ALMOST α-CONTINUOUS MULTIFUNCTIONS

Valeriu Popa and Takashi Noiri

Abstract. The purpose of the present paper is to introduce the notion of almost α -continuous multifunctions. We obtain several characterizations and properties of such multifunctions.

1. Introduction

In 1965, Njastad [10] introduced a weak form of open sets called α -sets. The authors [14, 18] of the present paper investigated a class of functions called almost α -continuous or almost feebly continuous. In 1993, the authors [20] introduced the notion of α -continuous multifunctions. The purpse of the present paper is to define almost α -continuous multifunctions and to obtain several characterizations and some properties of almost α -continuous multifunctions.

2. Preliminaries

Let X be a topological space and A a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A is said to be α -open [10] (resp. semi-open [5], preopen [8], β -open [1], or semi-preopen [2]) if $A \subset Int(Cl(Int(A)))$ (resp. $A \subset Cl(Int(A))$, $A \subset Int(Cl(A))$, $A \subset Cl(Int(Cl(A)))$). The family of all semi-open (resp. α -open) sets of X containing a point $x \in X$ is denoted by SO(X,x) (resp $\alpha(X,x)$). The family of all α -open (resp. semi-open, preopen, semi-preopen) sets in X is denoted by $\alpha(X)$ (resp. SO(X), PO(X), SPO(X)). For these four families, it is shown in [13, Lemma 3.1] that $SO(X) \cap PO(X) = \alpha(X)$ and it is obvious that $SO(X) \cup P(X) \subset SPO(X)$. Since $\alpha(X)$ is a topology for X [10, Prop. 2], by $\alpha Cl(A)$ (resp. $\alpha Int(A)$) we denote the closure (resp. interior) of A with respect to $\alpha(X)$. The complement of a semi-open (resp. α -open) set is said to be semi-closed (resp. α -closed).

Received November 24, 1997

¹⁹⁹¹ Mathematics Subject Classification: 54C60.

Key words and phrases. Almost α -continuous multifunctions, α -open sets.

The intersection of all semi-closed sets of X containing A is called the semi-closure [3] of A and is denoted by sCl(A). The union of all semi-open sets of X contained in A is called the semi-interior of A and is denoted by sInt(A). A subset A is said to be $feebly\ open\ [6]$ if there exists an open set U such that $U \subset A \subset sCl(U)$. It is shown in [13, Lemma 4.12] that the notion of feebly open sets is equivalent to that of α -opens sets. A subset A of a space X is said to be $regular\ open\ (resp.\ regular\ closed)$ if A = Int(Cl(A)) (resp. A = Cl(Int(A))). The family of regular open (resp. regular closed) sets of X is denoted by RO(X) (resp. RC(X)). Maheshwari at al. [7] defined a function to be $almost\ feebly\ open$. Noiri [14] defined a function $f: X \to Y$ to be $almost\ \alpha$ -continuous if $f^{-1}(V) \in \alpha(X)$ for every $V \in RO(Y)$ and pointed out that almost feeble continuity is equivalent to almost α -continuity.

Throughout this paper, spaces (X, τ) and (X, σ) (or simply X and Y) always mean topological spaces and $F: X \to Y$ (resp. $f: X \to Y$) presents a multi-alued (resp. single valued) function. For a multifunction $F: X \to Y$, we shall denote the upper and lower inverse of a set G of Y by $F^+(G)$ and $F^-(G)$, respectively, that is

$$F^+(G) = \{x \in X : F(x) \subset G\} \quad \text{and} \quad F^-(G) = \{x \in X : F(x) \cap G \neq \emptyset\}.$$

Let A(Y) be the collection of all nonempty subsets of Y. For an open set V of Y, we denote $V^+(A \in A(Y) : A V)$ and $V^- = \{A \in A(Y) : A \cap V \neq \emptyset\}$ [24].

3. Characterizations

Definition 1. A multifunction $F: X \to Y$ is said to be almost α -continuous (briefly a. α .c.) at a point $x \in X$, if for any open sets G_1 , G_2 of Y such that $F(x) \in G_1^+ \cap G_2^-$ and $U \in SO(X, x)$, there exists a nonempty open set G_U of X such that $G_U \subset U$, $F(G_U) \subset sCl(G_1)$ and $F(g) \cap sCl(G_2) \neq \emptyset$ for every $g \in G_U$.

A multifunction $F: X \to Y$ is said to be almost α -continuous if it has this properties at each point of X.

Theorem 1. The following are equivalent for a multifunction $F: X \to Y$:

- (1) F is $a.\alpha.c.$ at a point $x \in X$;
- (2) for any open sets G_1 , G_2 of Y such that $F(x) \in G_1^+ \cap G_2^-$, there exists $U \in \alpha(X, x)$ such that $F(U) \subset sCl(G_1)$ and $F(u) \cap sCl(G_2) \neq \emptyset$ for every $u \in U$;
- (3) $x \in \alpha Int[F^+(sCl(G_1)) \cap F^-(sCl(G_2))]$ for any open sets G_1, G_2 of Y such that $F(x) \in G_1^+ \cap G_2^-$;

(4) $x \in Int(Cl(Int[F^+(sCl(G_1)) \cap F^-(sCl(G_2))]))$ for any open sets G_1, G_2 of Y such that $F(x) \in G_1^+ \cap G_2^-$.

Proof. (1) \Rightarrow (2) Let G_1 , G_2 be any open sets of Y such that $F(x) \in G_1^+ \cap G_2^-$. For each $H \in SO(X,x)$, there exists a nonempty open set $G_H \subset H$ such that $F(G_H) \subset sCl(G_1)$ and $F(g) \cap sCl(G_2) \neq \emptyset$ for every $g \in G_H$. Let $W = \bigcup \{G_H : H \in SO(X,x)\}$. Then W is open in X, $x \in sCl(W)$, $F(W) \subset sCl(G_1)$ and $F(w) \cap sCl(G_2) \neq \emptyset$ for every $w \in W$. Put $U = W \cup \{x\}$, then $W \subset U \subset sCl(W) = Int(Cl(W))$. Therefore, we obtain $U \in \alpha(X,x)$ [13, Lemma 4.12], $F(U) \subset sCl(G_1)$ and $F(u) \cap sCl(G_2) \neq \emptyset$ for every $u \in U$.

 $(2) \Rightarrow (3)$ Let G_1, G_2 be any open sets of Y such that $F(x) \in G_1^+ \cap G_2^-$. Then there exists $U \in \alpha(X, x)$ such that $F(U) \subset sCl(G_1)$ and $F(u) \cap sCl(G_2) \neq \emptyset$ for every $u \in U$. Thus we have $x \in U \subset F^+(sCl(G_1)) \cap F^-(sCl(G_2))$. Since $U \in \alpha(X)$, we obtain

$$x \in U = \alpha Int(U) \subset \alpha Int[F^+(sCl(G_1)) \cap F^-(sCl(G_2))].$$

(3) \Rightarrow (4) Let G_1, G_2 be any open sets of Y such that $F(x) \in G_1^+ \cap G_2^-$. Now put $U = \alpha Int[F^+(sCl(G_1)) \cap F^-(sCl(G_2))]$. Then $U \in \alpha(X)$ and

$$x \in U \subset F^+(sCl(G_1)) \cap F^-(sCl(G_2)).$$

Thus we have

$$x \in U \subset Int(Cl(Int(U))) \subset Int(Cl(Int[F^+(sCl(G_1)) \cap F^-(sCl(G_2))])).$$

 $(4) \Rightarrow (1)$ Let $U \in SO(X, x)$ and G_1, G_2 be any open sets of Y such that $F(x) \in G_1^+ \cap G_2^-$. The we have

$$x \in Int(Cl(Int[F^+(sCl(G_1)) \cap F^-(sCl(G_2))])) =$$

$$= sCl(Int(F^+(sCl(G_1)) \cap F^-(sCl(G_2)))).$$

It follows from [12, Lemma 3] and [11, Lemma 1] that

$$\varnothing \neq U \cap Int(F^+(sCl(G_1)) \cap F^-(sCl(G_2))) \in SO(X,x).$$

Put $G_U = Int[U \cap Int(F^+(sCl(G_1)) \cap F^-(sCl(G_2)))]$, then G_U is a nonempty open set of X [11, Lemma 4] such that $G_U \subset U$, $F(G_U) \subset sCl(G_1)$ and $F(g) \cap sCl(G_2) \neq \emptyset$ for every $g \in G_U$. Therefore, F is a. α .c. at x.

Theorem 2. The following are equivalent for a multifunction $F: X \to Y$:

- (1) F is $a.\alpha.c$;
- (2) for each $x \in X$ and any open sets G_1, G_2 of Y such that $F(x) \in G_1^+ \cap G_2^-$, there exists $U \in \alpha(X, x)$ such that $F(U) \subset sCl(G_1)$ and $F(u) \cap sCl(G_2) \neq \emptyset$ for every $u \in U$;
- (3) for each $x \in X$ and any regular open sets G_1, G_2 of Y such that $F(x) \in G_1^+ \cap G_2^-$, there exists $U \in \alpha(X, x)$ such that $F(U) \subset G_1$ and $F(u) \cap G_2 \neq \emptyset$ for every $u \in U$;
- (4) $F^+(G_1) \cap F^-(G_2) \in \alpha(X)$ for every $G_1, G_2 \in RO(Y)$;
- (5) $F^+(V_1) \cup F^-(V_2)$ is α -closed in X for every $V_1, V_2 \in RC(Y)$;
- (6) $F^+(G_1) \cup F^-(G_2) \subset \alpha Int(F^+(sCl(G_1)) \cap F^-(sCl(G_2)))$ for any open sets G_1, G_2 of Y;
- (7) $\alpha Cl(F^-(sInt(K_1)) \cup F^+(sInt(K_2))) \subset F^-(K_1) \cup F^+(K_2)$ for any closed sets K_1, K_2 of Y;
- (8) $\alpha Cl(F^-(Cl(Int(K_1))) \cup F^+(Cl(Int(K_2)))) \subset F^-(K_1) \cup F^+(K_2)$ for any closed sets K_1, K_2 of Y;
- (9) $\alpha Cl(F^-(Cl(Int(Cl(B_1)))) \cup F^+(Cl(Int(Cl(B_2))))) \subset F^-(Cl(B_1)) \cup F^+(Cl(B_2))$ for any subsets B_1 , B_2 of Y;
- (10) $Cl(Int(Cl(F^-(Cl(Int(K_1))) \cup F^+(Cl(Int(K_2))))))) \subset F^-(K_1) \cup F^+(K_2)$ for any closed sets K_1, K_2 of Y;
- (11) $Cl(Int(Cl(F^-(sInt(K_1)) \cup F^+(sInt(K_2))))) \subset F^-(K_1) \cup F^+(K_2)$ for any closed sets K_1, K_2 of Y;
- (12) $F^+(G_1) \cap F^-(G_2) \subset Int(Cl(Int(F^+(sCl(G_1)) \cap F^-(sCl(G_2))))))$ for any open sets G_1, G_2 of Y.

Proof. (1) \Rightarrow (2) The proof follows immediately from Theorem 1.

- $(2) \Rightarrow (3)$ The proof is obvious.
- $(3)\Rightarrow (4)$ Let $G_1,G_2\in RO(Y)$ and $x\in F^+(G_1)\cap F^-(G_2)$. Then $F(x)\in G_1^+\cap G_2^-$ and there exists $U_x\in \alpha(X,x)$ subt that $F(U_x)\subset G_1$ and $F(u)\cap G_2\neq\emptyset$ for every $u\in U_x$. Therefore, we have $x\in U_x\subset F^+(G_1)\cap F^-(G_2)$ and hence $F^+(G_1)\cap F^-(G_2)\in\alpha(X)$.
- (4) \Rightarrow (5) This follows from the fact $F^+(Y-B) = X F^-(B)$ and $F^-(X-B) = X F^+(B)$ for every subset B of Y.
- $(5) \Rightarrow (6)$ Let G_1, G_2 be any open sets of Y and $x \in F^+(G_1) \cap F^-(G_2)$. Then we have $F(x) \subset G_1 \subset sCl(G_1)$ and $\emptyset \neq F(x) \cap G_2 \subset F(x) \cap sCl(G_2)$ and hence

$$x \in F^+(sCl(G_1)) = X - F^-(Y - sCl(G_1))$$

and

$$x \in F^{-}(sCl(G_2)) = X - F^{+}(Y - sCl(G_2)).$$

Since $Y - sCl(G_1)$ and $Y - sCl(G_2)$ are regular closed, $F^-(Y - sCl(G_1)) \cup F^+(Y - sCl(G_2))$ is α -closed in X. Since

$$F^{-}(Y - sCl(G_1)) \cup F^{+}(Y - sCl(G_2)) =$$

$$= (X - F^{+}(sCl(G_1))) \cup (X - F^{-}(sCl(G_2))) =$$

$$= X - (F^{+}(sCl(G_1)) \cap F^{-}(sCl(G_2))),$$

we have $F^+(sCl(G_1)) \cap F^-(sCl(G_2)) \in \alpha(X)$ and $x \in \alpha Int(F^+(sCl(G_1)) \cap F^-(sCl(G_2)))$. Cosequently, we obtain

$$F^{+}(G_1) \cap F^{-}(G_2) \subset \alpha Int(F^{+}(sCl(G_1)) \cap F^{-}(sCl(G_2))).$$

(6) \Rightarrow (7) Let K_1, K_2 be any closed sets of Y. Then since $Y - K_1$ and $Y - K_2$ are open sets, we have

$$X - (F^{-}(K_{1}) \cup F^{+}(K_{2})) = (X - F^{-}(K_{1})) \cap (X - F^{+}(K_{2}))$$

$$= F^{+}(Y - K_{1}) \cap F^{-}(Y - K_{2})$$

$$\subset \alpha Int(F^{+}(sCl(Y - K_{1})) \cap F^{-}(sCl(Y - K_{2})))$$

$$= \alpha Int(F^{+}(Y - sInt(K_{1})) \cap F^{-}(Y - sInt(K_{2})))$$

$$= \alpha Int(X - F^{-}(sInt(K_{1})) \cap (X - F^{+}(sInt(K_{2})))$$

$$= X - \alpha Cl(F^{-}(sInt(K - 1)) \cup F^{+}(sInt(K_{2}))).$$

Therefore, we obtain $\alpha Cl(F^-(sInt(K_1)) \cup F^+(sInt(K_2))) \subset F^-(K-1) \cup F^+(K_2)$.

- (7) \Rightarrow (8) The proof is obvious since sInt(K) = Cl(Int(K)) for every closed set K.
 - $(8) \Rightarrow (9)$ The proof is obiouvs.
- $(9) \Rightarrow (10)$ It follows from [21, Lemma 2.2] that $Cl(Int(Cl(S))) \subset \alpha Cl(S)$ for every subset S. Thus, for any closed sets K_1, K_2 of Y we have

$$Cl(Int(Cl(F^{-}(Cl(Int(K_{1}))) \cup F^{+}(Cl(Int(K_{2}))))) \subset$$

$$\subset \alpha Cl(F^{-}(Cl(Int(K_{1}))) \cup F^{+}(Cl(Int(K_{2}))))$$

$$= \alpha Cl(F^{-}(Cl(Int(Cl(K_{1})))) \cup F^{+}(Cl(Int(Cl(K_{2}))))) \subset$$

$$\subset F^{-}(K_{1}) \cup F^{+}(K_{2}).$$

 $(10) \Rightarrow (11)$ The proof is obious since sInt(K) = Cl(Int(K)) for every closed set K.

 $(11) \Rightarrow (12)$ Let G_1, G_2 be any open set of Y. Then $Y - G_1$ and $Y - G_2$ are closed sets of Y and we have

$$Cl(Int(Cl(F^{-}(sInt(Y - G_{!})) \cup F^{+}(sInt(Y - G_{2}))))) \subset \\ \subset F^{-}(Y - G_{1}) \cup F^{+}(Y - G_{2}) \\ = (X - F^{+}(G_{1})) \cup (X - F^{-}(G_{2})) = X - (F^{+}(G_{1}) \cap F^{-}(G_{2})).$$

Moreover, we have

$$Cl(Int(Cl(F^{-}(sInt(Y - G_{1})) \cup F^{+}(sInt(Y - G_{2})))))$$

$$= Cl(Int(Cl(F^{-}(Y - sCl(G_{1})) \cup F^{+}(Y - sCl(G_{2})))))$$

$$= Cl(Int(Cl(X - F^{+}(sCl(G_{1}))) \cup (X - F^{-}(sCl(G_{2})))))$$

$$= Cl(Int(Cl(X - (F^{+}(sCl(G_{1})) \cap F^{-}(sCl(G_{2})))))$$

$$= X - Int(Cl(Int(F^{+}(sCl(G_{1})) \cap F^{-}(sCl(G_{2}))))).$$

Therefore, we obtain

$$F^{+}(G_1) \cap F^{-}(G_2) \subset Int(Cl(Int(F^{+}(sCl(G_1)) \cap F^{-}(sCl(G_2))))).$$

 $(12) \Rightarrow (1)$ Let x be any point of X and G_1 , G_2 be any open set of Y such that $F(x) \in G_1^+ \cap G_2^-$. Then

$$x \in F^+(G_1) \cap F^-(G_2) \subset Int(Cl(Int(F^+(sCl(G_1)) \cap F^-(sCl(G_2)))))$$

and hence F is a. α .c at x by Theorem 1. Therefore, F is a. α .c.

Corollary 1. (Maheshwari et al. [7], Noiri [14], Popa [18], Thakur and Paik [26]). For a function $f: X \to Y$, the following are equivalent:

- (1) f is almost α -continuous;
- (2) for each $x \in X$ and any opens set G of Y containing f(x), there exists $U \in \alpha(X,x)$ such that $f(U) \subset sCl(G)$;
- (3) for each $x \in X$ and any regular open set G of Y containing f(x), there exists $U \in \alpha(X, x)$ such that $f(U) \subset G$;
- (4) $f^{-1}(G) \in \alpha(X)$ for every $G \in RO(Y)$;
- (5) $f^{-1}(V)$ is α -closed in X for every $V \in RC(Y)$;
- (6) $f^{-1}(G) \subset \alpha Int(f^{-1}(sCl(G)))$ for any open set G of Y;
- (7) $\alpha Cl(f^{-1}(sInt(K)))) \subset f^{-1}(K)$ for any closed set K of Y;
- (8) $\alpha Cl(f^{-1}(Cl(Int(K)))) \subset f^{-1}(K)$ for any closed set K of Y;
- (9) $\alpha Cl(f^{-1}(Cl(Int(Cl(B))))) \subset f^{-1}(Cl(B))$ for any subset B of Y;
- (10) $Cl(Int(Cl(f^{-1}(Cl(Int(K))))) \subset f^{-1}(K)$ for any closed set K of Y;
- (11) $Cl(Int(Cl(f^{-1}(sInt(K)))) \subset f^{-1}(K)$ for any closed set K of Y;
- (12) $f^{-1}(G) \subset Int(Cl(Int(f^{-1}(sCl(G)))))$ for any open set G of Y.

Theorem 3. The following are equivalent for a multifunction $F: X \to Y$:

(1) F is $a.\alpha.c.$

- (2) $\alpha Cl(F^{-}(G_1) \cup F^{+}(G_2)) \subset F^{-}(Cl(G_1)) \cup F^{+}(Cl(G_2))$ for any $G_1, G_2 \in SPO(Y)$;
- (3) $\alpha Cl(F^{-}(G_1) \cup F^{+}(G_2)) \subset F^{-}(Cl(G_1)) \cup F^{+}(Cl(G_2))$ for any $G_1, G_2 \in SO(Y)$;

(4) $F^+(G_1) \cap F^-(G_2) \subset \alpha Int(F^+(sCl(G_2)) \cap F^-(sCl(G_1)))$ for any $G_1, G_2 \in PO(Y)$.

Proof. (1) \Rightarrow (2) Let G_1, G_2 be any semi-preopen sets of Y. Since $Cl(G_1)$ and $Cl(G_2)$ are regular closed, by Theorem 2 $F^-(Cl(G_1)) \cup F^+(Cl(G_2))$ is α -closed in X and $F^-(G_1) \cup F^+(G_2) \subset F^-(Cl(G_1)) \cup F^+(Cl(G_2))$. Therefore, we have

$$\alpha Cl(F^{-}(G_1) \cup F^{+}(G_2)) \subset F^{-}(Cl(G_1)) \cup F^{+}(Cl(G_2)).$$

 $(2) \Rightarrow (3)$ This is obvious since $SO(Y) \subset SPO(Y)$.

(3) \Rightarrow (1) Let $K_1, K_2 \in RC(Y)$. Then $K_1, K_2 \in SO(Y)$ and hence $\alpha Cl(F^-(K_1) \cup F^+(K_2)) \subset F^-(K_1) \cup F^+(K_2)$. Therefore, $F^-(K_1) \cup F^+(K_2)$ is α -closed in X and hence F is a α -c by Theorem 2.

 $(1) \Rightarrow (4)$ Let G_1, G_2 be any preopen sets of Y. Since $Int(Cl(G_1))$ and $Int(Cl(G_2))$ are regular open in Y, $Int(Cl(G_1)) = sCl(G_1)$ and $Int(Cl(G_2)) = sCl(G_2)$ [14, Lemma 3.1], by Theorem 2 we have

$$F^+(sCl(G_1)) \cap F^-(sCl(G_2)) \in \alpha(X)$$

and hence

$$F^+(G_1) \cap F^-(G_2) \subset F^+(sCl(G_1)) \cap F^-(sCl(G_2)) =$$

= $\alpha Int(F^+(sCl(G_1)) \cap F^-(sCl(G_2))).$

 $(4) \Rightarrow (1)$ Let G_1 , G_2 be any regular open sets of Y. Since $G_1, G_2 \in PO(Y)$, we have $F^+(G_1) \cap F^-(G_2) \subset \alpha Int(F^+(sCl(G_1)) \cap F^-(sCl(G_2))) = \alpha Int(F^+(G_1) \cap F^-(G_2))$ and hence $F^+(G_1) \cap F^-(G_2) \in \alpha(X)$. It follows from Theorem 2 that F is a. α .c.

Corollary 2. The following are equivalent for a function $f: X \to Y$:

- (1) f is almost α -continuous;
- (2) $\alpha Cl(f^{-1}(G)) \subset f^{-1}(Cl(G))$ for any $G \in SPO(Y)$;
- (3) $\alpha Cl(f^{-1}(G)) \subset f^{-1}(Cl(G))$ for any $G \in SO(Y)$;
- (4) $f^{-1}(V) \subset \alpha Int(f^{-1}(sCl(V)))$ for any $V \in PO(Y)$.

Definition 2. A subset A of a topological space X is said to be α -regular [4] for any point $x \in A$ and any open set U of X containing x, there exsists an open set G of X such that $x \in G \subset Cl(G) \subset U$.

Definition 3. A subset A of a topological space X is said to be α -paracompact [27] if every cover of A by open sets of X is refined by a cover of A which consists of open sets of X and is locally finite in X.

For a multifunction $F: X \to Y$, a multifunction $\alpha ClF: X \to Y$ is defined as follows: $(\alpha ClF)(x) = \alpha Cl(F(x))$ for each $x \in X$.

Lemma 1. (Popa and Noiri [21]) If $F: X \to Y$ is a multifunction such that F(x) is α -regular α -paracompact for each $x \in X$, then $(\alpha ClF)^+(V) = F^+(V)$ for each open set V of Y.

Lemma 2. (Popa and Noiri [21]) For a multifunction $F: X \to Y$, it follows that $(\alpha ClF)^-(V) = F^-(V)$ for every open set V of Y.

Theorem 4. Let $F: X \to Y$ be a multifunction such that F(x) is α -paracompact α -regular for each $x \in X$. Then F is $a.\alpha.c.$ if and only if $\alpha ClF: X \to Y$ is $a.\alpha.c.$

Proof. Necessity: Suppose that F is a. α .c. Let $x \in X$ and V_1, V_2 be any regular open sets of Y such that $(\alpha ClF)(x) \in V_1^+ \cap V_2^-$; hence $(\alpha ClF)(x) \subset V_1$ and $(\alpha ClF)(x) \cap V_2 \neq \emptyset$. By Lemmas 1 and 2, we have $x \in (\alpha ClF)^+(V_1) = F^+(V_1)$ and $x \in (\alpha ClF)^-(V_2) = F^-(V_2)$ and hence $F(x) \in V_1^+ \cap V_2^-$. Since F is a. α .c., by Theorem 1 we obtain $x \in \alpha Int(F^+(V_1) \cap F^-(V_2))$ and hence $x \in \alpha Int((\alpha ClF)^+(V_1) \cap (\alpha ClF)(V_2))$. This shows that αClF is a. α .c.

Sufficiency: Suppose that αClF is a. α .c. Let $x \in X$ and V_1, V_2 be any regular open sets of Y such that $F(x) \in V_1^+ \cap V_2^-$. By Lemmas 1 and 2, we have $x \in F^+(V_1) = (\alpha ClF)^+(V_1)$ and $x \in F^-(V_2) = (\alpha ClF)^-(V_2)$. Since αClF is a. α .c., by Theorem 1 we obtain $x \in \alpha Int((\alpha ClF)^+(V_1) \cap (\alpha ClF)^-(V_2)) = \alpha Int(F^+(V_1) \cap F^-(V_2))$. Thus, F is a. α .c.

For a multifunction $F: X \to Y$, the graph multifunction $G_F: X \to X \times Y$ is defined as follows: $G_F(x) = \{x\} \times F(x)$ for every $x \in X$.

Lemma 3. (Noiri and Popa [21]) For a multifunction $F: X \to Y$, the following hold:

(a)
$$G_F^+(A \times B) = A \cap F^+(B)$$
 and (b) $G_F^-(A \times B) = A \cap F^-(B)$

for any subsets $A \subset X$ and $B \subset Y$.

Theorem 5. Let $F: X \to Y$ be a multifunction such that F(x) is compact for each $x \in X$. Then F is $a.\alpha.c.$ if and only if $G_F: X \to X \times X$ is $a.\alpha.c.$

Proof. Necessity: suppose that $F: X \to Y$ is a.a.c. Let $x \in X$ and W_1, W_2 be any open sets of $X \times Y$ such that $G_F(x) \in W_1^+ \cap W_2^-$. Then $G_F(x) \subset W_1$ and $G_F(x) \cap W_2 \neq \emptyset$. Since $G_F(x) \subset W_1$, for each $y \in F(x)$, there exist open sets $U(y) \subset X$ and $V(y) \subset Y$ such that $(x,y) \in U(y) \times V(y) \subset W_1$. The fasmily $\{V(y): y \in F(x)\}$ is an open cover of F(x) and there exist a finite number of points, says, y_1, y_2, \ldots, y_n in F(x) such that $F(x) \subset \bigcup \{V(y_i): 1 \leq i \leq n\}$. Set

$$U_1 = \cap \{U(y_i) : 1 \le i \le n\}$$
 and $V_1 = \cup \{V(y_i) : 1 \le i \le n\}.$

Then U_1 and V_1 are open in X and Y, respectively, and $\{x\} \times F(x) \subset U_1 \times V_1 \subset W_1$. Since $G_F(x) \cap W_2 \neq \emptyset$, there exists $y \in F(x)$ such that $(x,y) \in W_2$ and hence $(x,y) \in U_2 \times V_2 \subset W_2$ for some open sets $U_2 \subset X$ and $V_2 \subset Y$. Put $U = U_1 \cap U_2$. Then U is an open set containing $x, F(x) \subset V_1$ and $F(x) \cap V_2 \neq \emptyset$. Since F is a. α .c., by Theorem 2 there exists $U_0 \in \alpha(X,x)$ such that $U_0 \subset F^+(sCl(V_1))$ and $U_0 \subset F^-(sCl(V_2))$. Put $G = U \cap U_0$, then $G \in \alpha(X,x)$. By Lemma 3, we obtain

$$G = U \cap U_0 \subset sCl(U_1) \cap F^+(sCl(V_1)) = G_F^+(sCl(U_1) \times sCl(V_1))$$

= $G_F^+(sCl(U_1 \times V_1)) \subset G_F^+(sCl(W_1)).$

Therefore, we obtain $G_F(G) \subset sCl(W_1)$. By Lemma 3, we obtain

$$G = U \cap U_0 \subset sCl(U_2) \cap F^-(sCl(V_2)) = G_{F^-}(sCl(U_2) \times sCl(V_2))$$

= $G_{F^-}(sCl(U_2 \times V_2)) \subset G_{F^-}(sCl(W_2)).$

Therefore, we obtain $G_F(G) \cap sCl(W_2) \neq \emptyset$ for every $g \in G$. By Theorem 2, it follows that G_F is a. α .c.

Sufficiency: Suppose that $G_F: X \to X \times Y$ is a.a.c. Let $x \in X$ and G_1, G_2 be any open sets of Y, such that $F(x) \in G_1^+ \cap G_2^-$. Then $F(x) \subset G_1$ and $F(x) \cap G_2 \neq \emptyset$. By $F(x) \subset G_1$, we have $G_F(x) \subset X \times G_1$ and $X \times G_1$ is open in $X \times Y$. Since $F(x) \cap G_2 \neq \emptyset$, we have

$$G_F(x) \cap (X \times G_2) = (\{x\} \times F(x)) \cap (X \times G_2) = \{x\} \times (F(x) \cap G_2) \neq \emptyset.$$

Since $X \times G_2$ is open in $X \times Y$, there exists $U \in \alpha(X,x)$ such that $G_F(U) \subset sCl(X \times G_1) = X \times sCl(G_1)$) and $G_F(u) \cap sCl(X \times G_2) \neq \emptyset$ for every $u \in U$. By Lemma 3, we obtain $U \subset G_F^+(X \times sCl(G_1)) = F^+(sCl(G_1))$ and hence $F(U) \subset sCl(G_1)$). Moreover, by Lemma 3 we obtain $U \subset G_F^-(sCl(X \times G_2)) = G_F^-(X \times sCl(G_2)) = F^-(sCl(G_2))$ and hence $F(u) \cap sCl(G_2) \neq \emptyset$ for every $u \in U$. By Theorem 2, it follows that F is a. α .s,

Corollary 3. (Noiri [14]) Let $f: X \to Y$ be a function and $g: X \to X \times Y$ the graph function of f defined by g(x) = (x, f(x)) for each $x \in X$. Then f is $a.\alpha.c.$ if and only if g is $a.\alpha.c$

4. Some Properties

Lemma 4. (Mashhour et al. [9], Reilly and Vamanamurthy [25]). Let U and X_0 be subsets of a topological space X. The following properties hold:

- (1) If $U \in \alpha(X)$ and $X_0 \in SO(X) \cup PO(X)$, then $U \cap X_0 \in \alpha(X_0)$,
- (2) If $U \subset X_0 \subset X$, $U \in \alpha(X_0)$ and $X_0 \in \alpha(X)$, then $U \in \alpha(X)$.

Theorem 6. If a multifunction $F: X \to Y$ is $a.\alpha.c.$ and $X_0 \in SO(X) \cup PO(X)$, then the restriction $F/X_0: X_0 \to Y$ is $a.\alpha.c.$

Proof. Let $x \in X_0$ and V_1, V_2 be any open sets of Y such that $(F/X_0)(x) \subset V_1$ and $(F/X_0)(x) \cap V_2 \neq \emptyset$. Since $(F/X_0)(x) = F(x)$ and F is a. α .c., by Theorem 2 there exists $U \in \alpha(X,x)$ such that $F(U) \subset sCl(V_1)$ and $F(u) \cap sCl(V_2) \neq \emptyset$ for each $u \in U$. Let $U_0 = U \cap X_0$, then $U_0 \in \alpha(X_0,x)$ by Lemma 4 and $(F/X_0)(U_0) = F(U_0) \subset sCl(V_1)$ and $(F/X_0)(u) = sCl(V_2) \neq \emptyset$ for each $u \in U_0$. This shows that F/X_0 is a. α .c.

Corollary 4. (Maheshwari et al. [7]) If $f: X \to Y$ is almost feebly continuous and X_0 is an open set of X, then the restriction $f/X_0: X_0 \to Y$ is almost feebly continuous.

Corollary 5. (Noiri [14]) If $f: X \to Y$ is almost α -continuous and $X_0 \in SO(X) \cup PO(X)$, then the restriction $f/X_0: X_0 \to Y$ is almost α -continuous.

Theorem 7. A multifunction $F: X \to Y$ is $a.\alpha.c.$ if for each $x \in X$ there exists $X_0 \in \alpha(X,x)$ such that the restriction $F/X_0: X_0 \to Y$ is $a.\alpha.c.$

Proof. Let $x \in X$ and V_1, V_1 be any open sets of Y such that $F(x) \in V_1^+ \cap V_2^-$. There exists $X_0 \in \alpha(X, x)$ such that $F/X_0 : X_0 \to Y$ is a. α .c. Therefore, there exists $U_0 \in \alpha(X_0, x)$ such that $(F/X_0)(U_0) \subset sCl(V_1)$ and $(F/X_0)(u) \cap sCl(V_2) \neq \emptyset$ for each $u \in U_0$. By Lemma 4, $U_0 \in \alpha(X, x)$ and $F(u) = (F/X_0)(u)$ for each $u \in U_0$. This shows that F is a. α .c.

Corollary 6. Let $\{U_{\alpha}: \alpha \in \nabla\}$ be a cover of X by α -open sets of X. Then, a multifunction $F: X \to Y$ is $a.\alpha.c.$ if and only if the restriction $F/U_{\alpha}: U_{\alpha} \to Y$ is $a.\alpha.c.$ for each $\alpha \in \nabla$.

Proof. This is an immediate consequence of Theorems 6 and 7.

Corollary 7. (Thakur and Paik [26]) Let $f: X \to Y$ be a function and $\{U_{\alpha} : \alpha \in \nabla\}$ be an open cover of X. If the restriction $f/U_{\alpha} : U_{\alpha} \to Y$ is $a.\alpha.c.$ for each $\alpha \in \nabla$, then f is $a.\alpha.c.$

Definition 4. A multifunction $F: X \to Y$ is said to be almost precontinuous if for each $x \in X$ and any regular open sets G_1, G_2 of Y such that $F(x) \in G_1^+ \cap G_2^-$, there exists $U \in PO(X, x)$ such that $F(U) \subset G_1$ and $F(u) \cap G_2 \neq \emptyset$ for every $u \in U$.

Lemma 5. A multifunction $F: X \to Y$ is almost precontinuous if and only if for any regular open sets G_1, G_2 of Y, $F^+(G_1) \cap F^-(G_2) \in PO(X)$.

Proof. Necessity: Let F be almost precontinuous and $G_1, G_2 \in RO(Y)$. Let $x \in F^+(G_1) \cap F^-(G_2)$. Then $F(x) \in G_1^+ \cap G_2^-$ and hence there exists $U_x \in PO(X,x)$ such that $F(U_x) \subset G_1$ and $F(u) \cap G_2 \neq \emptyset$ for every $u \in U_x$. Therefore, we have $U_x \subset F^+(G_1) \cap F^-(G_2)$ and hence $x \in U_x \subset Int(Cl(U_x)) \subset Int(Cl(F^+(G_1)) \cap F^-(G_2))$. Therefore, we obtain

$$F^+(G_1) \cap F^-(G_2) \subset Int(Cl(F^+(G_1) \cap F^-(G_2))).$$

This shows that $F^+(G_1) \cap F^-(G_2) \in PO(X)$.

Sufficiency: Let $x \in X$ and $G_1, G_2 \in RO(Y)$ such that $F(x) \in G_1^+ \cap G_2^-$. Put $U = F^+(G_1) \cap F^-(G_2)$; then $x \in U \in PO(X, x)$, $F(U) \subset G_1$ and $F(u) \cap G_2 \neq \emptyset$ for every $u \in U$. Therefore, F is almost precontinuous.

Definition 5. A multifunction $F: X \to Y$ is said to be almost quasicontinuous [23] if for each $x \in X$ and any regular open sets G_1, G_2 of Y such that $F(x) \in G_1^+ \cap G_2^-$, there exists $U \in SO(X, x)$ such that $F(U) \subset G_1$ and $F(u) \cap G_2 \neq \emptyset$ for every $u \in U$.

Lemma 6. (Popa and Noiri [23]) A multifunction $F: X \to Y$ is almost quasicontinuous if and only if for any regular open sets G_1, G_2 of Y, $F^+(G_1) \cap F^-(G_2) \in SO(X)$.

Theorem 8. A multifunction $F: X \to Y$ is $a.\alpha.c.$ if and only if it is almost precontinuous and almost quasicontinuous.

Proof. It is shown in [13, Lemma 3.1] that $SO(X) \cap PO(X) = \alpha(X)$. Thus this follows from Theorem 2, Lemmas 5 and 6.

A function $f: X \to Y$ is said to be precontinuous [8] if $f^{-1}(V) \in PO(X)$ for each open set V of Y. A function $f: X \to Y$ is said to be almost quasi continuous [16] if for each point $x \in X$, each open set U of X containing x and each open set V of Y containing f(x), there exists a nonempty open set G of X such that $G \subset U$ and $f(G) \subset Int(Cl(V))$.

Corollary 8. (Popa [18]) If a function $f: X \to Y$ is precontinuous and almost quasi continuous, then f is almost α -continuous.

Definition 6. A multifunction $F: X \to Y$ is said to be

(a) upper almost α -continuous [22] at a point $x \in X$ if for each $U \in SO(X,x)$ and each open set V containing F(x), there exists a non-empty open set $G \subset U$ such that $F(G) \subset sCl(V)$;

(b) lower almost α -continuous [22] at a point $x \in X$ if for each $U \in SO(X,x)$ and each open set V such that $F(x) \cap V \neq \emptyset$, there exists a nonempty open set $G \subset U$ such that $F(g) \cap sCl(V) \neq \emptyset$ for every $g \in G$;

(c) upper (lower) almost α -continuous if F has this property at every

point of X.

Remark 1. Since $\alpha(X)$ is a topoly [10], the intersection of two α -open sets is α -open. Therefore, a multifunction $F:X\to Y$ is a. α .c. if and only if F is upper almost α -continuous and lower almost α -continuous.

Definition 7. A multifunction $F; X \to Y$ is said to be

(a) upper almost continuous [17] (resp. upper weakly continuous [15]) if for each point $x \in X$ and each open set V containing F(x), there exists an open set U containing x such that $F(G) \subset sCl(V)$ (resp. $F(G) \subset Cl(V)$),

(b) lower almost continuous [17] (resp. lower weakly continuous [15]) if for each $x \in X$ and each open set V such gthat $F(x) \cap V \neq \emptyset$, there exists an open set U containing x such that $F(u) \cap sCl(V) \neq \emptyset$ (resp.

 $F(u) \cap Cl(V) \neq \emptyset$) for every $u \in G$.

Definition 8. A multifunction $F: X \to Y$ is said to be α -continuous [20] if for each point $x \in X$ and any open sets G_1, G_2 of Y such that $F(x) \in G_1^+ \cap G_2^-$, there exists $U \in \alpha(X, x)$ such that $F(U) \subset G_1$ and $F(u) \cap G_2 \neq \emptyset$ for every $u \in U$.

Lemma 7. (Popa and Noiri [21]) Let $F:(X,\tau)\to (Y,\sigma)$ be a multifunction.

(1) F is upper α -continuous (resp. upper almost α -continuous) if and onky if $F:(X,\tau^{\alpha})\to (Y,\sigma)$ is upper continuous (resp. upper almost continuous).

(2) F is lower α -continuous (resp. lower almost α -continuous) if and only if $F:(X,\tau^{\alpha})\to (Y,\sigma)$ is lower continuous (rsp. lower almost

continuous).

Theorem 9. The following are equivalent for a multifunction $F: X \to Y$ such that F(x) is α -regular α -paracompact for each $x \in X$;

- (1) F is $a.\alpha.c.$;
- (2) F is α -continuous.

Proof. Suppose that F is a. α .c. By Remark 1, F is upper almost α -continuous and lower almost α -continuous. By Lemma 7, $F:(X,\tau^{\alpha})\to (Y,\sigma)$ is upper almost continuous and lower almost continuous. Since $F:(X,\tau^{\alpha})\to (Y,\sigma)$ is upper almost continuous, $F:(X,\tau^{\alpha})\to (Y,\sigma)$ is upper weakly continuous and hence upper continuous [19, Theorem 1]. Therefore, By Lemma 7 $F:(X,\tau)\to (Y,\sigma)$ is upper α -continuous. Since $F:(X,\tau^{\alpha})\to (Y,\sigma)$ is lower almost semicontinuous, $F:(X,\tau^{\alpha})\to (Y,\sigma)$ is lower weakly continuous and hence lower roontinuous [19, Theorem 2]. Therefore, by Lemma 7 $F:(X,\tau)\to (Y,\sigma)$ is lower α -continuous. Since F is upper α -continuous and lower α -continuous, it follows from [20, Remark 1] that F is α -continuous.

Theorem 10. If a closed valued multifunction $F: X \to Y$ is a.a.c. and Y is a normal T_1 space, then F is α -continuous.

Proof. Let $x \in X$ and G_1, G_2 be any open sets of Y such that $F(x) \in G_1^+ \cap G_2^-$. Since F(x) is closed in Y, by the normality of Y there exists an open set D of Y such that $F(x) \subset D \subset Cl(D) \subset G_1$. Since every normal T_1 space is T_3 and $F(x) \cap G_2 \neq \emptyset$, there exists an open set E of Y such that $E \cap F(x) \neq \emptyset$ and $Cl(E) \subset G_2$. Since F is a.a.c. and $F(x) \in D^+ \cap E$, by Theorem 2 there exists $U \in \alpha(X,x)$ such that $F(U) \subset Int(Cl(D))$ and $F(u) \cap Int(Cl(E)) \neq \emptyset$ for every $u \in U$. Therefore, we obtain $F(U) \subset G_1$ and $F(u) \cap G_2 \neq \emptyset$ for every $u \in U$. Tjhis shows that F is α -continuous.

REFERENCES

- M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut. Univ. 12 (1983), 77-90.
- [2] D. Andrijevic, Semi-preopen sets, Mat. Vesnik 38 (1986), 24-32.
- [3] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971), 99-112.
- [4] I. Kovacevic, Subsets and paracompactness, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 14 (1984), 79–87.
- [5] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [6] S. N. Maheshwary and C. P. Jain, Some new mappings, Mathematica (Cluj) 24 (47) (1982), 53-55.
- [7] S. N. Maheshwary, Gyu Ihn Chae and C. P. Jain, Almost feebly continuous functions, Ulsan Inst. Tech. Rep. 13 (1982), 195-197.
- [8] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and week precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.

- [9] A. S. Mashhour, I. A. Hasanein and S. N. El-Deeb, α-continuous and α-open mappings, Acta Math. Hungar. 41 (1983), 213-218.
- [10] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [11] T. Noiri, On semi-continuous mappings, Atti Accad. Naz, Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 54 (1973), 210-214.
- [12] T. Noiri, A note on semi-continuous mappings, Atti Accad. Naz, Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 55 (1973), 400-403.
- [13] T. Noiri, On α-continuous mappings, Casopis Pest Mat. 109 (1984), 118–126.
- [14] T. Noiri, Almost α-continuous functions, Kyungpook Math. J. 28 (1988), 71-74.
- [15] V. Popa, Weakly continuous multifunctions, Boll. Un. Mat. Ital. (5), 15-A (1978), 379-388.
- [16] V. Popa, On the decompositions of the quasicontinuities in topological spaces, Stud. Cerc. Mat. 30 (1978), 31–35 (in Romanian).
- [17] V. Popa, Almost continuous multifunction, Mat. Vesnik 6 (19) 34 (1982), 75-84.
- [18] V. Popa, Some properties of almost feebly continuous functions, Demonstratio Math. 23 (1990), 985-991.
- [19] V. Popa, A note on weakly and almost continuous multifunctions, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 21 (1991), 31-38.
- [20] V. Popa and T. Noiri, Characterizations of α-continuous multifunctions, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23 (1993), 29–38.
- [21] V. Popa and T. Noiri, On upper and lower α -continuous multifunctions, Math. Slovaca 43 (1993), 477-491.
- [22] V. Popa and T. Noiri, On upper and lower almost α-continuous multifunctions, Demonstratio Math. 29 (1996), 381–396.
- [23] V. Popa and T. Noiri, Almost quasi continuous multifunctions (submitted).
- [24] M. Prcemski, Some generalizations of continuity and quasicontinuity of multivalued maps, Demonstratio Math. 26 (1993), 381-400.
- [25] I. L. Reilly and M. K. Vamanamurthy, Connectedness and strong semi-continuity, Casopis Pest. Mat. 109 (1984), 261–265.
- [26] S. S. Thakur and P. Paik, Almost α-continuous mappings, J. Sci. Res. 9 (1987), 37–40.
- [27] J. D. Wine, Locally paracompact spaces, Glasnik Mat. 10 (30) (1975), 351-357.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BACAU, 5500 BACAU, RUMANIA

DEPARTMENT OF MATHEMATICS, YATSUSHIRO COLLEGE OF TECHNOLOGY, YATSUSHIRO, KUMAMOTO, 866, JAPAN