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RPP SEMIGROUPS SATISFYING
PERMUTATION IDENTITIES

Xiaojiang Guo

Abstract. In this paper we study rpp semigroups satisfying permutation
identities. In particular, we determine when a rpp semigroup will satisfy the
permutation identities.

1. Introduction and preliminaries

Throughout this paper, we use the terminologies and notions given in [1,
2, 6]. A semigroup S is called a rpp semigroup if all of its principal right ideals
aS' (a € S), regarded as right S'-systems, are projective. Equivalently, a
semigroup is a rpp semigroup if and only if each £*-class contains at least one
idempotent (see [5]). The Ipp semigroup can be dually defined. According
to Fountain [2], a semigroup is abundant if and only if it is both rpp and
Ipp. We call a rpp semigroup a strongly rpp semigroup [5] if for each a € S,
there exists a unique idempotent e, £*-related to a, such that ea = a.

A semigroup S in which 2122+ &, = Tp, Tp, -+ - Tp, (1) for all z1,25,.. .,
Tn € 5, where (p1p3 ... py) is a nontrivial permutation of (12...n), is termed
to satisfy the permutation identity (1) (or a PI-semigroup for short). Yamada
[7] investigated the PI-regular semigroups and discussed the structure of
such semigroups. In [3], the author generalized the results of Yamada [7]
and investigated the structure of Pl-abundant semigroups. Recently, he [4]
also the classification of Pl-strongly rpp semigroups. The aim of this note
is to study the PI-rpp semigroups, and to determine when a rpp semigroup
will satisfy the permutation identities.

We first recall some known concepts and results (we only list the results
for £* because the result for R* is a dual result for £*.
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Lemma 1.1. [2] Let 5 be a semigroup and a,b € §. Then the following
statements are equivalent:

(1) al*b;

(2) for all z,y € 5%, az = ay if and only if bx = by.

As an easy but useful consequence, we have

Corollary 1.2. [2] Let @ € S and e be an idempotent of S. Then the
following statements are equivalent:

(1) al*e;

(2) ae =e and for all z,y € S*, ax = ay implies ex = ey.

Evidently, £* is a right congruence on . In general, £ C £* and when
a and b are regular elements, aLb if and only if aL*b. Let E be the set of
idempotents of §. We write a” to denote the typical idempotents £*-related
to a.

A band B is called a (left;right) normal band if it satisfies the identity:
(zyz = zzy; 2yz = yzz) zyzw = zzyw. By [6, Theorem IV 3.1], a band B
is a semilattice Y of rectangular bands B, (a« € Y). Such a decomposition
of B is unique. Accordingly Y is unique up to isomorphism and so are
the B s. Hereafter, we call Y the structure semilattice of B and also this
decomposition is called the structure decomposition of B. For simplicity, if
e € By, then we write E(e) = B, and for e, f € B, if E(e) = E(e)E(f), we
denote E(e) < E(f). Obviously, E(e) = E(f) if and only if E(e) < E(f)
and E(f) < E(e).

The following result will be used in the sequel.

Lemma 1.3. [3] Let S be an abundant semigroup. Then the following state-
ments are equivalent:

(1) S is a PI-semigroup and E a right normal band;
(2) S satisfies the identity Tyz = yz=.

2. Some characterizations for PI-rpp semigroups

In this section, we always assume that S is a rpp semigroup satisfying the
permutation identity: zixy--- 2, = Tp, Tp, - - Tp,, -

Lemma 2.1. F is a normal band.

Proof. This is straightforwards. In fact, it follows directly from the proof in
[7]. DO
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Lemma 2.2. Foralle, f € E and a € 5, we have

(1) efa =eafa™;
(2) eaf = eaef.

Proof. Because (p1pz---ppn) i8 a nontrivial permutation of (12---n), there
exists a positive integer k(< n) such that p; =1 when 1 < i < k but p; # k.
Obviously, k < pg.

(1) Take z; = e when i < k, z; = fif k <1 < py, 7, = a and z; = a*
otherwise. Then e(z1zs -+ z,)a* = efa. On the other hand, by Lemma 2.1,
e(Zp, Tpy ** - Tp, )a* = eafa*. Thus by hypothesis, we obtain efa = eafa”.

(2) Now, let z; = e when 1 < i < pg, Zp, = a otherwise z; = f. Then
e(z1Ta -+ my,) f = eaf. But e(zp, Tp, - Tp, ) f = eaef or eafef. By Lemma
2.1, we deduce that

eafef = eaa*féf =eaa’ef f = eaef.

Hence, eaf = eacf. O
Lemma 2.3. For alla,b€ S and f € E, if a = bf, then E(a*) < E(f).

Proof. If a = bf then a = af. Now, by aL*a*, we have a* = a* f and thus
E(a*) < E(f). O

We now define a relation n on S as follows: a,b € 5:
anb if and only if for some f € E(b"), a = bf.

Lemma 2.4. (1) n is a congruence on 8 preserving L”-classes;
(2) nN L* =i, (the identical mapping on S).

Proof. (1) We first show that 7 is an equivalence relation. Certainly, 2nz for
every x € S, since z = zz*. Let a,b € S with anb. Then for some f € E(b*),
a = bf. By Lemma 2.3, E(a*) < E(f) = E(b*). It follows that a*b* € E(a")
and that anb implies E(a*) < E(b*). Since

a(a*b*) = ab™ = bfb" = bb* fb* = bb* = b,

we have bna, and thus 7 satisfies the symmetric relation. On the other
hand, by the proof above, bna permits E(b*) < E(a*). Now E(a*) = E(b*).
Therefore, from anb, we can deduce that E(a*) = E(b*). To prove the
transitivity, we let z,y, z € § with zny, ynz. Then we have E(z*) = E(y*) =
E(z*). By the hypothesis, there are f,g € E(z*) such that z = yf and
y = zg. Accordingly, z = zgf. Notice that gf € E(z*), we hence get znz.

]
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Now let z,y,2 € § and zny. Then there exists f € E(y*) such that
z = yf. Obviously, zz = 2yf = zy(zy)* f. It follows from Lemma 2.3 that
E((z2)*) < E((2y)*) and E((2z)*) < E(f), and so (zz)*y* € E((zz)*). But
© = yf, this implies that y = zy*. Now 2y = zzy* = zz(zz)*y*. Hence
zznzy. On the other hand, by

zz =yfz=yy" fz =yy*2f2" (by Lemma 2.2)
=yz(f2") = yz(yz)"f=*,

we can deduce that E((zz)*) < E((y2)*) and E((z2)*) < E(f2z*) by Lemma
2.2. A similar argument for y = zy*, we can show that E((y2)*) < E((z2)*).
Thus E((zz)*) = E((yz)*). This means that (yz)*fz* € E((yz)*). There-
fore zznyz. Consequently, i is a congruence on S.

It remains to prove that n preserves £*-classes. To see this, we let a,b € §
with e£*b. For zn,yn € (S/n)' (where z,y € 8), if (az)y = (ay)n, then
there exists f € E((ay)*) such that ax = ayf. By al*b, we have bx = byf.
Notice that L£* is a right congruence, ayL*by and so E((ay)*) = E((by)*).
Now (bz)n = (by)n. From this equality and its dual, we can deduce that
anl*(S/n)bn, as required.

(2) Let (a,b) € nN L*. Then for some f € E(b*), a = bf. Since aL*b, we
have a* Lb*. Hence

a =ab" =bfb* = bb* fb* = bb* = b.
Therefore n N L* =4,. O

Lemma 2.5. S/n is a Pl-rpp semigroup and E(S/n) a left normal band.

Proof. By Lemma 2.4, S/n is a rpp semigroup. Since § is a PI-semigroup,
we easily check that S/n is a PI-semigroup. Notice that an € E(S/n) implies
a € E(S) and that n N (E x E) =R, E(S/n) = E/R and furthermore, it is
a left normal band. O

Lemma 2.6. If E is a left normal band, then S satisfies the identity zyz =
xzY.

Proof. Let k have the same meaning as that in the proof of Lemma 2.2.
For all z,y,2z € §, take 2 = y, z,, = z and z; = z* otherwise. Then
T (T1%3 - 2p)2" = Tryztaztet, zryzre*, z*yz*z or z*yz. Since by hy-
pothesis and Lemma, 2.2, we have

m*yw*zx*z* s :E*ym*z == m*yy*m*z — Z‘*yy*m*y*z

=z'yy*z = $y22" = z*yaz* 2",
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Thus, we obtain that * (2122 -+ Zn)2* = " yz. On the other hand, we have
T (Tp, Tpy = Tpy)2" = T2z yzte®, ot ayr*e”, 't zxtyz” or z*zyz*. But by
the hypothesis and Lemma 2.2, we have

ot rrtyst = ot zrtyzt et = 2t e a Yz Y
= rtart syt et = ot 2yt 2
— gtz yr st = ot zyzt st = 2ys”

= :E*zzk‘yy*z* _— m*zz)kyy*z*y* — m*zz*yy* — m*zy

Hence, ©*(Tp, Tp, -+ Tp, )2~ = T°2Y. Thus, we obtain z*yz = z*zy ahd

thereby, we have

zyz = zx'yz = gx’zy = vzy. U

Now we arrive at the main result of this section.

Theorem 2.7. Let T be a rpp semigroup with set E of idempotents. De-
note by X\, the inner left translation of T' associated with a(€ T). Then the
following statements are equivalent:

(1) T satisfies permutation identities;

(2) T satisfies the identity: zyzw = T2yw;

(3) for all e € E, eTe is a commutative semigroup and X 18 a homo-

morphism;
(4) for all e € E, €T satisfies the identity: zyz = yzz, and A 15 @
homomorphism.

Proof. (1) = (2) Let T be a PI-semigroup. For all z,y, 2, w € T, by Lemmas

2.4-2.6 (zyzw)n = (zzyw)n. Then for some f € E((zzyw)*), zyzw =
zzywf. Furthermore, we also have
Tyzw = syzww” = szywfw”
= zzyw(zzyw)” fw*
= zzyw(zzyw)* f(zzyw) w* (by Lemma 2.1)

= zzyw(zzyw)’w" = T2yw

(2) = (3) Suppose that (2) holds. Let e € E. Then, for all z,y € eTe,
we have 7 = ez = ze and y = ey = ye. Thus

Ty = exrye = eYyre = Yy
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This means that eTe is a commutative semigroup. On the other hand, since
Me(2) - Xe(y) = exey = ey = exy = Ay (zy),

Ae 18 @ homomorphism of T' into itself. Therefore (3) holds.

(3) = (4) Suppose that (3) holds. It remains to prove the first part. For
all z,y,z € €T, we have £ = ez, y = ey and z = ez. Thus, since ). is a
homomorphism, we have

zyz = exeyez = (eze)(eye)z

= (eye)(exe)z = (ey)(ex)(ez) = yzz.

(4) = (2) Let z,y,2,w € T. Then

zyzw = (2" yzw) = z(z*y)(z*2) (z* w)

= z(z"2)(z"y) (z*w) = z(z* 2yw) = z2yw.
(2) = (1) This part is trivial. 0O ]

3. Weak-spined product

In this section, we introduce the concept of weak-spined product. A
characterization of PI-rpp semigroups in terms of weak-spined product will
be hence given.

Let T be a rpp semigroup whose idempotents form a subsemigroup E. Let
Y be the structure semilattice of E such that F = Uaey Ea is a structure
decomposition of E. Now let B be a right normal band with structure
semilattice Y, having the structure decomposition § (Y;Ba; ¢a,p). In this
case, each B, is a right zero semigroup (see [6, Corollary TV 5.18]). For
a €T, if a* € E, we denote a™ = . Take M = {(a,2) e TxB:z ¢ B,+}.
Define a multiplication on M as follows:

(CL, I) © (buy) = (Q.b, y(pb+,(ab)+): le. = (Gb, zy),

where z € Byop)+. Notice that ab = abb* implies (ab)* = (ab)*b*, we have
(ab)* = (ab)*bT, ie. (ab)* < bT (< is the natural order) in Y. This means
that yep+ (apy+ € Biap)+- Accordingly, (ab, Yoo+ (ab)+) € M. Thus “o” is

well-defined, and with respect to “o”, M is closed. In addition, we have the
following result.




Rpp semigroups satisfying permutation identities 109

Lemma 3.1. (M,o0) is a rpp Semigroup.

Proof. At first, we shall show that (M, o) satisfies the associative law. Let
(a,z), (b, y),(c,z) € M. Then, by the above statement, we can show that,
(abe)t < (be)t < ¢t. Hence

((a,2) o (b,y)) o (e, 2) = (ab, ygu+ (ary+) © (¢, 2)
= (abc, 2Pc+ (abeyt)

= (a,z) o (be, 20+ (bo)t)
= (a,z) o ((b,v) o (¢, 2)).
Thus (M, o) is indeed a semigroup.

It remains to prove that for all (a,z) € M, (a,z)L*(a*,z). To see this,
let (b,y),(c,z] € M. If (a':m)(b:y) = (G,IU)(C,Z), Le. (ab1y(pb+,(ab)+) =
(ac, 2pc+ (ac)+), then ab = ac and Y@+ (ab)+ = 2@0ct (ac)+- From the above
equality, we deduce that a*b = a*c. Consider that abL*a*b. It is easy to
see that (ab)*L(a*b)* so that (ab)* = (a*b)*. But, (a*b)* = (a*c)*. Thus
Yo+ (avb)+ = ZPct (arc)yt- Accordingly, we have

(a*a L’L‘)(b, y) = (G,*b, y(pb*',(a,"‘b}"') = (G*C, zﬁoc+,(a.‘c}+)
= (a*,z)(c, ).

This equality, together with the fact that

(a,z)(a*, ) = (aa”, TP(a*)+ (aa*)+) = ()
implies that (a,z)L*(a*,z), as required. O

Definition 3.2. We call (M, o) above the weak-spined product of T' and B,
and denote it by WS(T, B).

Lemma 3.3. If T satisfies the identity xyz = z2y, then WS(T, B) satisfies
the identily zyzw = z2yw.

Proof. Let (a,i),(b,7), (¢, k), (d,l) € WS(T,B). Then
(aa ?‘)(ba j)(C, k')(da l) = (a'de': l(pd"',(a.bcd)"')
= (ad)d: l(:od'i',(acbd}Jf)
= (a, i)(c, k) (b, 7)(d,1).
Thus W S(T, B) satisfies the identity zyzw = zzyw. O

In virtue of the weak-spined product, the PI-rpp semigroups can be de-
scribed as follows:
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Theorem 3.4. A rpp semigroup is a PI-semigroup if and only if it is iso-
morphic to the weak-spined product of a rpp semigroup satisfying the identity
ryz = z2y, and o right normal band.

Proof. By Lemma 3.3, it suffices to prove the “only if” part. Suppose that
S is a Pl-rpp semigroup with normal band E. Then by Lemma 2.5 and 2.6,
S/n is a rpp semigroup satisfying the identity: zyz = zzy. Let ¥ be the
structure semilattice of E and E = | J oy Eq be the structure decomposition
of E. Then E/L = |J,cy Ea/L is a right normal band and the structure
decomposition of E//L. Since an € E(S/n) impliesa € E and nN (E x E) =
R, we can easily know that B(S/n) = E/R = J, ¢y Eo/R and further Y is
the structure semilattice of E(S/n). Thus we can consider the weak-spined
product WS(S/n, E/L).
Now, we define a mapping 6:
S —WS(S/n,E/L),x — (zn,z7)

3

where z* is the congruence class of E containing z mode L. In order to prove
the theorem, we only need to show that @ is an isomorphism. By Lemma 2.4,
0 is well-defined and injective. Take any element (a,%) € WS(S/n, E/L),
where 2 € E. Since a € §/n, there exists s € S such that a = sn. By the
definition of WS(S/n, E/L), s*DFz, that is, z € E(s*). Hence a = (sz)n
and szL*s*xLz. Thus (sz)f = (a,%). This means that @ is onto. For all
s,t € S, by st = (st)t*, (st)* = (st)*t*, and (st)* € B((styp)+ by Lemma 2.4.

Now
6(st) = ((st), 50°) = ((st), 5OFF)
== (S”fhs_*)(t”?:t_*) = H(S)G(t)

Hence 6 is a homomorphism. Summing up, 8 is an isomorphism of S onto
WS(S/n, E/L). The proof is completed. O

4. Special cases

Let S be a PI-rpp semigroup. By Lemma 2.1 E is a band. Obviously, E
satisfies permutation identities. According to Yamada [7] and Yamada and

Kimura [8], there are exactly four varieties of bands defined by permutation
identities. They are

SL = [ab = ba] the variety of semilattices,

LN = [abc = ach] the variety of left normal bands,

RN = [abc = bac] the variety of right normal bands, and
N = [abcd = acbd] the variety of normal bands.




Rpp semigroups satisfying permutation identities 111

In what follows, we consider PI-rpp semigroups whose idempotent bands
contain in S£, LN or RN.

Proposition 4.1. Let S be a Pl-rpp semigroup. Then the following state-
ments are equivalent:

(1) E is a left normal band;
(2) S satisfies the identity: xyz = z2y;
(3) for all e € E, eS is a commutative subsemigroup of 5.

Proof. (1) = (2) This follows from Lemma 2.6.
(2) = (3) Suppose that (2) holds. Then, for e € E and z,y € eS, we have
z = ez and y = ey. Thus '

TY = ery = eyr = Yz,

and this establishes (3).
(3) = (1) Suppose that (3) holds. Then for all e, f,g € E

efg =e(ef)g = (ef)(eg) = (eg)(ef) = egf
so that
(ef)’=e-ef - f=ef € E.
Summing up the above, E is a left normal band. 0O

Lemma 4.2. Let S be a Pl-rpp semigroup. If E is a right normal band
then ES = {es: e € E,s € S} is an abundant subsemigroup of S.

Proof. Obviously, ES is a subsemigroup of §. Notice that £ C ES and
that S is a rpp semigroup, it is easy to see that ES is a rpp semigroup. It
remains to prove that ES is an lpp semigroup. To see this, let ¢ € E and
a=cea € S. Let z,y € (ES)! with za = ya. Since for some f € E, z = fz,
we have
za = fzaa” = fazra®™ (by Theorem 2.7) = faa"za*

= fa"aza” = a” fa*aza® (by hypothesis)

=a*a*afza* = a*aza®.
Similarly, ya = a*aya®. Now a*aza* = a*aya*. Thus by Lemma 1.1, we
have (a¢*a)*za* = (a*a)*ya*. But as a*aa* = a*a, (a*a)*a* = (a*a)*.
Accordingly, by the hypothesis, we have

(a*a)*za® = (a*a)" fza* = f(a*a)* fza*

= ffald"e) e’ = wlaa)"
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Similarly, (a*a)*ya* = y(a*a)*. Thus, z(a*a)* = y(a*a)*. On the other
hand, since F is a right normal band, we have

(a*a)*a = (a*a)"ea = e(a*a)*ea = e(a*a)*aa’
=e(a"a)"a"aa” (by Theorem 2.7) = ea*a(a*a)’a

=ea"aa” = eaa*a* = a.

Summing up the above facts, by Corollary 1.2, we know that aR*(a*a)*.
Therefore ES is an lpp semigroup. 0O

The following result is immediate from Lemmas 1.3 and 4.2 since E C ES.

Proposition 4.3. Let S be a PI—rpp semigroup. Then the following state-
ments are equivalent:

(1) E is a right normal band;
(2) ES is an abundant semigroup satisfying the identity: zyz = yzz.

By using Theorem 4.1 and 4.3, we can easily obtain the following corollary.

Corollary 4.4. Let S be a PI—rpp semigroup. Then the following statements
are equivalent:

(1) E is a semilattice;
(2) ES is a commutative abundant semigroup.
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