RPP SEMIGROUPS SATISFYING PERMUTATION IDENTITIES

Xiaojiang Guo

Abstract. In this paper we study rpp semigroups satisfying permutation identities. In particular, we determine when a rpp semigroup will satisfy the permutation identities.

1. Introduction and preliminaries

Throughout this paper, we use the terminologies and notions given in [1, 2, 6]. A semigroup S is called a rpp semigroup if all of its principal right ideals aS^1 ($a \in S$), regarded as right S^1 -systems, are projective. Equivalently, a semigroup is a rpp semigroup if and only if each \mathcal{L}^* -class contains at least one idempotent (see [5]). The lpp semigroup can be dually defined. According to Fountain [2], a semigroup is abundant if and only if it is both rpp and lpp. We call a rpp semigroup a strongly rpp semigroup [5] if for each $a \in S$, there exists a unique idempotent e, \mathcal{L}^* -related to a, such that ea = a.

A semigroup S in which $x_1x_2\cdots x_n=x_{p_1}x_{p_2}\cdots x_{p_n}$ (1) for all $x_1,x_2,\ldots,x_n\in S$, where $(p_1p_2\ldots p_n)$ is a nontrivial permutation of $(12\ldots n)$, is termed to satisfy the permutation identity (1) (or a PI-semigroup for short). Yamada [7] investigated the PI-regular semigroups and discussed the structure of such semigroups. In [3], the author generalized the results of Yamada [7] and investigated the structure of PI-abundant semigroups. Recently, he [4] also the classification of PI-strongly rpp semigroups. The aim of this note is to study the PI-rpp semigroups, and to determine when a rpp semigroup will satisfy the permutation identities.

We first recall some known concepts and results (we only list the results for \mathcal{L}^* because the result for \mathcal{R}^* is a dual result for \mathcal{L}^* .

Received June 22, 1998

¹⁹⁹¹ Mathematics Subject Classification: 20M10.

Key words and phrases. Rpp semigroup, permutation identity, identity, (left;right) normal band.

Lemma 1.1. [2] Let S be a semigroup and $a, b \in S$. Then the following statements are equivalent:

- (1) $a\mathcal{L}^*b$;
- (2) for all $x, y \in S^1$, ax = ay if and only if bx = by.

As an easy but useful consequence, we have

Corollary 1.2. [2] Let $a \in S$ and e be an idempotent of S. Then the following statements are equivalent:

- (1) $a\mathcal{L}^*e$;
- (2) ae = e and for all $x, y \in S^1$, ax = ay implies ex = ey.

Evidently, \mathcal{L}^* is a right congruence on S. In general, $\mathcal{L} \subset \mathcal{L}^*$ and when a and b are regular elements, $a\mathcal{L}b$ if and only if $a\mathcal{L}^*b$. Let E be the set of idempotents of S. We write a^* to denote the typical idempotents \mathcal{L}^* -related to a.

A band B is called a (left;right) normal band if it satisfies the identity: $(xyz = xzy; xyz = yxz) \ xyzw = xzyw$. By [6, Theorem IV 3.1], a band B is a semilattice Y of rectangular bands B_{α} ($\alpha \in Y$). Such a decomposition of B is unique. Accordingly Y is unique up to isomorphism and so are the $B'_{\alpha}s$. Hereafter, we call Y the structure semilattice of B and also this decomposition is called the structure decomposition of B. For simplicity, if $e \in B_{\alpha}$, then we write $E(e) = B_{\alpha}$ and for $e, f \in B$, if E(e) = E(e)E(f), we denote $E(e) \leq E(f)$. Obviously, E(e) = E(f) if and only if $E(e) \leq E(f)$ and $E(f) \leq E(e)$.

The following result will be used in the sequel.

Lemma 1.3. [3] Let S be an abundant semigroup. Then the following statements are equivalent:

- (1) S is a PI-semigroup and E a right normal band;
- (2) S satisfies the identity xyz = yxz.

2. Some characterizations for PI-rpp semigroups

In this section, we always assume that S is a rpp semigroup satisfying the permutation identity: $x_1x_2\cdots x_n=x_{p_1}x_{p_2}\cdots x_{p_n}$.

Lemma 2.1. E is a normal band.

Proof. This is straightforwards. In fact, it follows directly from the proof in [7]. \Box

Lemma 2.2. For all $e, f \in E$ and $a \in S$, we have

- (1) $efa = eafa^*$;
- (2) eaf = eaef.

Proof. Because $(p_1p_2\cdots p_n)$ is a nontrivial permutation of $(12\cdots n)$, there exists a positive integer k(< n) such that $p_i = i$ when $1 \le i < k$ but $p_k \ne k$. Obviously, $k < p_k$.

(1) Take $x_i = e$ when i < k, $x_i = f$ if $k \le i < p_k$, $x_{p_k} = a$ and $x_i = a^*$ otherwise. Then $e(x_1x_2\cdots x_n)a^* = efa$. On the other hand, by Lemma 2.1, $e(x_{p_1}x_{p_2}\cdots x_{p_n})a^* = eafa^*$. Thus by hypothesis, we obtain $efa = eafa^*$.

(2) Now, let $x_i = e$ when $1 \le i < p_k$, $x_{p_k} = a$ otherwise $x_i = f$. Then $e(x_1x_2\cdots x_n)f = eaf$. But $e(x_{p_1}x_{p_2}\cdots x_{p_n})f = eaef$ or eafef. By Lemma 2.1, we deduce that

$$eafef = eaa^*fef = eaa^*eff = eaef.$$

Hence, eaf = eaef. \square

Lemma 2.3. For all $a, b \in S$ and $f \in E$, if a = bf, then $E(a^*) \leq E(f)$.

Proof. If a = bf then a = af. Now, by $a\mathcal{L}^*a^*$, we have $a^* = a^*f$ and thus $E(a^*) \leq E(f)$. \square

We now define a relation η on S as follows: $a, b \in S$:

 $a\eta b$ if and only if for some $f \in E(b^*)$, a = bf.

Lemma 2.4. (1) η is a congruence on S preserving \mathcal{L}^* -classes; (2) $\eta \cap \mathcal{L}^* = i_s$ (the identical mapping on S).

Proof. (1) We first show that η is an equivalence relation. Certainly, $x\eta x$ for every $x \in S$, since $x = xx^*$. Let $a, b \in S$ with $a\eta b$. Then for some $f \in E(b^*)$, a = bf. By Lemma 2.3, $E(a^*) \leq E(f) = E(b^*)$. It follows that $a^*b^* \in E(a^*)$ and that $a\eta b$ implies $E(a^*) \leq E(b^*)$. Since

$$a(a^*b^*) = ab^* = bfb^* = bb^*fb^* = bb^* = b,$$

we have $b\eta a$, and thus η satisfies the symmetric relation. On the other hand, by the proof above, $b\eta a$ permits $E(b^*) \leq E(a^*)$. Now $E(a^*) = E(b^*)$. Therefore, from $a\eta b$, we can deduce that $E(a^*) = E(b^*)$. To prove the transitivity, we let $x,y,z\in S$ with $x\eta y,y\eta z$. Then we have $E(x^*)=E(y^*)=E(z^*)$. By the hypothesis, there are $f,g\in E(z^*)$ such that x=yf and y=zg. Accordingly, x=zgf. Notice that $gf\in E(z^*)$, we hence get $x\eta z$.

Now let $x,y,z\in S$ and $x\eta y$. Then there exists $f\in E(y^*)$ such that x=yf. Obviously, $zx=zyf=zy(zy)^*f$. It follows from Lemma 2.3 that $E((zx)^*)\leq E((zy)^*)$ and $E((zx)^*)\leq E(f)$, and so $(zx)^*y^*\in E((zx)^*)$. But x=yf, this implies that $y=xy^*$. Now $zy=zxy^*=zx(zx)^*y^*$. Hence $zx\eta zy$. On the other hand, by

$$xz = yfz = yy^*fz = yy^*zfz^*$$
 (by Lemma 2.2)
= $yz(fz^*) = yz(yz)^*fz^*$,

we can deduce that $E((xz)^*) \leq E((yz)^*)$ and $E((xz)^*) \leq E(fz^*)$ by Lemma 2.2. A similar argument for $y = xy^*$, we can show that $E((yz)^*) \leq E((xz)^*)$. Thus $E((xz)^*) = E((yz)^*)$. This means that $(yz)^*fz^* \in E((yz)^*)$. Therefore $xz\eta yz$. Consequently, η is a congruence on S.

It remains to prove that η preserves \mathcal{L}^* -classes. To see this, we let $a, b \in S$ with $a\mathcal{L}^*b$. For $x\eta, y\eta \in (S/\eta)^1$ (where $x, y \in S^1$), if $(ax)\eta = (ay)\eta$, then there exists $f \in E((ay)^*)$ such that ax = ayf. By $a\mathcal{L}^*b$, we have bx = byf. Notice that \mathcal{L}^* is a right congruence, $ay\mathcal{L}^*by$ and so $E((ay)^*) = E((by)^*)$. Now $(bx)\eta = (by)\eta$. From this equality and its dual, we can deduce that $a\eta\mathcal{L}^*(S/\eta)b\eta$, as required.

(2) Let $(a,b) \in \eta \cap \mathcal{L}^*$. Then for some $f \in E(b^*)$, a = bf. Since $a\mathcal{L}^*b$, we have $a^*\mathcal{L}b^*$. Hence

$$a = ab^* = bfb^* = bb^*fb^* = bb^* = b.$$

Therefore $\eta \cap \mathcal{L}^* = i_s$. \square

Lemma 2.5. S/η is a PI-rpp semigroup and $E(S/\eta)$ a left normal band.

Proof. By Lemma 2.4, S/η is a rpp semigroup. Since S is a PI-semigroup, we easily check that S/η is a PI-semigroup. Notice that $a\eta \in E(S/\eta)$ implies $a \in E(S)$ and that $\eta \cap (E \times E) = \mathcal{R}$, $E(S/\eta) = E/\mathcal{R}$ and furthermore, it is a left normal band. \square

Lemma 2.6. If E is a left normal band, then S satisfies the identity xyz = xzy.

Proof. Let k have the same meaning as that in the proof of Lemma 2.2. For all $x, y, z \in S$, take $x_k = y$, $x_{p_k} = z$ and $x_i = x^*$ otherwise. Then $x^*(x_1x_2\cdots x_n)z^* = x^*yx^*zx^*z^*$, $x^*yzx^*z^*$, x^*yx^*z or x^*yz . Since by hypothesis and Lemma 2.2, we have

$$x^*yx^*zx^*z^* = x^*yx^*z = x^*yy^*x^*z = x^*yy^*x^*y^*z$$

= $x^*yy^*z = x^*yzz^* = x^*yzx^*z^*$,

Thus, we obtain that $x^*(x_1x_2\cdots x_n)z^*=x^*yz$. On the other hand, we have $x^*(x_{p_1}x_{p_2}\cdots x_{p_n})z^*=x^*zx^*yx^*z^*$, $x^*zyx^*z^*$, $x^*zx^*yz^*$ or x^*zyz^* . But by the hypothesis and Lemma 2.2, we have

$$x^*zx^*yz^* = x^*zx^*yx^*z^* = x^*zz^*x^*yx^*z^*$$

$$= x^*zz^*x^*z^*yx^*z^* = x^*zx^*z^*yx^*z^*$$

$$= x^*zz^*yx^*z^* = x^*zyx^*z^* = x^*zyz^*$$

$$= x^*zz^*yy^*z^* = x^*zz^*yy^*z^*y^* = x^*zz^*yy^* = x^*zy.$$

Hence, $x^*(x_{p_1}x_{p_2}\cdots x_{p_n})z^*=x^*zy$. Thus, we obtain $x^*yz=x^*zy$ and thereby, we have

$$xyz = xx^*yz = xx^*zy = xzy$$
. \square

Now we arrive at the main result of this section.

Theorem 2.7. Let T be a rpp semigroup with set E of idempotents. Denote by λ_a the inner left translation of T associated with $a \in T$. Then the following statements are equivalent:

- (1) T satisfies permutation identities;
- (2) T satisfies the identity: xyzw = xzyw;
- (3) for all e ∈ E, eTe is a commutative semigroup and λ_e is a homomorphism;
- (4) for all $e \in E$, eT satisfies the identity: xyz = yxz, and λ_e is a homomorphism.

Proof. (1) \Rightarrow (2) Let T be a PI-semigroup. For all $x, y, z, w \in T$, by Lemmas 2.4-2.6 $(xyzw)\eta = (xzyw)\eta$. Then for some $f \in E((xzyw)^*)$, xyzw = xzywf. Furthermore, we also have

$$xyzw = xyzww^* = xzywfw^*$$

$$= xzyw(xzyw)^*fw^*$$

$$= xzyw(xzyw)^*f(xzyw)^*w^* \text{ (by Lemma 2.1)}$$

$$= xzyw(xzyw)^*w^* = xzyw$$

(2) \Rightarrow (3) Suppose that (2) holds. Let $e \in E$. Then, for all $x, y \in eTe$, we have x = ex = xe and y = ey = ye. Thus

$$xy = exye = eyxe = yx$$

This means that eTe is a commutative semigroup. On the other hand, since

$$\lambda_e(x) \cdot \lambda_e(y) = exey = exy = exy = \lambda_e(xy),$$

 λ_e is a homomorphism of T into itself. Therefore (3) holds.

 $(3) \Rightarrow (4)$ Suppose that (3) holds. It remains to prove the first part. For all $x, y, z \in eT$, we have x = ex, y = ey and z = ez. Thus, since λ_e is a homomorphism, we have

$$xyz = exeyez = (exe)(eye)z$$
$$= (eye)(exe)z = (ey)(ex)(ez) = yxz.$$

 $(4) \Rightarrow (2)$ Let $x, y, z, w \in T$. Then

$$xyzw = x(x^*yzw) = x(x^*y)(x^*z)(x^*w)$$

= $x(x^*z)(x^*y)(x^*w) = x(x^*zyw) = xzyw.$

 $(2) \Rightarrow (1)$ This part is trivial. \square

3. Weak-spined product

In this section, we introduce the concept of weak-spined product. A characterization of PI-rpp semigroups in terms of weak-spined product will be hence given.

Let T be a rpp semigroup whose idempotents form a subsemigroup E. Let Y be the structure semilattice of E such that $E = \bigcup_{\alpha \in Y} E_{\alpha}$ is a structure decomposition of E. Now let B be a right normal band with structure semilattice Y, having the structure decomposition $\mathcal{S}(Y; B_{\alpha}; \varphi_{\alpha,\beta})$. In this case, each B_{α} is a right zero semigroup (see [6, Corollary IV 5.18]). For $a \in T$, if $a^* \in E_{\alpha}$ we denote $a^+ = \alpha$. Take $M = \{(a, x) \in T \times B : x \in B_{a^+}\}$. Define a multiplication on M as follows:

$$(a, x) \circ (b, y) = (ab, y\varphi_{b^+,(ab)^+}), \text{ i.e. } = (ab, zy),$$

where $z \in B_{(ab)^+}$. Notice that $ab = abb^*$ implies $(ab)^* = (ab)^*b^*$, we have $(ab)^+ = (ab)^+b^+$, i.e. $(ab)^+ \le b^+$ (\le is the natural order) in Y. This means that $y\varphi_{b^+,(ab)^+} \in B_{(ab)^+}$. Accordingly, $(ab,y\varphi_{b^+,(ab)^+}) \in M$. Thus "o" is well-defined, and with respect to "o", M is closed. In addition, we have the following result.

Lemma 3.1. (M, \circ) is a rpp semigroup.

Proof. At first, we shall show that (M, \circ) satisfies the associative law. Let $(a, x), (b, y), (c, z) \in M$. Then, by the above statement, we can show that, $(abc)^+ \leq (bc)^+ \leq c^+$. Hence

$$\begin{split} ((a,x)\circ(b,y))\circ(c,z) &= (ab,y\varphi_{b^+,(ab)^+})\circ(c,z) \\ &= (abc,z\varphi_{c^+,(abc)^+}) \\ &= (a,x)\circ(bc,z\varphi_{c^+,(bc)^+}) \\ &= (a,x)\circ((b,y)\circ(c,z)). \end{split}$$

Thus (M, \circ) is indeed a semigroup.

It remains to prove that for all $(a,x) \in M$, $(a,x)\mathcal{L}^*(a^*,x)$. To see this, let $(b,y),(c,z) \in M^1$. If (a,x)(b,y)=(a,x)(c,z), i.e. $(ab,y\varphi_{b^+,(ab)^+})=(ac,z\varphi_{c^+,(ac)^+})$, then ab=ac and $y\varphi_{b^+,(ab)^+}=z\varphi_{c^+,(ac)^+}$. From the above equality, we deduce that $a^*b=a^*c$. Consider that $ab\mathcal{L}^*a^*b$. It is easy to see that $(ab)^*\mathcal{L}(a^*b)^*$ so that $(ab)^+=(a^*b)^+$. But, $(a^*b)^+=(a^*c)^+$. Thus $y\varphi_{b^+,(a^*b)^+}=z\varphi_{c^+,(a^*c)^+}$. Accordingly, we have

$$(a^*, x)(b, y) = (a^*b, y\varphi_{b^+, (a^*b)^+}) = (a^*c, z\varphi_{c^+, (a^*c)^+})$$
$$= (a^*, x)(c, z).$$

This equality, together with the fact that

$$(a,x)(a^*,x) = (aa^*, x\varphi_{(a^*)^+,(aa^*)^+}) = (a,x),$$

implies that $(a, x)\mathcal{L}^*(a^*, x)$, as required. \square

Definition 3.2. We call (M, \circ) above the weak-spined product of T and B, and denote it by WS(T, B).

Lemma 3.3. If T satisfies the identity xyz = xzy, then WS(T, B) satisfies the identity xyzw = xzyw.

Proof. Let $(a,i),(b,j),(c,k),(d,l) \in WS(T,B)$. Then

$$(a,i)(b,j)(c,k)(d,l) = (abcd, l\varphi_{d^+,(abcd)^+})$$

= $(acbd, l\varphi_{d^+,(acbd)^+})$
= $(a,i)(c,k)(b,j)(d,l)$.

Thus WS(T,B) satisfies the identity xyzw = xzyw. \square

In virtue of the weak-spined product, the PI-rpp semigroups can be described as follows:

Theorem 3.4. A rpp semigroup is a PI-semigroup if and only if it is isomorphic to the weak-spined product of a rpp semigroup satisfying the identity xyz = xzy, and a right normal band.

Proof. By Lemma 3.3, it suffices to prove the "only if" part. Suppose that S is a PI-rpp semigroup with normal band E. Then by Lemma 2.5 and 2.6, S/η is a rpp semigroup satisfying the identity: xyz = xzy. Let Y be the structure semilattice of E and $E = \bigcup_{\alpha \in Y} E_{\alpha}$ be the structure decomposition of E. Then $E/\mathcal{L} = \bigcup_{\alpha \in Y} E_{\alpha}/\mathcal{L}$ is a right normal band and the structure decomposition of E/\mathcal{L} . Since $a\eta \in E(S/\eta)$ implies $a \in E$ and $\eta \cap (E \times E) = \mathcal{R}$, we can easily know that $E(S/\eta) = E/\mathcal{R} = \bigcup_{\alpha \in Y} E_{\alpha}/\mathcal{R}$ and further Y is the structure semilattice of $E(S/\eta)$. Thus we can consider the weak-spined product $WS(S/\eta, E/\mathcal{L})$.

Now, we define a mapping θ :

$$S \to WS(S/\eta, E/\mathcal{L}), x \to (x\eta, \overline{x^*}),$$

where $\overline{x^*}$ is the congruence class of E containing x mode \mathcal{L} . In order to prove the theorem, we only need to show that θ is an isomorphism. By Lemma 2.4, θ is well-defined and injective. Take any element $(a, \overline{x}) \in WS(S/\eta, E/\mathcal{L})$, where $x \in E$. Since $a \in S/\eta$, there exists $s \in S$ such that $a = s\eta$. By the definition of $WS(S/\eta, E/\mathcal{L})$, $s^*\mathcal{D}^E x$, that is, $x \in E(s^*)$. Hence $a = (sx)\eta$ and $sx\mathcal{L}^*s^*x\mathcal{L}x$. Thus $(sx)\theta = (a, \overline{x})$. This means that θ is onto. For all $s, t \in S$, by $st = (st)t^*$, $(st)^* = (st)^*t^*$, and $\overline{(st)^*} \in B_{((st)\eta)^+}$ by Lemma 2.4. Now

$$\begin{array}{l} \theta(st) = ((st)\eta, \overline{(st)^*}) = ((st)\eta, \overline{(st)^*t^*}) \\ = (s\eta, \overline{s^*})(t\eta, \overline{t^*}) = \theta(s)\theta(t). \end{array}$$

Hence θ is a homomorphism. Summing up, θ is an isomorphism of S onto $WS(S/\eta, E/\mathcal{L})$. The proof is completed. \square

4. Special cases

Let S be a PI-rpp semigroup. By Lemma 2.1 E is a band. Obviously, E satisfies permutation identities. According to Yamada [7] and Yamada and Kimura [8], there are exactly four varieties of bands defined by permutation identities. They are

 $\mathcal{SL} = [ab = ba]$ the variety of semilattices, $\mathcal{LN} = [abc = acb]$ the variety of left normal bands, $\mathcal{RN} = [abc = bac]$ the variety of right normal bands, and $\mathcal{N} = [abcd = acbd]$ the variety of normal bands. In what follows, we consider PI-rpp semigroups whose idempotent bands contain in SL, LN or RN.

Proposition 4.1. Let S be a PI-rpp semigroup. Then the following statements are equivalent:

- (1) E is a left normal band;
- (2) S satisfies the identity: xyz = xzy;
- (3) for all $e \in E$, eS is a commutative subsemigroup of S.

Proof. (1) \Rightarrow (2) This follows from Lemma 2.6.

(2) \Rightarrow (3) Suppose that (2) holds. Then, for $e \in E$ and $x, y \in eS$, we have x = ex and y = ey. Thus

$$xy = exy = eyx = yx$$
,

and this establishes (3).

 $(3) \Rightarrow (1)$ Suppose that (3) holds. Then for all $e, f, g \in E$

$$efg = e(ef)g = (ef)(eg) = (eg)(ef) = egf$$

so that

$$(ef)^2 = e \cdot ef \cdot f = ef \in E.$$

Summing up the above, E is a left normal band. \square

Lemma 4.2. Let S be a PI-rpp semigroup. If E is a right normal band then $ES = \{es : e \in E, s \in S\}$ is an abundant subsemigroup of S.

Proof. Obviously, ES is a subsemigroup of S. Notice that $E \subseteq ES$ and that S is a rpp semigroup, it is easy to see that ES is a rpp semigroup. It remains to prove that ES is an lpp semigroup. To see this, let $e \in E$ and $a = ea \in S$. Let $x, y \in (ES)^1$ with xa = ya. Since for some $f \in E$, x = fx, we have

$$xa = fxaa^* = faxa^*$$
 (by Theorem 2.7) $= faa^*xa^*$
 $= fa^*axa^* = a^*fa^*axa^*$ (by hypothesis)
 $= a^*a^*afxa^* = a^*axa^*$.

Similarly, $ya = a^*aya^*$. Now $a^*axa^* = a^*aya^*$. Thus by Lemma 1.1, we have $(a^*a)^*xa^* = (a^*a)^*ya^*$. But as $a^*aa^* = a^*a$, $(a^*a)^*a^* = (a^*a)^*$. Accordingly, by the hypothesis, we have

$$(a^*a)^*xa^* = (a^*a)^*fxa^* = f(a^*a)^*fxa^*$$

= $ffx(a^*a)^*a^* = x(a^*a)^*$.

Similarly, $(a^*a)^*ya^* = y(a^*a)^*$. Thus, $x(a^*a)^* = y(a^*a)^*$. On the other hand, since E is a right normal band, we have

$$(a^*a)^*a = (a^*a)^*ea = e(a^*a)^*ea = e(a^*a)^*aa^*$$

= $e(a^*a)^*a^*aa^*$ (by Theorem 2.7) = $ea^*a(a^*a)^*a^*$
= $ea^*aa^* = eaa^*a^* = a$.

Summing up the above facts, by Corollary 1.2, we know that $a\mathcal{R}^*(a^*a)^*$. Therefore ES is an lpp semigroup. \square

The following result is immediate from Lemmas 1.3 and 4.2 since $E \subseteq ES$.

Proposition 4.3. Let S be a PI-rpp semigroup. Then the following statements are equivalent:

- (1) E is a right normal band;
- (2) ES is an abundant semigroup satisfying the identity: xyz = yxz.

By using Theorem 4.1 and 4.3, we can easily obtain the following corollary.

Corollary 4.4. Let S be a PI-rpp semigroup. Then the following statements are equivalent:

- (1) E is a semilattice;
- (2) ES is a commutative abundant semigroup.

Acknowledgment. The author would like to thank Professor Yuqi Guo, his supervisor, for his guidance and help.

References

- [1] J.B. Fountain, Adequate semigroups, Proc. Edinburgh Math. Soc. 2 (1979), 113-125.
- [2] J.B. Fountain, Abundant semigroups, Proc. London Math. Soc. 44 (3) (1982), 103–129.
- [3] X. Guo, Abundant semigroups whose idempotents satisfy permutation identities, Semigroup Forum 54 (1997), 317-326.
- [4] X. Guo, Structure of PI-strongly rpp semigroup, Chinese Sci. Bull. 41 (1996), 1647-1650 (in Chinese).
- Y.Q. Guo, K.P. Shum and P.Y. Zhu, Structure of left C-rpp semigroups, Semigroup Forum 50 (1995), 9-23.
- [6] J.M. Howie, An introduction to semigroup theory, Academic Press, London, 1976.
- M. Yamada, Regular semigroups whose idempotents satisfy permutation identities, Pacific J. Math 21 (1967), 371-397.
- [8] M. Yamada and N. Kimura, Note on idempotent semigroups I, Proc. Japan Acad. 34 (1958), 110-112.

DEPARTMENT OF MATHEMATICS, SICHUAN UNION UNIVERSITY, CHENGDU, SICHUAN 610064, P.R.CHINA