HOLOMORPHIC BESOV SPACES B^p , 0 , ON BOUNDED SYMMETRIC DOMAINS

Miroljub Jevtić

Abstract. We define and study a class of holomorphic Besov type spaces B^p , $0 , on bounded symmetric domains <math>\Omega$. A description of these Besov spaces is given in terms of differential operators. It is shown that B^p , $0 , can be naturally embedded as a complemented subspace of the space <math>L^{1,p}(\Omega, d\tau)$.

1. Introduction

Let Ω be an irreducible symmetric domain in C^n in its Harish-Chandra realization. In [11] and [13] K. Zhu defined and studied a class of holomorphic Besov-type spaces B^p on Ω for $1 \leq p \leq \infty$. The purpose of the present paper is to define analogous spaces B^p for 0 and to extend some of the results presented in [11] and [13] to the case <math>0 .

It is well known [5] that the domain Ω is uniquely determined (up to a biholomorphic mapping among standard irreducible bonded symmetric domains) by three analytic invariants; r, a and b, all of which are nonnegative integers. The invariant r is called the rank of Ω , which is of course always positive. See [5] for the definition of a and b. We shall make extensive use of the following invariant of Ω : N = a(r-1) + b + 2.

Let ν be Lebesgue measure on Ω normalized so that $\nu(\Omega)=1$. For $0< p<\infty$ the Bergman space $L^p_a(\Omega)$ is the closed subspace of $L^p(\Omega,d\nu)$ consisting of holomorphic functions. The Bergman projection P (namely, the orthogonal projection from $L^2(\Omega,d\nu)$ onto $L^2_a(\Omega)$ is an integral operator

$$Pf(z) = \int_{\Omega} K(z, w) f(w) \, d\nu(w), \qquad z \in \Omega, \quad f \in L^2(\Omega, d\nu).$$

Received November 13, 1997 1991 Mathematics Subject Classification: 32A35. By [3] there exists a polynomial h(z, w) in z and \bar{w} such that the Bergman kernel of Ω is given by

$$K(z, w) = h(z, w)^{-N}, \qquad z, w \in \Omega.$$

Throughout this paper we assume α is a real number satisfying $\alpha > -1$. Let c_{α} be a positive normalizing constant such that the measure $d\nu_{\alpha}(z) = c_{\alpha}h(z,z)^{\alpha}d\nu(z)$ has total mass 1 on Ω .

Let $H(\Omega)$ be the space of all holomorphic functions in Ω . We equip $H(\Omega)$ with the topology of uniform convergence on compact sets. In [13] it is shown that the operator

$$D^{m,\alpha}: H(\Omega) \to H(\Omega), \qquad m \ge 0, \quad \alpha > -1,$$

defined by

$$D^{m,\alpha}f(z) = \lim_{r \to 1} \int_{\Omega} \frac{f(rw)d\nu_{\alpha}(w)}{h(z,w)^{N+\alpha+m}}, \quad f \in H(\Omega),$$

is continuous and invertible on $H(\Omega)$. The inverse of $D^{m,\alpha}$ admits the following integral representation:

$$D_{m,\alpha}f(z) = c_{m+\alpha} \lim_{r \to 1} \int_{\Omega} \frac{h(w,w)^{m+\alpha} f(rw) d\nu(w)}{h(z,w)^{N+\alpha}}, \ f \in H(\Omega), \ z \in \Omega.$$

We note that if

$$f \in L_a^{1,\alpha}(\Omega) = L^1(\Omega, d\nu_\alpha) \cap H(\Omega)$$

then

$$D^{m,\alpha}f(z) = \int_{\Omega} \frac{f(w)d\nu_{\alpha}(w)}{h(z,w)^{N+\alpha+m}}.$$

The above formula extends the domain of $D^{m,\alpha}$ to $L^1(\Omega, d\nu_\alpha)$. We write

$$V_{m,\alpha}f(z) = h(z,z)^m D^{m,\alpha}f(z), \text{ for } f \in L^1(\Omega, d\nu_\alpha), \quad m \ge 0, \quad \alpha > -1,$$

and

$$E_{m,\alpha}f(z) = h(z,z)^m D^{m,\alpha}f(z), \quad m \ge 0, \quad \alpha > -1, \quad \text{for} \quad f \in H(\Omega).$$

Thus, if $f \in L_a^{1,\alpha}(\Omega)$, then $E_{m,\alpha}f = V_{m,\alpha}f$.

We are now ready to state our first result.

Theorem 1.1. Let $k, m > \frac{N-1}{p}$ and $\alpha, \beta > \max\{\frac{a(r-1)}{2p} - N, -1\}$. If $0 and <math>f \in H(\Omega)$ then $\int_{\Omega} |E_{m,\alpha}f(z)|^p d\tau(z) < \infty$ if and only if $\int_{\Omega} |E_{k,\beta}f(z)|^p d\tau(z) < \infty$, where $d\tau(z) = h(z,z)^{-N} d\nu(z)$ is the Möbious invariant measure on Ω .

Recall that the holomorphic Besov space B^p , $1 \leq p \leq \infty$ consists of functions in $H(\Omega)$ such that $E_{N,0}f$ is in $L^p(\Omega, d\tau)$ (see [11] and [13]). For any irreducible bounded symmetric domain Ω we have $\frac{a(r-1)}{2} - N \leq -2$. Thus, a holomorphic function f in Ω belongs to B^1 if and only if $E_{m,\alpha}f$ is in $L^1(\Omega, d\tau)$ for same(any) m > N - 1 and some (any) $\alpha > -1$. This is also proved in [13], Theorem 4, by a different method.

Definition 1.2. For $0 the holomorphic Besov space <math>B^p = B^p(\Omega)$ consists of holomorphic functions $f \in H(\Omega)$ such that

$$||f||_{B^p} = |f(0)| + ||E_{m,\alpha}f||_{L^p(\Omega,d\tau)} < \infty,$$

for some (any)
$$m > \frac{N-1}{p}$$
 and $\alpha > \max\{\frac{a(r-1)}{2p} - N, -1\}.$

For every z in Ω let $E_r(z)$ be the closed Bergman metric ball with center z and radius r > 0, i.e.,

$$E_r(z) = \{w : \beta(z, w) \le r\},\$$

where $\beta(\cdot, \cdot)$ is the Bergman metric on Ω .

For a complex measurable function f on B we define

$$M_{\infty,r} = esssup \quad \{ \quad |f(w)| : \quad w \in E_r(z) \quad \}$$

and

$$M_{p,r}f(z) = \left[\frac{1}{\tau(r)} \int_{E_r(z)} |f(w)|^p d\tau(w)\right]^{\frac{1}{p}}, \quad 0$$

where $\tau(r) = \tau(E_r(z))$.

For $0 < p, q \le \infty$, we define $L_r^{p,q}(\Omega, d\tau)$ to be the space of all measurable functions f on Ω for which

$$||f||_{L_r^{p,q}(\Omega,d\tau)} = ||M_{p,r}f||_{L^q(\Omega,d\tau)} < \infty.$$

Since the definition is independent of r, 0 < r < 1, we will write $L^{p,q}(\Omega, d\tau)$ instead of $L^{p,q}_r(\Omega, d\tau)$ (see [1]).

We let P_{α} denote the orthogonal projection from $L^{2}(\Omega, d\nu_{\alpha})$ onto $L^{2,\alpha}(\Omega) = L^{2}(\Omega, d\nu_{\alpha}) \cap H(\Omega)$. It can be shown that (see [9], for instance)

$$P_{\alpha}f(z) = \int_{\Omega} \frac{f(w)d\nu_{\alpha}(w)}{h(z,w)^{N+\alpha}}, \quad z \in \Omega, \ f \in L^{2}(\Omega, d\nu_{\alpha}).$$

The above formula extends the domain of P_{α} to $L^{1}(\Omega, d\nu_{\alpha})$. Note that $P_{\alpha}f = D^{0,\alpha}f$ for $f \in L^{1}(\Omega, d\nu_{\alpha})$.

If $1 \le p \le \infty$ and $\alpha > -1$ then $B^p = P_{\alpha}L^p(\Omega, d\tau)$. See ([13]). In this note we show that the analytic Besov space B^p , $0 ,can be naturally embedded as a complemented subspace of <math>L^{1,p}(\Omega, d\tau)$ by a topological embedding

$$E_{m,\alpha}: B^p \to L^{1,p}(\Omega, d\tau).$$

We show that $E_{m,\alpha} \circ P_{\alpha}$ is projection on this embedded copy and that $B^p = P_{\alpha}L^{1,p}(\Omega, d\tau)$.

More precicely we prove

Theorem 1.3. Let $0 . Then for any <math>\alpha > max$ $\left\{\frac{a(r-1)}{2p} - N, -1\right\}$,

$$P_{\alpha}: L^{1,p}(\Omega, d\tau) \to B^p$$

is a continuous linear map. Moreover if $m > \frac{N-1}{p}$ and $\alpha > \max\{\frac{a(r-1)}{2p} - N, -1\}$ then

$$E_{m,\alpha}: B^p \to L^{1,p}(\Omega, d\tau)$$

is a topological embedding.

This theorem was proved in [4] for the open unit ball.

Finally we apply Theorem 1.3. to obtain a result about duality.

Theorem 1.4. Let $0 ,<math>m > \frac{N-1}{p}$ and $\alpha = m - N$. The integral pairing

$$< f, g>_{\tau} = \int_{\Omega} E_{m,\alpha} f(z) \overline{E_{m,\alpha} g(z)} d\tau(z)$$

induces the following duality $(B^p)^* = B^{\infty}$

2. Preliminaries

Throughout this paper we will use the conventions of denoting by C any positive constant which is independent of the relevant parameters in the expression in which it occurs. The value of C may change from one occurence to the next. In addition, we will use the notation $A \cong B$ to mean $C^{-1}A \leq B \leq CA$ for some positive constant C.

We begin with a version of Theorem 3 in [13].

Lemma 2.1. Suppose $0 \le m$ and $\alpha, \beta > -1$. Then

$$D_z^{m,\alpha}(h(z,w)^{-N-\beta}) = F(z,w)h(z,w)^{-N-\beta-m},$$

where F is holomorphic in z, conjugate holomorphic in w, and bounded in $\Omega \times \Omega$.

Proof. From the integral representation of the operator $D^{m,\alpha}$ we obtain

$$D_z^{m,\alpha} (h(z,w)^{-N-\beta}) = c_\alpha \int_{\Omega} \frac{h(u,u)^\alpha d\nu(u)}{h(z,u)^{N+\alpha+m} h(u,w)^{N+\beta}}.$$

Denote the integral above by f(z, w) (forget about the constant). Then f is holomorphic in z and conjugate holomorphic in w. Fix $z \in \Omega$ and let φ_z be the involutive authomorphism interchanging z and 0; see [2]. A change of variables $u = \varphi_z(\xi)$ gives

$$f(z,z) = \int_{\Omega} \frac{h(\varphi_z(\xi), \varphi_z(\xi))^{\alpha+N} d\nu(\xi)}{h(z, \varphi_z(\xi))^{N+\alpha+m} h(\varphi_z(\xi), z)^{N+\beta} h(\xi, \xi)^N}.$$

Since,

$$h(\varphi_z(\xi), \varphi_z(\xi)) = \frac{h(z, z)h(\xi, \xi)}{|h(z, \xi)|^2}$$

and

$$h(z,\varphi_z(\xi)) = \frac{h(z,z)}{h(z,\xi)},$$

we have

$$f(z,z) = \frac{1}{h(z,z)^{N+\beta+m}} \int_{\Omega} \frac{h(\xi,\xi)^{\alpha} h(z,\xi)^m \ d\nu(\xi)}{h(\xi,z)^{\alpha-\beta}}$$

Let

$$F(z,w) = \int_{\Omega} \frac{h(z,u)^m \ h(u,u)^{\alpha} \ d\nu(u)}{h(u,w)^{\alpha-\beta}}, \ z,w \in \Omega.$$

Then F is holomorphic in z, conjugate holomorphic in w, and

$$f(z,z) = \frac{F(z,z)}{h(z,z)^{N+\beta+m}}, \text{ for all } z \in \Omega.$$

By a well known uniqueness theorem in several complex variables (see [6]) we must have

$$f(z,w) = \frac{F(z,w)}{h(z,w)^{N+\beta+m}}$$
, for all $z,w \in \Omega$.

It remains to show that F is bounded in $\Omega \times \Omega$.

It is well known that there exists a universal constant C > 0 such that $h(z, z) \leq C|h(z, w)|$, for all z and w in Ω . If $\alpha \geq \beta$, then

$$|F(z,w)| \le C \int_{\Omega} |h(z,w)|^m h(u,u)^{\beta} d\nu(u), \quad z,w \in \Omega,$$

which shows that F is bounded, since h is polynomial and $\int_{\Omega} h(u,u)^{\beta} d\nu(u) < \infty$. If $\alpha < \beta$, then

$$|F(z,w)| \le \int_{\Omega} |h(z,u)|^m |h(u,w)|^{\beta-\alpha} h(u,u)^{\alpha} d\nu(u), z, w \in \Omega,$$

and so F is bounded.

Note that if $\alpha = \beta$, then $F(z, w) \equiv 1$, and therefore

$$D_z^{m,\alpha}(\frac{1}{h(z,w)^{N+\alpha}}) = \frac{1}{h(z,w)^{N+\alpha+m}}.$$

Lemma 2.2. ([2]). For fixed r > 0, there is a sequence $\{\xi_j\}$ in Ω such that

- (i) $\bigcup_{j=1}^{\infty} E_r(\xi_j) = \Omega$, and
- (ii) there is a positive integer M=M(r) such that for any $z\in\Omega$, z is contained in at most M of the sets $E_{2r}(\xi_j)$.

Lemma 2.3. Let
$$k, m \ge 0$$
 and $\alpha > -1$. If $f \in L^1(\Omega, d\nu_\alpha)$ then
$$D^{m,k+\alpha}(D^{k,\alpha}f) = D^{m+k,\alpha}f.$$

Proof. It follows easily from the reproducing property of the Bergman projections $P_{\alpha+k}$ and Fubini's theorem that

$$D^{m,k+\alpha}(D^{k,\alpha}f)(z) = D_z^{m,k+\alpha} \left(c_{k+\alpha} \int_{\Omega} \frac{h(u,u)^{\alpha+k} D^{k,\alpha}f(u) \, d\nu(u)}{h(z,u)^{N+\alpha+k}} \right)$$

$$= c_{k+\alpha} \int_{\Omega} h(u,u)^{\alpha+k} D_z^{m,k+\alpha}(h(z,u)^{-N-\alpha-k}) D^{k,\alpha}f(u) d\nu(u)$$

$$= c_{k+\alpha} \int_{\Omega} \frac{h(u,u)^{k+\alpha} D^{k,\alpha}f(u) d\nu(u)}{h(z,u)^{N+k+\alpha+m}}$$

$$= c_{k+\alpha} \int_{\Omega} \frac{h(u,u)^{k+\alpha} \, d\nu(u)}{h(z,u)^{N+k+\alpha+m}} c_{\alpha} \int_{\Omega} \frac{h(\xi,\xi)^{\alpha}f(\xi) d\nu(\xi)}{h(u,\xi)^{N+k+\alpha}}$$

$$= c_{\alpha} \int_{\Omega} h(\xi,\xi)^{\alpha}f(\xi) d\nu(\xi) \int_{\Omega} \frac{c_{k+\alpha}h(u,u)^{k+\alpha} \, d\nu(u)}{h(u,\xi)^{N+k+\alpha}h(z,u)^{N+\alpha+k+m}}$$

$$= c_{\alpha} \int_{\Omega} \frac{h(\xi,\xi)^{\alpha}f(\xi) d\nu(\xi)}{h(z,\xi)^{N+k+m+\alpha}} = D^{k+m,\alpha}f(z)$$

Lemma 2.4. ([3]). For t > -1 and c real let

$$I_{t,c}(z) = \int_{\Omega} \frac{h(w,w)^t d\nu(w)}{|h(z,w)|^{N+t+c}}, \quad z \in \Omega.$$

We have

(i) If $c < -\frac{a(r-1)}{2}$, then $I_{t,c}(z)$ is bounded on Ω .

(ii) If $c > \frac{a(r-1)}{2}$, then $I_{t,c} \cong h(z,z)^{-c}$.

Lemma 2.5. Let 0 and let <math>r > 0. There exists a constant C > 0 such that

$$|f(z)|^p \leq \frac{C}{\nu(E_r(z))} \int_{E_r(z)} |f(z)|^p d\nu(w), \text{for all} \quad z \in \Omega \text{ and} \quad f \in H(\Omega).$$

As a final preliminary result we need the following lemma.

Lemma 2.6. Let r > 0. There exists C = C(r) > 0 such that for $a, b \in \Omega$ with $\beta(a, b) \leq r$ and arbitrary $z \in \Omega$ we have

$$C^{-1} \le \frac{|h(z,a)|}{|h(z,b)|} \le C.$$

Proof. Obviously it is sufficient to show that

$$C^{-1} \le \frac{|K(z,b)|}{|K(z,a)|} \le C.$$

For the Bergman reproducing kernel we have the well-known transformation law

$$K(\varphi_a(z), \varphi_a(w))(J_c\varphi_a)(z)\overline{(J_c\varphi_a)(w)} = K(z, w), \quad z, w \in \Omega,$$

where $(J_c\varphi_a)(z)$ denotes the determinant of the complex Jacobian of φ_a . Note that

$$|J_c\varphi_a(z)|^2 = \frac{|K(z,a)|^2}{K(a,a)},$$

(see [2], Proposition 2).

Thus,

$$\begin{split} \frac{|K(z,b)|}{|K(z,a)|} &= \frac{|K(\varphi_a(z),\varphi_a(b))||(J_c\varphi_a)(b)|}{|K(\varphi_a(z),\varphi_a(a))||(J_c\varphi_a)(a)|} \\ &= \frac{|K(\varphi_a(z),\varphi_a(b))||K(b,a)|}{|K(a,a)|} \end{split}$$

Since $\beta(a,b) \leq r$, $\varphi_a(b) \in E_r(0)$. Using the fact that $K(\xi,w)$ is continuous and nonvanishing on the compact $\overline{\Omega} \times E_r(0)$ and that

$$C^{-1} \le \frac{|K(b,a)|}{|K(a,a)|} \le C, \quad \text{for } b \in E_r(a),$$

we see that there is a constant C(r) > 0 with

$$C(r)^{-1} \le \frac{|K(z,b)|}{|K(z,a)|} \le C(r).$$

3. Analytic Besov space B^p , 0

Proof of Theorem1.1. Let r > 0 and $\{\xi_j\}$ be the same as those in Lemma 2.2 and assume that $E_{m,\alpha}f \in L^p(\Omega, d\tau)$. Since $f = D_{m,\alpha}D^{m,\alpha}f$, we have

$$D^{k,\beta}f(z) = D_z^{k,\beta} \left[c_{m+\alpha} \int_{\Omega} \frac{h(\xi,\xi)^{m+\alpha} D^{m,\alpha} f(\xi) d\nu(\xi)}{h(z,\xi)^{N+\alpha}} \right]$$
$$= c_{m+\alpha} \int_{\Omega} \frac{h(\xi,\xi)^{m+\alpha} F(z,\xi) D^{m,\alpha} f(\xi) d\nu(\xi)}{h(z,\xi)^{N+\alpha+k}},$$

by Lemma 2.1.

By Lemmas 6 and 8 in [2] and by Lemma 2.6 there exists a constant C, C>0, such that

$$C^{-1} \le \frac{h(\xi,\xi)}{h(\xi_j,\xi_j)} \le C, \quad C^{-1} \le \frac{|h(z,\xi)|}{|h(z,\xi_j)|} \le C, \quad C^{-1} \le \frac{\nu(E_r(\xi_j))}{h(\xi_j,\xi_j)^N} \le C,$$

for all $z \in \Omega$, for all $\xi_j, j \ge 1$, and $\xi \in E_r(\xi_j)$. Thus,

$$\begin{split} &\|E_{k,\beta}f\|_{L^p(\Omega,d\tau)}^p \\ &\leq C\int_{\Omega}d\tau(z)\left(\int_{\Omega}\frac{h(\xi,\xi)^{m+\alpha}|D^{m,\alpha}f(\xi)|h(z,z)^kd\nu(\xi)}{|h(z,\xi)|^{N+\alpha+k}}\right)^p \\ &\leq C\int_{\Omega}\left(\sum_{j=1}^{\infty}\int_{E_r(\xi_j)}\frac{h(\xi,\xi)^{m+\alpha}|D^{m,\alpha}f(\xi)|h(z,z)^kd\nu(\xi)}{|h(z,\xi|^{N+\alpha+k}}\right)^pd\tau(z) \\ &\leq C\int_{\Omega}\left(\sum_{j=1}^{\infty}\frac{h(\xi_j,\xi_j)^{m+\alpha}sup_{\xi\in E_r(\xi_j)}|D^{m,\alpha}f(\xi)|h(z,z)^k\nu(E_r(\xi_j))}{|h(z,\xi_j)|^{N+\alpha+k}}\right)^pd\tau(z) \\ &\leq C\sum_{j=1}^{\infty}h(\xi_j,\xi_j)^{(N+m+\alpha)p}\sup_{\xi\in E_r(\xi_j)}|D^{m,\alpha}f(\xi)|^p\int_{\Omega}\frac{h(z,z)^{kp-N}d\nu(z)}{|h(z,\xi_j)|^{p(N+\alpha+k)}} \end{split}$$

By Lemma 2.5

$$\sup_{\xi \in E_r(\xi_j)} |D^{m,\alpha} f(\xi)|^p \le \frac{C}{\nu(E_{2r}(\xi_j))} \int_{E_{2r}(\xi_j)} |D^{m,\alpha} f(w)|^p d\nu(w)$$

and by Lemma 2.4 we have

$$\int_{\Omega} \frac{h(z,z)^{kp-N}}{|h(z,\xi_j)|^{p(N+\alpha+k)}} \leq \frac{C}{|h(\xi_j,\xi_j)|^{p(N+\alpha)}}.$$

Thus,

$$||E_{k,\beta}f||_{L^{p}(\Omega,d\tau)}^{p} \leq C \sum_{j=1}^{\infty} \int_{E_{2r}(\xi_{j})} h(\xi,\xi)^{pm} |D^{m,\alpha}f(\xi)|^{p} d\tau(\xi)$$

$$\leq C ||E_{m,\alpha}f||_{L^{p}(\Omega,d\tau)}^{p}$$

This finishes the proof of Theorem 1.1.

4. Embedding of Besov spaces B^p , 0

To prove Theorem 1.3 the following lemma will be needed.

Lemma 4.1. If $0 , then <math>L^{1,p}(\Omega, d\tau) \subset L^1(\Omega, d\tau)$ and the inclusion map is continuous.

Proof. Let $0 < \delta < \frac{1}{4}$ and let $f \in L^{1,p}_{2\delta}(\Omega, d\tau)$. The invariance of the measure τ and Fubini's theorem show that $L^q(\Omega, d\tau) = L^{q,q}(\Omega, d\tau)$, for any q, $0 < q < \infty$. Thus, we have

$$\begin{split} \|f\|_{L^{1,1}_{\delta}(\Omega,d\tau)} &\leq C \int_{\Omega} \left[\int_{E_{\delta}(z)} |f(\xi)| d\tau(\xi) \right] d\tau(z) \\ &\leq Cess \sup_{z \in \Omega} \left[\int_{E_{\delta}(z)} |f(\xi)| d\tau(\xi) \right]^{1-p} \int_{\Omega} \left[\int_{E_{\delta}(z)} |f(\xi)| d\tau(\xi) \right]^{p} d\tau(z). \end{split}$$

It is easy to see that if $w \in E_{\delta}(z)$, then $E_{\delta}(w) \subset E_{2\delta}(z)$. Thus,

$$\int_{\Omega} \left(M_{\infty,\delta}(M_{1,\delta}) f(z) \right)^p d\tau(z) \leq C \int_{\Omega} \left(M_{1,2\delta} f(z) \right)^p d\tau(z).$$

On the other hand,

$$\begin{aligned} ess \sup_{w \in \Omega} \big(M_{1,\delta} f(w) \big)^p \tau(\delta) &\leq ess \sup_{w \in \Omega} \int_{\Omega} \mathcal{X}_{E_{\delta}(w)}(z) \big(M_{1,\delta} f(w) \big)^p d\tau(z) \\ &\leq \int_{\Omega} ess \sup_{w \in \Omega} \mathcal{X}_{E_{\delta}(z)}(w) \big(M_{1,\delta} f(w) \big)^p d\tau(z) \\ &= \int_{\Omega} \left(M_{\infty,\delta}(M_{1,\delta} f)(z) \right)^p d\tau(z) \end{aligned}$$

Combining the above inequalities we find that $||f||_{L^1_\delta(\Omega,d\tau)} \leq C||f||_{L^{1,p}_{2\delta}(\Omega,d\tau)}$. This finishes the proof of Lemma 4.1.

Proof of Theorem 1.3.

Let $f \in L^{1,p}(\Omega, d\tau)$ and let $m > \frac{N-1}{p}$ and $\alpha > \max\{\frac{a(r-1)}{2p} - N, -1\}$. Using Lemma 4.1 we see that

$$|D^{m,\alpha}f(z)| \le C \int_{\Omega} \frac{h(w,w)^{\alpha}|f(w)|d\nu(w)}{|h(z,w)|^{N+\alpha+m}}$$

$$\le C \left[\int_{\Omega} \left[\int_{E_{\epsilon}(w)} \frac{h(\xi,\xi)^{\alpha+N}|f(\xi)|d\tau(\xi)}{|h(z,\xi)|^{N+\alpha+m}} \right]^{p} d\tau(w) \right]^{\frac{1}{p}}$$

for some fixed ϵ , $0 < \epsilon < \frac{1}{2}$.

Since $h(\xi,\xi) \cong h(w,w)$ and $|h(z,\xi)| \cong |h(z,w)|$ (Lemma 2.6), if $\xi \in E_{\epsilon}(w)$ we have

$$|D^{m,\alpha}f(z)|^p \le C \int_{\Omega} \frac{h(w,w)^{p(\alpha+N)}}{|h(z,w)|^{p(N+\alpha+m)}} \left[\int_{E_{\epsilon}(w)} |f(\xi)| d\tau(\xi) \right]^p d\tau(w).$$

Using Lemmas 2.3 and 2.4 we obtain

$$\begin{split} &\|h(z,z)^{m}D^{m,\alpha}P_{\alpha}f(z)\|_{L^{p}(\Omega,d\tau)}^{p} \\ &= \|h(z,z)^{m}D^{m,\alpha}(D^{0,\alpha}f)(z)\|_{L^{p}(\Omega,d\tau)}^{p} \\ &= \|h(z,z)^{m}D^{m,\alpha}f(z)\|_{L^{p}(\Omega,d\tau)}^{p} \\ &\leq C \int_{\Omega} h(z,z)^{mp}d\tau(z) \int_{\Omega} \frac{h(w,w)^{p(\alpha+N)}}{|h(z,w)|^{p(\alpha+N+m)}} \left[\int_{E_{\epsilon}(w)} |f(\xi)|d\tau(\xi) \right]^{p} d\tau(w) \\ &\leq C \int_{\Omega} h(w,w)^{p(\alpha+N)} \left[\int_{E_{\epsilon}(w)} |f(\xi)|d\tau(\xi) \right]^{p} \left[\int_{\Omega} \frac{h(z,z)^{mp-N}d\nu(z)}{|h(z,w)|^{p(N+\alpha+m)}} \right] d\tau(w) \\ &\leq C \int_{\Omega} \left[\int_{E_{\epsilon}(w)} |f(\xi)|d\tau(\xi) \right]^{p} d\tau(w) \cong \|f\|_{L^{1,p}(\Omega,d\tau)}^{p} \end{split}$$

1

Using Lemma 4.1 we find that

$$|P_{\alpha}f(0)| \le C ||f||_{L^{1}(\Omega, d\nu_{\alpha})} \le C ||f||_{L^{1}(\Omega, d\tau)} \le C ||f||_{L^{1,p}(\Omega, d\tau)}.$$

Thus, $||P_{\alpha}f||_{B^p} \leq C ||f||_{L^{1,p}(\Omega,d\tau)}$.

Assume now that $f \in B^p$. Since $L^p(\Omega, d\tau) = L^{p,p}(\Omega, d\tau)$, we have

$$\int_{\Omega} h(z,z)^{mp} \left[M_{p,\epsilon} D^{m,\alpha} f(z) \right]^p d\tau(z) \le C \|f\|_{B^p}^p, \quad \text{for some } \epsilon, 0 < \epsilon < \frac{1}{2}.$$

Let $\delta = \frac{\epsilon}{2}$. The function $D^{m,\alpha}f \in H(\Omega)$ and therefore

$$|D^{m,\alpha}f(w)|^p \le C \int_{E_{\delta}(w)} |D^{m,\alpha}f(\xi)|^p d\tau(\xi),$$

by Lemma 2.5.

From this we find that

$$M_{1,\delta}D^{m,\alpha}f(z) \le M_{\infty,\delta}D^{m,\alpha}f(z) \le C(M_{p,\epsilon}D^{m,\alpha}f(z)), \quad z \in \Omega.$$

Thus,

$$||h(z,z)^m M_{1,\delta} D^{m,\alpha} f(z)||_{L^p(\Omega,d\tau)} \le C||f||_{B^p}$$

Since

$$||h(z,z)^m D^{m,\alpha} f||_{L^{1,p}_{\delta}(\Omega,d\tau)} \cong ||h(z,z)^m M_{1,\delta} D^{m,\alpha} f||_{L^p(\Omega,d\tau)},$$

we see that $||E_{m,\alpha}f||_{L^{1,p}(\tau)} \le C||f||_{B^p}$.

Using again the fact that $h(z,z) \cong h(w,w)$, for $z \in E_{\epsilon}(w)$ we get

$$\begin{aligned} \|E_{m,\alpha}f\|_{L^{1,p}_{\epsilon}(\Omega,d\tau)} &= \left[\int_{\Omega} \left[\int_{E_{\epsilon}(w)} h(z,z)^{m} |D^{m,\alpha}f(z)| d\tau(z)\right]^{p} d\tau(w)\right]^{\frac{1}{p}} \\ &\geq C \left[\int_{\Omega} h(w,w)^{mp} \left[\int_{E_{\epsilon}(w)} |D^{m,\alpha}f(z)| d\tau(z)\right]^{p} d\tau(w)\right]^{\frac{1}{p}} \\ &\geq C \left[\int_{\Omega} h(w,w)^{mp} \left[\int_{E_{\epsilon}(w)} |D^{m,\alpha}f(z)|^{p} d\tau(z)\right] d\tau(w)\right]^{\frac{1}{p}} \end{aligned}$$

Here we have used the estimate

$$M_{p,\epsilon}D^{m,\alpha}f(w) \leq M_{1,\epsilon}D^{m,\alpha}f(w), \qquad w \in \Omega.$$

Using Lemma 4.1 we obtain

$$|f(0)| \le C ||E_{m,\alpha}f||_{L^{1,p}_{\epsilon}(\Omega,d\tau)}.$$

Thus

$$||f||_{B^p} \cong ||E_{m,\alpha}f||_{L^{1,p}(\Omega,d\tau)}.$$

i.e. $E_{m,\alpha}$ is a topological embedding.

We note that $V_{m,\alpha} \circ P_{\alpha}$ is projection from $L^{1,p}(\tau)$ onto $V_{m,\alpha}(B^p)$.

From $f = c_{m+\alpha} c_{\alpha}^{-1} P_{\alpha} E_{m,\alpha} f$, $f \in B^p$, it follows by Lemma 4.1 that P_{α} maps $L^{1,p}(\Omega, d\tau)$ onto B^p .

References

- D.Bekolle, C.Berger, L.Coburn, K.Zhu, BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal., 91 (1990), 310-350.
- [2] C.Berger, L.Coburn, K.Zhu, Function theory on Cartan domains and the Berezin-Toeplitz symbol calculus, Amer. J. Math., 110 (1988), 921-953.
- [3] J.Faraut, A.Koranyi, Function spaces and reproducing kernels on boundedsymmetric domains, J. Funct. Anal., 88 (1990), 64-89.
- [4] M.Jevtić, Analytic Besov space B^p , 0 (to appear).
- [5] A.Koranyi, Analytic invariants of bounded symmetric domains, Proc. Amer. Math. Soc., 19 (1968), 279-284.
- [6] S.Krantz, Function thery of several complex variables, John Wiley and Sons, 1982.
- [7] M.Mateljević and M.Pavlović, An extension of the Forelly-Rudin projection theorem, Proc. Edinburg Math. Soc., 36 (1993), 375-389.
- [8] J.Shapiro, Macky topologies, reproducing kernels, and diagonal maps on the Hardy and Bergman spaces, Duke Math. J., 43 (1976), 187-202.
- [9] M.Stoll, Mean value theorems for harmonic and holomorphic functions on bounded symmetric domains, J. Reine Angew. Math., 283 (1977), 191-198.
- [10] K.Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Anal., 81 (1988), 260-278.
- [11] K.Zhu, Holomorphic Besov spaces on bounded symmetric domains, Quarterly J. Math., 46 (1995), 239-256.
- [12] K.Zhu, Bergman and Hardy spaces with small exponents, Pacific J. Math., 162 (1994), 189-199.
- [13] K.Zhu, Holomorphic Besov spaces on bounded symmetric domains, II, Indiana University Mathematical Journal, 44 (1995), 1017-1031..

MATEMATIČKI FAKULTET, STUDENTSKI TRG 16, 11000 BEOGRAD, YUGOSLAVIA