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ALMOST o-CONTINUOUS MULTIFUNCTIONS

Valeriu Popa and Takashi Noiri

Abstract. The purpose of the present paper is to introduce the notion of
almost a~continuous multifunctions. We obtain several characterizations and
properties of such multifunctions.

1. Introduction

In 1965, Njastad [10] introduced a weak form of open sets called a-sets.
The authors [14, 18] of the present paper investigated a class of functions
called almost a:-continuous or almost feebly continuous. In 1993, the authors
[20] introduced the notion of a-continuous multifunctions. The purpse of
the present paper is to define almost a-continuous multifunctions and to
obtain several characterizations and some properties of almost a-continuous
multifunctions.

2. Preliminaries

Let X be a topological space and A a subset of X. The closure of A
and the interior of A are denoted by CI(A) and Int(A), respectively. A
subset A is said to be a-open [10] (resp. semi-open [5], preopen (8], B-open
[1], or semi—preopen [2]) if A C Int(Cl(Int(A))) (resp. A C Cl(Int(A)),
A C Int(Cl(A)), A C Cl(Int(CI(A))) ). The family of all semi-open
(resp. a-open) sets of X containing a point z € X is denoted by SO(X, z)
(resp a(X,z)). The family of all a-open (resp. semi—open, preopen, semi-
preopen) sets in X is denoted by a(X) (resp. SO(X), PO(X), SPO(X)).
For these four families, it is shown in [13, Lemma 3.1] that SO(X)NPO(X) =
a(X) and it is obvious that SO(X) U P(X) C SPO(X). Since a(X) is a
topology for X [10, Prop. 2], by aCI(A) (resp. alnt(A)) we denote the
closure (resp. interior) of A with respect to a(X). The complement of a
semi-open (resp. a-open) set is said to be semi-closed (resp. a-closed).
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The intersection of all semi-closed sets of X containing A is called the semi—
closure [3] of A and is denoted by sC1I(A). The union of ull semi-open sets of
X contained in A is called the semi—intericr of A and is denoted by sint(A).
A subset A is said to be feebiy open [6] if there exists an open set U such
that U C A C sCl(U). Tt is shown in [13, Lemma 4.12] that the notion of
feebly open sels is equivalent to that of a-upens sets. A subset A of a space
X is said to be regular open (resp. regular closed) if A = Int(CI(A)) (resp.
A = Cl(Int(A))). The family of regular open (resp. regular closed) sets of
X is denoted by RO(X) (resp. RC(X)). Maheshwari at al. [7] defined a
function to be almost feebly continuous if the inverse iinage of every regular
open set is feebly open. Noiri [14] defined a function f : X — ¥ to be almost
a-continuous if f~1(V) € a(X) for every V € RO(Y") and pointed out that
almost feeble continuity is equivalent to almost a-continuity.

Throughout this paper, spaces (X,7) and (X, o) (or simply X and Y)
always mean topological spaces and F': X — Y (resp. f: X — Y) presents
a multi:alued (resp. single valued) function. For a multifunction F : X = Y,
we shall denote the upper and lower inverse of a set G of Y by F*(G) and
F~(G), respectively, that is

Fr(G)={ze€eX:F(z)CG} and F (G)={z€ X:F(z)NG # a}.

Let A(Y) be the collection of all nonempty subsets of ¥. For an open set V

of Y, we denote V(A€ A(Y): AV}iand V- ={A€ A(Y): ANV # @}
124].

3. Characterizations

Definition 1. A multifunction F : X — Y is said to be almost a-continuous
(briefly a.c.c.) at a point z € X, if for any open sets G1, G2 of Y such that
F(z) e GT NG5 and U € SO(X, ), there exists a nonempty open set Gy
of X such that Gy C U, F(Gy) C sCI(G1) and F(g) N sCl(Gz) # @ for
every g € Gy.

A miiltifunction F : X — Y is said to be almost a-continuous if it has
this properties at each point of X.

Theorem 1. The following are equivalent for a multifunction F: X = Y

(1) F is a.a.c. at a point x € X;

(2) for any open sets G1, Gy of Y such that F(z) € G{ NG5, there exists
U € a(X, z) such that F(U) C sCl(G1) and F(u)NsCI(G2) # & for
every u € U;

(3) z € aInt[F+(sCl(G1)) N F~(sCl(Gs))] for any open sets G1,G2 of
Y such that F(z) € GT NG5 ;
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(4) =z € Int(Cl(Int[F*(sCl(G1)) N F~(sCI(G2))])) for any open sets
G1,Go of Y such that F(z) € GinGs.

Proof. (1) = (2) Let G1, G2 be any open sets of ¥ such that F(z) €
G{NG5 . For each H € SO(X, z), there exists a nonempty openset Gy C H
such that F(Gg) C sCl(G1) and F(g)NsCl(Gq) # @ for every g € G . Let
W =|J{Gy : H € SO(X,z)}. Then W is open in X, z € sCl(W), F(W) C
sCI(G1) and F(w)NsCl(Gz) # @ for every w € W. Put U = WU {z}, then
W C U C sCl(W) = Int(Ci(W)). Therefore, we obtain U € o(X,z) [13,
Lemma 4.12), F(U) C sCI(G1) and F(u) N sCI(Gz) # @ for every u € U.

(2) = (3) Let G1,G2 be any open sets of Y such that F(z) € GinaG;.
Then there exists U € a(X,z) such that F(U) C sCl(G;) and F(u) N
sCl(G,) # @ for every u € U. Thus we have z € U C F*(sCI(G1)) N
F~(sCl(Gy)). Since U € a(X), we obtain

z € U = alnt(U) C alnt[FT(sCl(G1)) N F~ (sCl(G2))].

(3) = (4) Let Gy, G5 be any open sets of ¥ such that F(z) € GT N Gz—
Now put U = aInt[F+(sCl(G1)) N F~(sCl(G3))]. Then U € o(X) an

z € U C FH(sCl(G1)) N F~(sCl(G2)).
Thus we have
z € U C Int(Cl{Int(U))) C Int(Cl{(Int[F*(sCl(G1)) N F~(sCl(G2))]))-

(4) = (1) Let U € SO(X,z) and G1,G2 be any open sets of ¥ such that
F(z) € G NG5 . The we have

z € Int(CI(Int[F*+(sCl(G1)) N F~(sCU(Ga))])) =
= sCl(Int(F* (sCLG1)) N F~ (sCl(G2)))).

It follows from [12, Lemma 3] and [11, Lemma 1] that
@ # U N Int(F*(sCl(G1)) N F~(sCl(G3))) € SO(X, ).
Put Gy = Int[lUNInt(F*(sCl(G1))NF~(sCl(G2)))], then Gy is a nonempty

open set of X [11, Lemma 4] such that Gy C U, F(Gy) C sCIl(G;) and
F(g) NsCl(G2) # @ for every g € Gy. Therefore, F is a.a.c. at z.
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Theorem 2. The following are equivalent for a multifunction F: X — Y :

(1)
(2)

(3)

(4)
(5)
(6)
(7)
(8)
(9)

(10)

(11)

(12)

F is aa.c;

for each x € X and any open sets G1,G2 of Y such that F(z) €
GT NG5, there exists U € (X, ) such that F(U) C sCIl(G;) and
F(u) NsCl(G2) # @ for every u € U;

for each © € X and any regular open sets G1,Go of Y such that
F(z) € GT NG5, there exists U € a(X,z) such that F(U) C G and
F(u) NGy # @ for every u € U;

F+(G1) N F_(Gg) = O!(X) for every G1,G5 € RO(Y),

FH(V)) U F~(V3) is a-closed in X for every V1,Vs € RC(Y);
FH(G1) UF~(Gs) C alnt(F+(sCl(G1)) N F~(sCl(G3))) for any
open sets G1,G2 of Y';

aCl(F~ (sInt(K1)) U Ft(sInt(K2))) C F~(Ky) U FY(Ks3) for any
closed sets K1, Ky of Y';

aCl(F~(Cl(Int(K,))) UFt(Cl(Int(Kz)))) C F~ (K1) UF*(K,) for
any closed sets K1,K5 of Y';
aCl(F~(Cl(Int(Cl(B1))))UF*T(Cl(Int(Cl(By))))) C F~(Cl(B;))U
FH(CI(By)) for any subsets By, By of Y;
Cl(Int(CL{F~(Cl(Int(K,))) U F+(Cl(Int(K2)))))) C F~(Ky)

U F*(K3) for any closed sets K1,K5 of Y ;

Cl(Int(CH{F~ (sInt(Ky)) U F*(sInt(K2))))) C F~(K;) U FH(K,)
for any closed sets K1, K, of Y;

FH(G)NF~(Gq) C Int(Cl(Int(F*(sCI(G1))NF~(sC1(G3))))) for
any open sets G1,Gy of Y.

Proof. (1) = (2) The proof follows immediately from Theorem 1.

(2) = (3) The proof is obvious.

(3) = (4) Let G1,G2 € RO(Y) and z € F*(G1) N F~(G3). Then F(z) €
GYNG5 and there exists U, € o X, z) suh that F(U,) C G, and F(u)NGy #
@ for every u € Uy. Therefore, we have z € U, C F¥(G;) N F~(G3) and
hence F*(G1) N F~(G3) € a(X). :

(4)
F-{X

=> (5) This follows from the fact F*(Y — B) = X — F~(B) and
— B) = X — F*(B) for every subset B of Y.

(5) = (6) Let G1,G2 be any open sets of Y and £ € F*(G1) N F~(Gy).
Then we have F(z} C G1 C sCl(G;) and @ # F(z) N Gy C F(z) N sCl(G3)
and hence

and

x € F¥(sCl(Gy)) = X — F~ (Y — sCI(G1))

t € F~(sCl(Gz)) = X — FH(Y — sCl(Gy)).
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Since Y — sCI(G1) and Y — sCl(G>) are regular closed, F~ (Y — sCl(G1)) U
F*(Y — sCIl(Gy)) is a-closed in X. Since

F=(Y — sCl(G1)) UFT(Y — sCl(Gy)) =
= (X = F*(sCl(G1))) U (X — F~(sCl(Ga))) =
= X — (F*(sCl(G1)) N F~(sCl(G2))),

we have FT(sCl(G1)) N F~ (sCl(G2)) € a(X) and = € alnt(F*(sCl(G1))N
F~(sCIl(G3))). Cosequently, we obtain

Ft (G1)N F~(Gy) C aInt(F+(sC’l(G1)) M F_(SOJ(GQ)))

(6) = (7) Let K1, K> be any closed sets of Y. Then since ¥ — K and
Y — K, are open sets, we have

X — (F~ (K1) U F*H(K»)) = (X - P~ (K1) N (X — F*(K2))
=FT(Y - K)NF (Y - K))
C aInt(F*(sCl(Y — K1)) N F~ (sCI(Y — K3)))
= alnt(FY(Y — sInt(K1)) N F~ (Y — sInt(Ks)))
= alnt(X — F~(sInt(Ky)) N (X — F*(sInt(K3)))
= X — aCl(F~ (sInt(K — 1)) U F*(sInt(K3))).

Therefore, we obtain aCl(F~ (sInt(K;)) U F*(sInt(K3))) c F(K -1) U
FH(K).

(7) = (8) The proof is obvious since sInt(K) = Cl(Int(K)) for every
closed set K.

(8) = (9) The proof is obiouvs.

(9) = (10) It follows from [21, Lemma 2.2] that Cl(Int(CI(S5))) C aCl(S)
for every subset S. Thus, for any closed sets K, K3 of Y we have

Cl(Int(CI(F~(Cl(Int(K1))) U FT(Cl(Int(K2))))) C

C aCl(F~ (Cl{Int(K1))) U Ft(Cl(Int(K2))))

= aCl(F~ (Cl(Int(CL(K1)))) U F*(Cl(Int(Cl(K2))))) C
C F~(K;) U FT(K,).

(10) = (11) The proof is obious since sInt(K) = Cl(Int(K)) for every
closed set K.
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(11) = (12) Let G1,G3 be any open set of Y. Then Y — G; and ¥ — G»
are closed sets of ¥ and we have
Cl(Int(CUF~ (sInt(Y — G)) U F* (sInt(Y — G2))))) C
CF (Y-G)UFT(Y - Gy)
= (X = FH(G1))U(X = F7(G2)) = X — (F*(G1) N F~(G2)).

Moreover, we have

Cl(Int(CUF™ (sInt(Y — G1)) U F(sInt(Y — Gy)))))

= Cl(Int(CU(F~ (Y — sCI(G1)) U FH(Y — sC1(G3)))))
= Cl(Int(CU(X — F*(sCI(G1))) U (X F~(sCl{(G2)))))
= Cl(Int(CU(X — (F*(sCl(G1)) N F~(sCl(G2)))))

= X ~ Int(Cl(Int(F*(sCl(G1)) N F~ (sCU(G2))))).

Therefore, we obtain
FHGi)NF~(Gy) C Int(Cl(Int(F*(sCIl(G1)) N F~(sCl(G2))))).

(12) = (1) Let = be any point of X and Gy, G, be any open set of ¥
such that F(z) € GF NG5 . Then

t€ FHG)NF(Gy) C Int(Cl(Int(F*(sCI(G1)) N F~(sCl(G2)))))
and hence F is a.a.c at z by Theorem 1. Therefore, F is a.a.c.

Corollary 1. (Maheshwari et al. (7], Noiri [14], Popa [18], Thakur and
Paik [26]). For a function f: X =Y, the following are equivalent:
(1) f is almost a-continuous;
(2) for each x € X and any opens set G of Y containing f(z), there
ezists U € o X, x) such that f(U) C sCI(G);
(3) for each z € X and any regular open set G of Y containing f(x),
there ezists U € o X, z) such that f(U) C G;
(4) f7YG) € a(X) for every G € RO(Y);
5) f 1(V) is a-closed in X for every V € RC(Y);
6) f~(G) C aInt(f~*(sCU(Q))) for any open set G of Y;
7) aCl(f~Y(sInt(K)))) C f~ 1(K Jor any closed set K of Y ;
8) aCl(f~1(Cl(Int(K)))) C f~Y(K) for any closed set K of Y;
9) aCI(f~Y(Cl(Int(CI(B)))) C f~ 1(C‘l(fB)) for any subset B of Y ;
0)

(
(
(
E
1 Cl(Int(Cl(fgl(C'l(Int( ) Cf YK) for any closed set K of Y;

(

(11) C’l{Int(Cl(f YsInt(K ))) YK) for any closed set K of Y';
(12) f~YG) C Int(Cl(Int(f~ (sC’l( )))) for any open set G of Y.
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Theorem 3. The following are egivalent for a multifunction F : X — Y

(1) F is a.a.c.

() oCl(F-(G1)UF*(Ga)) C F~(CUGL))UF*(CUG)) for any Cs, Gs
€ SPO(Y);

(3) aCl(F~(G1)UF*(Gs)) C F~(CI(G1))UF*(CI(G3)) for any G1,G
€ SO(Y);

(4) FH(G1) N F~(Gs2) C alnt(F*(sCl(Gz)) N F~(sCl(G1))) for any
Gq1,G2 € PO(Y)

Proof. (1) = (2) Let G1,G> be any semi-preopen sets of Y. Since CI(G1)
and CI(G') are regular closed, by Theorem 2 F~(Cl(G1))UF*(CI(G2)) is a-
closed in X and F~(G1)UF*(G3) C F~(CI(G1))UF*(Cl(G2)). Thetefore,

we have
aCl(F~(G1) U F*(G3)) C F~(Cl(G1)) U FT(CI(G2)).

(2) = (3) This is obvious since SO(Y) C SPO(Y).
(3) = (1) Let Kq1,Ky € RC(Y). Then K;,K; € SO(Y) and hence
OECl(Fi(Kl) UF+(K2)) C F~ (Kl)UF+(K2). Therefore, F'~ (Kl)UF+(K2)
is a-closed in X and hence F' is a.a.c by Theorem 2,

(1) = (4) Let G1,G2 be any preopen sets of Y. Since Int(CI(G,)) and
Int(Cl(G5)) are regular open in Y, Int(Cl(G1)) = sCI(G1) and Int(CI(G2))
= sCl(G3)) [14, Lemma 3.1], by Theorem 2 we have

F+(sCl(G1)) N F~(sCl(Ga)) € o X)

and hence

FH(G1) N F~(Gs) C FT(sCl(Gy)) N F~(sCl(Gy)) =
= alnt(F*(sCl(G1)) N F~ (sClG3))).

(4) = (1) Let G1, G2 be any regular open sets of ¥. Since G1,G2 €
PO(Y), we have F(G1)NF~(G3) C alnt(F*(sCl(G1))NF~(sCl(Gs))) =
aInt(FH(Gy) N F~(G2)) and hence F*(G1) N F~(G3) € a(X). It follows
from Theorem 2 that I is a.o.c.

Corollary 2. The following are equivalent for a function f : X =Y

(1) f is almost a-continuous;

(2) aCl(f~H@®)) C f~YCUG)) for any G € SPO(Y);
(3) aCl( HE) c f 1(C'l( )) for any G € SO(Y);
4) f~YV) c aInt(f~*(sCUV))) for any V € PO(Y).
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Definition 2. A subset A of a topological space X is said to be a-regular
[4] for any point z € A and any open set U of X containing z, there exsists
an open set G of X such that z € G C CI(G) C U.

Definition 3. A subset A of a topological space X is said to be a-para-
compact [27] if every cover of A by open sets of X is refined by a cover of A
which consists of open sets of X and is locally finite in X.

For a multifunction F : X — ¥, a multifunction o« CIF : X — Y is
defined as follows: (a CIF)(z) = aCIl(F(z)) for each z € X.

Lemma 1. (Popa and Noiri [21]) If F : X = Y is a multifunction such
that F(xz) ts a-regular a-paracompact for each = € X, then (a CIF)T (V) =
F*(V) for each open set V of Y.

Lemma 2. (Popa and Noiri [21]) For a multifunction F : X =Y, it follows
that (aCIF)= (V) = F~(V) for every open set V of Y.

Theorem 4. Let F : X — Y be a multifunction such that F(z) is a-
paracompact a-regular for each x € X. Then F s a.c.c. if and only if
aClF : X =Y is a.a.c

Proof. Necessity: Suppose that F' is a.c.c. Let z € X and V3, V5 be any reg-
ular open sets of ¥ such that (a CIF)(x) € V;* NV, ; hence (e CIF)(z) C V3
and (e ClF)(z)NV,y # @. By Lemmas 1 and 2, we have z € (a« CIF)*(V}) =
F*(Vy) and z € (a CIF)~(V3) = F~(V2) and hence F(z) € V;" NV, . Since
F is a.a.c., by Theorem 1 we obtain z € a Int(F* (V1) N F~(V,)) and hence
z € alnt((a CIF)* (V1) N (e CLF)(V,)). This shows that o CIF is a.o.c.

Sufficiency: Suppose that a CIF is a.a.c. Let z € X and V3, Vs be any
regular open sets of ¥ such that F(z) € V;* NV; . By Lemmas 1 and 2,
we have z € FH (Vi) = (aClF)* (V) and z € F~(V,) = (aCIF)~ (V).
Since oo ClF is a.a.c., by Theorem 1 we obtain z € alnt((a CIF)* (V1) N
(@ ClF)™(Va)) = alnt(F+ (V1) N F~(V3)). Thus, F is a.a.c.

For a multifunction F' : X — VY, the graph multifunction Gg : X — X xY
is defined as follows: Gp(z) = {z} x F(z) for every z € X.

Lemma 3. (Noiri and Popa [21]) For a multifunction F : X — Y, the
following hold:

(a) GH(AxB)=ANFY(B) and (b) Gr(AxB)=ANF(B)

for any subsets ACX and BCY.
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Theorem 5. Let F: X — Y be a multifunction such that F(z) is compact
for each z € X. Then F is a.a.c. if and only ifGrp: X - X x X is a.a.c.

Proof. Necessity: suppose that F': X — Y isa.a.c. Let z € X and Wy, W,
be any open sets of X XY such that Gp(z) € W nW, . Then Gr(z) C W1
and Gr(z)NW, # @. Since Gr(z) C Wy, for each y € F(x), there exist open
sets U(y) C X and V(y) C Y such that (z,y) € U(y) x V(y) C W1. The
fasmily {V(y) : y € F(z)} is an open cover of F(z) and there exist a finite
number of points, says, Y1,¥z, - - -,¥n in F(z) such that F(z) C U{V (y:) :
1 <i<n}. Set

U =n{U(y):1<i<n} and Vy=U{V(y):1<i<n}

Then U; and Vi are open in X and Y, respectively, and {z} x F(z) C
U, x Vi € Wy, Since Gp(z) N Wy # @, there exists y € F(z) such that
(x,y) € Wy and hence (z,y) € Uz x Vo C W, for some open sets U; ¢ X and
Vo C Y. Put U = U; NU,. Then U is an open set containing z, F(z) C V1
and F(z)NV; # @. Since F is a.a.c., by Theorem 2 there exists Up € a(X,z)
such that Uy C F*(sCl(V1)) and Uy C F~(sCI(V2)). Put G = U NUo, then
G € a(X,z). By Lemma 3, we obtain

G =UNUy C sCl{U,) N FF(sCl(V1)) = GE(sCl(U1) x sCl(V1))
Therefore, we obtain Gp(G) C sCl(W1). By Lemma 3, we obtain

G = U NUy C sCl{U;) N F~(sCl(Va)) = Gp-(sCUU3) x sCL(Vz))
= G p-(sCU(Us x Va)) C Gp-(sCLUWR)).

Therefore, we obtain Gr(G) N sCI(Ws) # @ for every g € G. By Theorem
2, it follows that G is a.a.c.

Sufficiency: Suppose that Gp : X — X xY is a.acc. Let z € X and
G4, G» be any open sets of Y, such that F(z) € Gf NG5 . Then F(z) C G1
and F(2) NGy # @. By F(z) C Gy, we have Gp(z) C X x G and X x Gy
is open in X x Y. Since F(z) N G2 # &, we have

Gr(z) N (X x Ga) = ({z} x F(2)) N (X x Ga) = {z} x (F(z) N Ga) # 2.

Since X x G4 is open in X x Y, there exists U € a(X, z) such that Gr(U) C
sCU{X x G1) = X xsCl(G1)) and Gp(u)NsCI(X x G3) # @ for every u € U.
By Lemma 3, we obtain U C GH(X x sCl(G1)) = F*(sCi(G1)) and hence
F(U) C sCI(G1)). Moreover, by Lemma 3 we obtain U C Gr(sCI(X x
G3)) = Gp(X x sCl(G2)) = F~(sCl(G3)) and hence F(u) N sCl(G,) # &
for every u € U. By Theorem 2, it follows that F is a.a.s,
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Corollary 3. (Noiri [14]) Let f : X - Y be a function andg: X — X x Y

the graph function of f defined by g(z) = (z, f()) for each z € X. Then i
15 a.a.c. if and only if g is a.a.c

4. Some Properties

Lemma 4. (Mashhour et al. [9], Reilly and Vamanamurthy [25]). Let U
and Xy be subsets of a topological space X. The following properties hold:

(1) IfU € a(X) and Xo € SO(X) U PO(X), then UN Xy € a(Xy),
(2) fUCXoC X, U € a(X) and X, € a(X), then U € a(X).

Theorem 6. If a multifunction F : X > Y is a.a..c. and Xo € SO(X)U
PO(X), then the restriction F/Xy: Xo = Y is a.a.c.

Proof. Let z € X, and Vi, V3 be any open sets of ¥ such that (F/Xo)(z) C
Vi and (F/Xo)(z) N V2 # @. Since (F/Xo)(z) = F(z) and F is a.c.c.,
by Theorem 2 there exists U € a(X,) such that F(U) sCl(V1) and
F(u)NsCl(V,) # @ for each u € U. Let Uy = UNXg, then Uy € a(Xy, z) by
Lemma 4 and (F/X,)(Us) = F(Up) C sCI(V4) and (F/Xo)(u) = sCl(Va) #
& for each u € Up. This shows that F/X, is a.a.c.

Corollary 4. (Maheshwari et al. [7)) If f :+ X — Y is almost feebly con-
tinuous and Xy is an open set of X, then the restriction f/Xo:Xo—=Y is
almost feebly continuous.

Corollary 5. (Noiri [14]) If f : X — Y is almost a-continuous and
Xo € SO(X) U PO(X), then the restriction f/Xo : Xg — Y is almost

a-continuous.

Theorem 7. A multifunction F: X - Y is a.a.c. if for each x € X there
ezists Xo € a(X, ) such that the restriction Fi/Xo:Xg =Y is a.a.c

Proof. Let z € X and Vi, V] be any open sets of ¥ such that F(z) e V1+F‘IV2_.
There exists Xo € a(X,z) such that F/X, : Xp — Y is a.a.c. Therefore,
there exists Uy € a(Xy, z) such that (F/X,)(Uy) C sCIl(V1) and (F/Xp)(u)N
sCl(V3) # @ for each u € Uy. By Lemma 4, U, € a(X,z) and F(u) =
(F/Xo)(u) for each u € Uy. This shows that F is a.cv.c.

Corollary 6. Let {U, : a € V} be a cover of X by c-open sets of X.
Then, a multifunction F : X - Y is a.a.c. if and only if the restriction
FlU, :Uy =Y is a.a.c. for eacha € V.

Proof. This is an immediate consequence of Theorems 6 and 7.
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Corollary 7. (Thakur and Paik [26]) Let f : X — Y be a function and
{Ua - @ € V} be an open cover of X. If the restriction flUg : Uy =Y is
g.q.c. for each @ € V, then f is a.o.c.

Definition 4. A multifunction F : X — Y is said to be almost precontin-
uous if for each z € X and any regular open sets G1,Gs of Y such that
F(z) € GT NGy, there exists U € PO(X, ) such that F(U) c G, and
F(u) NGy # & for every u € U. ;

Lemma 5. A multifunction F: X — Y is almost precontinuous if and only
if for any regular open sets G1,G2 of Y, F*(G1) N F~(Gy) € PO(X).

Proof. Necessity: Let F' be almost precontinuous and G 1,G2 € RO(Y). Let
z € F*(G1) N F~(G3). Then F(z) € Gf N G5 and hence there exists
Uy € PO(X,z) such that F(U;) C Gy and F(u) NGy # @ for every u €
Us. Therefore, we have U, C F*+(G;) N F~(G,) and hence z € U, C
Int(CUU,)) C Int(CI(F+(G1)) N F~(G3))). Therefore, we obtain

F+(G1) N F_(Gz) C Int(Cl(F+(G1) M F_(Gg)))

This shows that F*(G1) N F~(G,) € PO(X).

Sufficiency: Let « € X and Gy, Gy € RO(Y) such that F(z) e GTnG;.
Put U = F*(G1) N F~(G,); then 2 € U € PO(X,z), F(U) C G; and
F(u)N G2 # & for every u € U. Therefore, F' is almost precontinuous.

Definition 5. A multifunction F : X — Y is said to be almost quasicon-
tinuous [23] if for each £ € X and any regular open sets G1,G5 of Y such
that F(z) € GF NG5, there exists U € SO(X,z) such that F(U) ¢ G4 and
Flu)NGqy # @ for every u € U.

Lemma 6. (Popa and Noiri [23]) A multifunction F : X — Y is al-

most quasicontinuous if and only if for any regular open sets G1,G2 of Y,
FYHG)NF~(Gs) € SO(X).

Theorem 8. A multifunction F : X — Y is a.c.c. if and only if it is
almost precontinuous and almost guasicontinuous.

Proof. 1t is shown in [13, Lemma 3.1] that SO(X )N PO(X) = a(X). Thus
this follows from Theorem 2, Lemmas 5 and 6.

A function f : X — Y is said to be precontinuous [8] if f~*(V) € PO(X)
for each open set V of Y. A function f 1 X =Y is said to be almost quasi
continuous [16] if for each point z € X, each open set U of X containing
and each open set V of ¥ containing f(z), there exists a nonempty open set
G of X such that G C U and f(G) C Int(CL(V))
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Corollary 8. (Popa [18]) If a function f : X — Y is precontinuous and
almost quasi continuous, then f is almost a-continuous.

Definition 6. A multifunction F : X — Y is said to be

(a) upper almost a-continuous [22] at a point z € X if for each U e
SO(X,z) and each open set V containing F'(z), there exists a non-
empty open set G C U such that F(G) C sCl(V);

(b) lower almost a-continuous [22] at a point z € X if for each U €
SO(X,z) and each open set V such that F(z) NV # &, there exists
a nonempty open set G C U such that F(g) N sCI(V) # & for every
g9 €G;

(c) upper (lower) almost a-continuous if F' has this property at every
point of X.

Remark 1. Since a(X) is a topoly [10], the intersection of two a-open sets
is a-open. Therefore, a multifunction F : X — Y is a.a.c. if and only if F
is upper almost a-continuous and lower almost a-continuous.

Definition 7. A multifunction F; X — Y is said to be

(a) upper almost continuous [17] (resp. upper weakly continuous [15]) if
for each point x € X and each open set V' containing F(z), there
exists an open set U containing z such that F(G) C sCl(V) (resp.
F(G) C CUV)),

(b) lower almost continuous [17] (resp. lower weakly continuous [15]) if
for each z € X and each open set V such gthat F(z) NV # @, there
exists an open set U containing z such that F(u)NsCI(V) # @ (resp.
F(u) N Cl(V) # @) for every u € G. '

Definition 8. A multifunction F : X — Y is said to be a-continuous [20]
if for each point = € X and any open sets G1,G2 of Y such that F(z) €
G NG, , there exists U € a(X, ) such that F(U) C Gy and F(u)NG2 # @
for every u € U.

Lemma 7. (Popa and Noiri [21]) Let F : (X,7) = (Y,0) be a multifunc-

tion.

(1) F is upper a-continuous (resp. upper almost a-continuous) if and
onky if F 1 (X,7%) = (Y, 0) is upepr continuous (resp. upper almost
continuous). , ;

(2) F is lower a-continuous (resp. lower almost a-continuous) if and
only if F : (X,7%) — (Y, 0) is lower continuous (rsp. lower almost
continuous).
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Theorem 9. The following are equivalent for a multifunction F: X - Y
such that F'(z) is a-reqular a-paracompact for each z € X ;

(1) F is a.a.c.;

(2) F is a-continuous.

Proof. Suppose that F' is a.a.c. By Remark 1, F is upper almost o-conti-
nuous and lower almost a-continuous. By Lemma 7, F : (X,7%) = (Y,0) is
upper almost continuous and lower almost continuous. Since F' : (X,7%) —
(Y,o) is upper almost continuous, F : (X,7%) — (Y, o) is upper weakly
continuous and hence upper continuous [19, Theorem 1]. Therefore, By
Lemma 7 F : (X,7) — (Y,0) is upper a-continuous. Since F : (X,7%) —
(Y, o) is lower almost semicontinuous, F : (X,7%) — (Y, 0) is lower weakly
continuous and hence lower rcontinuous [19, Theorem 2]. Therefore, by
Lemma 7 F : (X,7) = (Y,0) is lower a-continuous. Since F is upper a-
continuous and lower a-continuous, it follows from [20, Remark 1] that F is
a-continuous.

Theorem 10. If a closed valued multifunction F: X - Y is a.a.c. and Y
is a normal T1 space, then F is a-continuous.

Proof. Let € X and G;,G2 be any open sets of ¥ such that F(z) €
G n G, . Since F(z) is closed in Y, by the normality of Y there exists an
open set D of ¥ such that F(z) C D C Cl(D) C G;. Since every normal
T space is T3 and F(z) N Gy # @, there exists an open set E of Y such
that ENF(z) # @ and CI(E) C G,. Since F is a.a.c. and F(z) € DY NE,
by Theorem 2 there exists U € a(X,«) such that F(U) C Int(Cl(D)) and
F(u) N Int(CI(E)) # @ for every u € U. Therefore, we obtain FU) c Gy
and F(u) NGz # @ for every u € U. Tjhis shows that F is a-continuous.
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