion ordering);
) K™ is a topological convergence on C(X);
)

(3
(4) K* is a pretopological convergence on C(X);
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(5) K is a topological convergence on C(X);

(6) K is a pretopological convergence on C(X).
Moreover all these statements are equivelent if we also assume that X is
quasi-sober, but in general they are not.

Proof. As the lattices A(X) and C(X) are isomorphic, it follows from Corol-
lary 4.2 that (1) implies (2), while Theorem 4.10 says that equivalence holds
when the space X is quasi-sober, but not in general, as shown by Example
4.3. Since the equivalence of (2), (3) and (4) is a particular case of Theorem
3.7, and (3) = (5) = (6) is trivial, it remains to prove that (6) implies (2)-

So, suppose that C(X) (equivalently A(X)) is not a continuous lattice.
There exists an open set V and a point £ € V such that no open set contain-
ing = is way below V in A(X): thus, denoting by V the collection of all open
neighborhoods of = contained in V, if we take any U € V, by Proposition
4.1 we can find a filter Fy on X having no cluster point in V' and such that
Ue Fy.

Let A be the complement of V: for each C' € C(X), consider the collection
T(C) of all sets of the form AU B, where B is a nonempty closed subset of
C and let 'y be the filter on C(X) generated by {7(F) | F € Fy}. We
claim that T'y is K-convergent to A. Indeed, V' ~-convergence follows from
the obvious fact that, for each H € I'y*, there is some superset of A which is
a member of H and hence [JH D A; to verify K*-convergence observe that

iy | UT@® = (AuF):Au( N F)

FeFu FeFy FefFy

and the last set equals A, because Fy has no cluster point in V',

Now let I' = (\ycy Tv, and consider any G € I'. For every U € V,
since G € 'y, we have T(C) C G for a suitable C € Fy and in particular
AUC € G; asUNC # @, it follows that U N (|JG) # @, hence z € JG
because V is a neighborhood base at . As G was arbitrary, we get € LsI’
and therefore I' cannot be K-convergent to A.

We conclude that K does not satisfy (3) from Theorem 2.4, i.e. is not a
pretopology. [
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