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CANONIC SUBSETS IN SEMIGROUPS

O. S. Kashcheeva and B. V. Novikov

Abstract. In this work we introduce the notion of a canonic set, which arises
in computing of semigroup cohomologies [n]. We investigate different properties of
canonic sets and give examples of their applications to algorithmic problems.

1 Basic definitions and preliminary properties

It is well known that in studying of a semigroup it is advantageous to choose
a generating set such that all elements of the semigroup have some canonic
record. If we refuse the irreducibility of generating set (which is wanted
usually) then this choice is always possible: it is sufficient to notice the
whole semigroup being a generating set. Further we, certainly, don’t appeal
to this trivial example. We study the following question: in what way is
possible to enlarge a given generating set in order to all elements of the
semigroup have the unique (in some meaning) notion?

In the sequel the notation S = (M|R) means that the semigroup S is
generated by the set M with the defining relation set R. If the set R is
known or its type isn’t important at this moment then we write S = (M).

Let S = (M) be some semigroup. A decomposition z = ZT1...Zy (x; €
M) of an element z € §\ M is called reduced y i Tz .. z; & M for each
i.J, 1 <4< 75 <n We mean that a reduced decomposition of an element
x € M is its decomposition into product of one multiplier. A set M is said
to be canonic, if each element z € § has the unique reduced decomposition.

In the sequel we use the following criterion and its corollary.

Lemma 1 A generating set M is canonic if and only if for each s € S the
Jollowing condition holds:

fs=a1...2m =y1...yn are two decompositions of s (z5,y; €
M) with the first of them reduced, then there eist 1 — 1 <ip <
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. < by < a1 = no+ 1 such that Tk = YiYig+1 - - Yigga -1 for
allk, 1<k<m. ®

Corollary 1 Let M be a canonic set in a semigroup S, § = T1..-Tm,
= y1...Yn (Ti,y; € M) are reduced decompositions. Then the reduced de-

composition of the element st is either Ty ... TmY1 -« Yn O T1 ... TiZYj - Yns
where z = Tig1..-TmY1..-Yj—1 €M.1

Let $ = (M|R). If z1...%m = Y1.--Yn 1S 2 relation in R, then each of
its parts is said to be e defining word.

Theorem 1 Let a subset N of the semigroup S = (M|R) satisfies the con-
ditions:

1) MCN;

2) each defining word is contained in N;

3) for any a,b,c € S the inclusion ab,be € N implies abc € N.

Then N is a cononic set.

Proof. At first we note that it follows from condition 3)

3') if ab, bed, de € N, then abcde € N,

Let § =T1...Tm = Y1---Yn bE tWO decompositions of an element s into
products of elements of N, moreover the first of them is reduced. Then it
is possible to go from the first decomposition to second one using defining
relations from R. We consider the first step of this conversion.

Let o) = g1 - - Okpy, (Qk1 € M), i < j, the word u = @i rQirt1---Gjt
be defining one and be replaced. Then z; = ab, u = bTit1 .- Tj-1C, Tj = cd
for some a,b,c,d € S, and z;...%; € N follows from 3'). This contradicts
to assumption that z...Zm i8 reduced. Therefore at the first step the
replacement takes place inside one of z; only and it is clear that the same is
true for other steps. So as a result of the conversion we have

s=by...bg (bkEM),

where ©; = ba,ba;+1---Dazyr—15 Yj = bp, bg;+1- - T | for a;, B; such that
—<...<amn=¢+L1=f<...<fapn=g+1
If z; doesn’t coincide with a subword of the word yi ...y, then the fol-
lowing variants are possible:
a) z; = ab, yj = bTiq1... Tk-1C, Tk = ed for some i < k and a,b,c,d € 5.

Then by condition 3') z; ...z € M.
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b) z; = ab, y; = bziy1 ... 24 for some i < k and a,b € 5. Therefore
Zi... Tk € M from 3).

€) Yj = i...Tp_1¢, T = cd for some i < k and ¢,d € 5. Hence
Ti...ZTk € M.

d) yj =%;...z; for some 1 <k, i.e. z;...x, € M.

Thus the variants we consider contradict the assumption that the de-

composition zp ...z, is reduced. Now by Lemma 1 the set N is canonic.
=

2 Hard canonic sets

In this section we construct an efficient way of enlargement of given gener-
ating set to canonic one.

As above, let § = (M|R). We define binary relations A, p and 7 on
M by the following way. Let z1...Zm = y1...yn be an arbitrary relation
from R (z;,y; € M). Then A consists of all pairs (z1,31) for all defining
relations. Similarly, p consists of all pairs (Zm,yn), and 7 does of all pairs
(@i, Ziy1), (Y yj+1), 1<i<m, 1<j<n.

We denote by A* (resp. p*) the least equivalence, which contains A (resp.
p), by T the relation p*mA* and by M" the subset of all elements which
are decomposed into product ¢; ... #¢, where ; € M, (t;,t:41) € 7 for each
1, 1<i< k.

Lemma 2 If t = t1...¢4 € M" (t; € M), then (tiytip1) € ™ for each
i, 1<i<k.

Proof. By the condition ¢t = #;...fy = uy...u where u; € M and
(i, uit1) € 7 for each 4. Consider the first step of conversion from the right
part of this equality to the left one.

Let the defining relation we use be of the following type:

Ug...Ug =01...0n (1 <a< F <)

Then (ug-1,uq) € T implies (uq_1,v1) € TA = 7. In the same way we have
(m,upy1) € 7. Hence after the first step (and therefore throughout the
whole conversion) neighboring elements stay in relation 7. m

Corollary 2 If s = ay...am, t = b;...b, (ai,bj € M") are reduced de-
compositions with respect to M" then the reduced decomposition of the st
15:

(]’.) a .. .amb1 v .bn, ifambl Q’ Mh‘,

b) a1 ...am,]cbg...bn, ifC: amb € M =
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Theorem 2 M" is a canonic set.

Proof. Evidently, conditions 1), 2) of Theorem 1 hold. Let a,b,c € 5,
ab, be € M". Decomposing a and b into product of elements from M, we see
(Lemma 2) that the last letter of the element @ and the first letter of the
clement b are in the relation 7. Similar statement is true for b and c. Hence
abc € M" and by Theorem 1 M h is a canonic set. B

Further we say that canonic sets of the type M h are hard.

3 Applications to algorithmic problems.

It is known (see [ev]) that in investigation of the algorithmic problems it 1s
convenient to consider a generating set of a semigroup as a partial gropouid
with induced operation. In the case of using of a canonic set it means that
many algorithmic questions reduce to similar problems for the corresponding
groupoids. In this section we consider two such examples. Below N is a
canonic set in the semigroup § =< M >.

The word problem.

Since N is a canonic set, a reduced decomposition of each element, is
uniquely defined by any its decomposition into product of elements from N.
In the case N = M", the word problem in S is decidable if and only if it is
decidable in the partial groupoid N. In particular it is decidable when the
set IV is finite. Thus we obtain the following assertion:

Theorem 3 If a semigroup S is finitely generated and the graph of the re-
lation T doesn’t contain (oriented) cycles then the word problem 1is decidable

i S. |

Example. Consider a series of Malcev’s semigroups, which aren’t em-
bedded into groups [ma]. Let a semigroup S is generated by the set

M = {ai,bi,ci,di,Aj,Bj,Cj,Dj|’.i € I,j = J}
and its defining relations set is Malcev’s system (following by [cp)). Suppose
P = {Ci,di,Aj,BjH el,je J}, Q = {ai,bz‘,Cj,Djl'b- el,je J}

Then 7 C P x Q,3* C (Q x Q)UA and p* C (Q x Q) UA. Therefore
7 C P x (Q, 7™ doesn’t contain cycles and in the semigroup S the word

problem is decidable.
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The use of canonic sets makes it possible to obtain an analog of well
known result about C(3)-semigroups. We remind some necessary definitions
[hi].

Let Fiy be the free semigroup on an alphabet M and the set of defining
relations R be given. The word w € Fi is called a piece, if there are
Ui, Us, U1,V € F j},f such that wjwv, upwuvy are defining words and either
wy # uz or v1 # vg. The semigroup § = (M|R) is called a C(n)-semigroup
if no defining word is a product of fewer than n pieces.

The set R defines a relation v on the set of defining words: (u, v) €« it
and only if u = v is a defining relation from R. We shall say that the words
u and v are equivalent if (u,v) € 4*, where " is the least equivalence which
confains 7.

It is proved by Remmers [re], that in finitely defined C (3)- semigroups
the word problem is decidable. Below we establish a solution of this problem
for some class of semigroups, in which the condition C (3) does not hold.

Theorem 4 Let § = (M|R) be a C(2)-semigroup, where R is finite, and no
defining word begins by a proper end of another defining word (as elements
of Frr). Then the word problem is decidable in 5.

Proof. Note that if § = (M|R) is C(2)-semigroup then no defining word
is a proper segment of another defining word. Therefore, if w is a defining
word then each transition from w to w’ touches the word w completely.
Hence, w' is a defining word which is equivalent to w. Moreover, if w 1s a
defining word and a word w' equals to w in the semigroup 5 then w' is a
defining word which is equivalent to w.

At first let us consider the particular case when each relation from R has
the form 7 ... T, = y where z1,...,2,,y € M. We prove that the set M is
canonic. It is sufficient for proving to verify that the conditions of Theorem
1 hold. Only the third condition requires verifying.

Let z,y € M and there exist a,b,c € 5 such that © = ab, y = be and
a.bc € Sa=aj...an, b =br...bm,c = crL...Cp, where a;,bj, ¢ € M.
Then it is possible to pass from the decomposition z to the decomposition
aj ...apb1 ... by using defining relations from R. Hence, the word z is defin-
ing and therefore, the word ay ... azb1...bm is also defining. Similarly the
word by ... bmey - . . ¢ is defining and it begins by the proper end of another
defining word. We receive a contradiction to the condition of the theorem.

Now it is sufficient for solving the word problem in S to enumerate the
equal letters from M and to answer the question: for what z1,...,2, € M
(k > 1) does the product z; ...z lie in M and what letter is it represented

B
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by. The answer is quite clear. Two different letters from M are equal in
S only if they are defining words and are equivalent, z; ...z, € M only if
there is a letter y such that z;... 2y, =y isa defining relation out of R.

Finally we consider the general case. Let us denote the classes of equiv-
alence on the set of defining words by letters and so we enlarge the alphabet
M. Now we change the defining relations by evident way such that the
condition of the particular case holds. m

Example. Let us consider the following semigroup

S ={a,bcd|ab=cd,ad = cb).

This semigroup is not a C(3)-semigroup, but by Theorem 4 the word problem
is decidable in S.
The cancellativity problem
Since cancellativity is Marcov’s property [bo] the problem of its estab-
lishment is algorithmic undecidable. But as above it is possible to consider
the canonic set only.

Regarding M" as a partial groupoid we call it left cancellative if for all
a,b,c € M"

ab:GCEMh=>b=c,
ab=ac M= be=c

Theorem 5 S is left cancellative if and only if M® is left cancellative.

Proof. The implication = is obvious.

Let M" be left cancellative and st = su, where s,t,u € §. Tt is sufficient
to consider the case when s € M", Let t = ai...@m,u =by...b, be reduced
decompositions. Then according to Corollary 2 the reduced decomposition
of the element st is either sa; . .. a,,(when sa; ¢ M") or (sai)...am (when
sa; € M*¢). In the same way the reduced decomposition of the element su

is either sby...by or (sb1)...b,. Since there is the unique reduced decom-
position we should consider the following four variants:

1) sa1,sby & M". Then a; = b; for each i 21 ie t=u.

2) say,sby € M. Then a; = b; for each i > 2 and sa; = sb; € M. It
follows by cancellation in M" that a1 = by, whence ¢ = vu.

3) sa; € M, sb & M". Then sa; = 8,42 = by, ... and the cancellativity
of M"* implies aiaz = ay. This is impossible, so a,ay & M.

4) say & M", sby € M". It is impossible as before. m

Clearly, the similar statement is true for the right cancellativity.

Corollary 3 If M" is finite then S has the decidable cancellativity problem.
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