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HOLOMORPHIC BESOV SPACES BP, 0<p<1,
ON BOUNDED SYMMETRIC DOMAINS

Miroljub Jevtié

Abstract. We define and study a class of holomorphic Besov type spaces
BP, 0 < p < 1, on bounded symmetric domains Q. A description of these
Besov spaces is given in terms of differential operators. It is shown that BP,

0 < p < 1, can be naturally embedded as a complemented subspace of the
space L1P(Q, dr).

1. Introduction

Let (2 be an irreducible symmetric domain in C™ in its Harish-Chandra
realization. In [11] and [13] K. Zhu defined and studied a class of holomorphic
Besov-type spaces BP on ) for 1 < p < co. The purpose of the present paper
is to define analogous spaces BP for 0 < p < 1 and to extend some of the
results presented in [11] and [13] to the case 0 < p < 1.

It is well known [5] that the domain Q is uniquely determined (up to
a biholomorphic mapping among standard irreducible bonded syminetric
domains) by three analytic invariants; r,a and b, all of which are nonnegative
mtegers. The invariant r is called the rank of Q, which is of course always
positive. See [5] for the definition of @ and b. We shall make extensive uge
of the following invariant of Q: N-=a(r — 1) 4+ b+ 2.

Let v be Lebesgue measure on € normalized so that »(Q) = 1. For
0 < p < oo the Bergman space LE(Q2) is the closed subspace of L? (Q,dv)
consisting of holomorphic functions. The Bergman projection P (namely,
the orthogonal projection from L?(£2,dv) onto L2(f2) is an integral operator

PR = ]ﬂ K(zw)f(w)dv(w), z€9, felLXQ,dv).
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By [3] there exists a polynomial k(z,w) in #z and W such that the Bergman
kernel of Q is given by

K(z,w) = h(z,w)™ Y, z,w € .

Throughout this paper we assume « is a real number satisfying oo > —1.
Let ¢, be a positive normalizing constant such that the measure dvy(z) =
cah(z,z)%dv(z) has total mass 1 on Q.

Let H(S) be the space of all holomorphic functions in . We equip H (Q)
with the topology of uniform convergence on compact sets. In [13] it is shown

that the operator
D™ : H(Q) — H(Q), m>0, a>-1,

defined by

—_— I (rw) dua
D pie) =ty [ HEAZRLY, senm)
is continuous and invertible on H(). The inverse of D™ admits the fol-
lowing integral representation:

Bl il ) =0gin hmf Bluse ":;J;S"i)d”( W) feHE®), zeQ

We note that if
feLbQ) =LY, dv,) N H(Q)

then P )
o _ w)dyg (w
DR = | R w e

The above formula extends the domain of D™ to L'(f, dv,). We write
Vinaf(2) = B(z,2)" D™ f(z),for f€ L' (Qdva), m>0, oa>-1
and
Epmof(z) = h(z,2)"D™%f(z), m>0, a>-1, for f€ H(Q).

Thus, if f € L1*(Q),then En of = Vin,of-
We are now ready to state our first result.
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Theorem 1.1. Let k,m > % and o, > mam{“(rpl - N,—1}. If
0<p<1andfe HQQ) then [|Enof(2)Pdr(z) < oo if and only if
Jo | B gf(2)[Pdr(z) < oo, where dr(z) = h(z,z)"Vdv(z) is the Mibious

invariant measure on 3.

Recall that the holomorphic Besov space BP, 1 < p < oo consists of
functions in H(Q) such that Eyof is in LP(Q,d7) (see [11] and [13]). For
any irreducible bounded symmetric domain {2 we have 5&-27—11 - N < -2.
Thus, a holomorphic function f in § belongs to B! if and only if E,, . f is
in L}(Q, dr) for same(any) m > N — 1 and some (any) @ > —1. This is also
proved in [13], Theorem 4, by a different method.

Definition 1.2. For 0 < p < 1 the holomorphic Besov space BP = BP({Q)
consists of holomorphic functions f € H(Q) such that

WfllBe = |f(0)| + ||Bm,afllLr(a,dr) < 00,
for some (any) m > % and o > mam{ﬂggﬁ - N,-1}.

For every z in §2 let E,(z) be the closed Bergman metric ball with center
z and radius r > 0, i.e.,

Er(z) = {w : ﬁ(sz) < T}}

where (-, -) is the Bergman metric on §.
For a complex measurable function f on B we define

Mo, =esssup { |f(w)|: weE(2) }
and .
1 4 B
My, f(2) = [;-) [ e’ o<p<on

where 7(r) = 7(E,(2)).

For 0 < p, q < o0, we define L29(§),d7) to be the space of all measurable
functions f on {1 for which

Ifllcea@ary = [IMprfllze@,ary < oo

Since the definition is independent of r, 0 < r < 1, we will write LP-¢(£2, dr)
instead of L2?($},dr) (see [1]).
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We let P, denote the orthogonal projection from L?(Q, dv,) onto L2%(Q) =

L2(Q,dv,) N H(). It can be shown that (see [9],for instance)

./ fuldety) z€Q, fe Lz(ﬂadyo:)'

sz“‘“’

The above formula extends the domain of P, to L'(Q,dv,). Note that
Pof = D% for f € LY, dvg).

If1 <p<coand a> —1 then BP = P,LP(f),dr). See ([13]). In this
note we show that the analytic Besov space BP, 0 < p < 1l,can be natu-
rally embedded as a complemented subspace of L?((2, d7) by a topological
embedding

Ema: B = LYP(Q,dr).
We show that E,, , o P, is projection on this embedded copy and that
BP = P,LY? (9, dr).
More precicely we prove

Theorem 1.3. Let 0 < p < 1.Then for any a > mazx {“{T 4 _ N,-1},
P,: L“Y(Q,dr) - B

1
is a continuous linear map. Moreover if m > 2= gnd a > maw{a(T g

N,—1} then
Ene: BP = LY (Q,dr)

is a topological embedding.

This theorem was proved in [4] for the open unit ball.
Finally we apply Theorem 1.3. to obtain a result about duality.

Theorem 1.4. Let 0 <p <1 ,m > ivpil and o = m — N.The integral
pairing

<1.9>0= [ B (2) Brnagl®) dr(a)
induces the following duality (BP)* = B

2. Preliminaries

Throughout this paper we will use the conventions of denoting by C any
positive constant which is independent of the relevant parameters in the
expression in which it occurs. The value of C' may change from one occurence
to the next. In addition, we will use the notation A = B to mean C~ 14 <
B < CA for some positive constant C.

We begin with a version of Theorem 3 in [13].
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Lemma 2.1. Suppose 0 < m and o, 8 > —1.Then
D;”’“(h(z,'w)_N_ﬁ) = F(z,w)h(z,w) V- F™

where F is holomorphic in z, conjugate holomorphic in w, and bounded in
Q x .

Proof. From the integral representation of the operator D™ we obtain

o h(w, uw)*dr(u
D (hiz,wy P} = c"[g h(z,u)l\g+a+)mh(1(t,1)u)N+ﬁ'

Denote the integral above by f(z,w) (forget about the constant). Then f is
holomorphic in z and conjugate holomorphic in w. Fix z € {2 and let ¢,be
the involutive authomorphism interchanging z and 0; see [2]. A change of
variables u = @, () gives

f(z,2) = [ A= (8), 0:(6)) N (€)
2= o W o @) (g, (€), 2)VFR(E, B

Since,
B+ (), 02 (6)) = W
" h(z,z)
e :(€) = e
we have
= ! h(£,6)*h(z, &)™ dv(£)
flz,2) = h(z, )N +B+m /Q RE, 2)oB
Let

_f h(z,u)™ h(u,u)” dv(u)
F(z,w) = /ﬂ — )T , 2w € Q.

Then F is holomorphic in z, conjugate holomorphic in w, and

F(z,2)
f(z, Z) = W’ fOr 3.11 z e Q
By a well known uniqueness theorem in several complex variables (see [6])
we must have

F(z, w)

flesw)= W, for all z,w € (.
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It remains to show that F is bounded in £ x .
It is well known that there exists a universal constant C > 0 such that
h(z,2z) < Clh(z,w)|, for all z and w in Q. If @ > 3 ,then

F(z,w)| < of Ih(z, w)|™h(y, u)® du(y), zweEQ,
O

which shows that F' is bounded, since A is polynomial and [(, h(u, u)?dv(u) <
oo. If @ < G, then

| F(z, w)| S/ |h,(z,u)|m|h(u,w)|ﬂﬁ“h(u,u)“du(u),z,w € Q,
0
and so F' is bounded.
Note that if @ = g, then F(z,w) = 1, and therefore

1 1

P ) = R wyerara

Lemma 2.2. ([2]). For fived r > 0, there is a sequence {£;} in Q such that
(1) U2 B0 (&) = ©, and
(i) there is a positive integer M = M(r) such that for any z € §Q, z is
contained in at most M of the sets Fa,.(£;).
Lemma 2.3. Let k,m >0 and o > —1. If f € LY(Q,dv,) then
Dm,k+a(Dk,af) - Dm+k,af.

Proof. 1t follows easily from the reproducing property of the Bergman pro-
jections P, and Fubini‘s theorem that

m,k+o ko 2) = m,k+a ¢ h‘(u‘a u)a+ka,af(u) dv(u)
Dte(DRe)(z) = DI (s [ )

h(z,u)Ntetk

= Gkea | B 0) R DRz, u) N o) DR () d()
k4o nk,o
s [ A D)

)
h(z,u)N+k+atm

)*

)

u, U +°‘ v « v
e [ M), [ MG

(z,u N+k+a+m % h(u’ g)N+k+a
oh(u, u)* e dy(u
o [
=, f ) ( )du( ) Dk+m af(z)

h(z’ g)N+k+m+a
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Lemma 2.4. ([3]). Fort > —1 and c real let

" h(w,w)tdr(w)
It,c(z) = /ﬂ W, z € Q.

We have
(1) Ife< — M Jthen I, o(2) is bounded on (.

(i) Ife> o ’ , then I, o = h(z,2)"°.
Lemma 2.5. Let 0 < p < oo and let r > 0. There exisis a constant C>0
such that

C
v(En(2)) JE. )

As a final preliminary result we need the following lemma.

Lemma 2.6. Let r > 0.There exists C = C(r) > 0 such that for a,b €
with B(a,b) < r and arbitrary z € ) we have
L al

|7(2, )]

IF(Z)F € |f(2)|Pdv(w), for all z € Qand f e H().

C—l

Proof. Obviously it is sufficient to show that

—1 |K(Z,b)|
T S R =

For the Bergman reproducing kernel we have the well-known transforma-

tion law

K (9a(2), pa(w))(Jepa) (2)(Jepa) (w) = K(z,0), 2w €D,

where (J..)(z) denotes the determinant of the complex Jacobian of v,.

Note that
_ |K(z,0)]?

|Jepa(2)* = Kaa)

(see [2], Proposition 2).
Thus,

|K (2,0)] _ 1K (¢a(2), @a(B))|(Jewa) (0)]
K (z,0)] ~ [K(¢a(2), pala))|(Jopa) ()]
_ 1K (@a(2), pu (ONIK (b, 0)|
|K (a,a)]
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Since B(a,b) < 7, p,(b) € E,.(0).Using the fact that K (&, w) is continuous
and nonvanishing on the compact 0 x E, (0) and that

|K (b, a)|
gl L1 2 < C, forb € E,(a),
K (a,a)] = W
we see that there is a constant C(r) > 0 with
—1 o |K(2,0)]
e & =0 200,
" S R0 < OO

3. Analytic Besov space B?, 0 < p < 1

Proof of Theoremi.1. Let r > 0 and {¢;} be the same as those in Lemma
2.2 and assume that E,, . f € L?(, dr). Since f =Dp oD™®f, we have

DR25() = D ey [ HEDTDTI) i)
Q

h(z, £)N+a

g f h(E )™ F(z, ) D™ f(€)dv(€)
m—+o 5

(e, )V H e |

by Lemma 2.1.

By Lemmas 6 and 8 in [2] and by Lemma 2.6 there exists a constant C,
C > 0, such that

for all z € Q, for all £;,j > 1, and § € E,(¢;). Thus,

1k,8.£ 100,009

<o o[ 2= bt ey

<O (£, 0

g f( h(&5,6)™ supgemz)gfﬁ;iﬁ)ih(z,z)’“u(Er(fj)))P dr(2)

h(z, 2)kP =N du(2)
<C ) h(g,&)Ntmtar g | pmia p/ i
Z ’ ¢EE, I();gj)l Fe) a [h(z, &) [P(N+a+k)
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By Lemma 2.5

m, o 2l C M, w P v(w
mp [DHOF € g [ D))

§€Er(ﬁj)

and by Lemma 2.4 we have

kp N C
/ |h(z fg IP(NJ”“““) Ih(égaég)lp(N”)

Thus,

1Bk,8f 10 ,ary < CZ h(€, €)P™ | D™ £ (€)|Pd (€)

E2r §J

< C“Em,af“LF(ﬂ,dT)

This finishes the proof of Theorem 1.1.

4. Embedding of Besov spaces B?, 0 < p < 1

To prove Theorem 1.3 the following lemma will be needed.

Lemma 4.1. If0 < p < 1, then L'?(Q,dr) C L}(Q,dr) and the inclusion
map 18 continuous.

Proof. Let 0 <& < + and let f € L ¥ (R, dr). The invariance of the measure
7 and Fubini‘s theorem show that Lq(ﬂ dr) = L*(Q,dr), for any ¢, 0 <
g < co. Thus, we have

legran <€ [[[ 15 » 5@ir(e)] ar(z)

< Cesssup [ N #©ar(e)] / [ [ . |f(£)|d'r(£)]pd7(z}-

It is easy to see that if w € Es(z), then Es(w) C Eq5(2).
Thus,

/ (MW,a(Ml,J)f(z))pdT-(z) <cf (Ml,zaf(z))pd'r(z).
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On the other hand,

ess sup(]'vfl’gf(w))p'r(c?) < ess sup/ XE; (w)(2) (M]_:gf(u}))pdT(z)
wen wel 0

</esssupXEﬂ(z)( )(Ml,éf(w))pd"'(z)
Q

en

— [ (MosM55)) ) dr(2)
A )

Combining the above inequalities we find that HfHLz 0,dr) < C’||fHL: P(62,dr)"

This finishes the proof of Lemma 4.1.

Proof of Theorem 1.8.
Let f € LY?(Q,dr) and let m > N L and o > masc{“(r L . N, -1},
Using Lemma 4.1 we see that

|Dmaf( )|<C/ ( )ldv( )

'h z w)|N+ct+m

SCUQ M;E{w) wa(::r||ff:£al(:(€)} d"”‘“’)r

for some fixed ¢, 0 < € < %

Since h(¢,£) = h(w,w) and |h(z,£)| 2 |h(z,w)| (Lemma 2.6), if £ € E (w)
we have

-]

e Fahp h(w, w)P(a+N) p
s <€ [ et e | [ 1@ldr(e)] drtw)

Using Lemmas 2.3 and 2.4 we obtain

lth(z, Z)mDm’aPaf(z)”i‘};P(Q,dT)
= ||h(z, z)™ D™(D% §)

= [|A{z, 2)" D™ f(

(2) u],:),w(n,dry

Wina,an)

<0 [ hesymrants) [ ORI [ B @ar(©)] artw)
el o 1
<c [ U ar(©)| dr(w) 2 1 1upqo
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Using Lemma 4.1 we find that
1P f(0)] < ClIfllzrave) < ClIfllzr,ary < Clifllzre(a,an)-

Thus, ||Pafll8e < Cl|fllzrr,dr)-
Assume now that f € B?. Since L?(Q,dr) = LP?(Q,dT), we have

2
1
/ h(zjz)mp l:Mp,eDm’af(Z)] d'r(z) < C”,f”%p, for somee,0 < € < 5
Ja
Let § = 5. The function D™ f € H((2) and therefore
|D™* f(w)lP < C | D™= f(&)[PdT(£),

by Lemma 2.5.
From this we find that

My D™ f(2) < Moo sD™2f(2) < C(Mp,D™°f(2)), z€Q.

Thus,
|h(2, 2)™ M1 s D™ f(2)||Lo(0,a7) < Clifll B»

Since

8z, 2)™ D™ fl 1e(,ar) = 12, 2)™ M1,6 D™ fllLo(,a7)s

we see that | Epm ofllLre) < Clfllse
Using again the fact that h(z,z) = h(w,w), for z € E.(w) we get

Bl = | [ /] e(w)h(z,z)mle'“f(z)idT(Z)r rtw)|”

> 0| [ wwwy| [ . IDm’“f(Z)ldT(z)]p dv(w)r

> [ mww)™| [ e(w)wmr“fw dr(z)] d»r(uor

Here we have used the estimate

M, D™ f(w) < My D™ f(w), w e Q.
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Using Lemma 4.1 we obtain

|f(0)| < C”Em,af”[,i'?(ﬂ,d-r)-

Thus
£l B2 = || B 0 fll L1002,

Ep, o is a topological embedding.

We note that V,, o o P,is projection from LY2(7) onto Ven,a(BP).
From f = ¢y PaBmof, f € BP, it follows by Lemma 4.1 that P,

maps L1P(Q, dr) onto BP.
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