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Abstract. In the present paper, firstly, we review the notion of the SO-complete metric spaces. This notion
let us to consider some fixed point theorems for single-valued mappings in incomplete metric spaces.
Secondly, as motivated by the recent work of H. Baghani et al.(A fixed point theorem for a new class of
set-valued mappings in R-complete (not necessarily complete) metric spaces, Filomat, 31 (2017), 3875–3884),
we obtain the results of Ansari et al. [J. Fixed Point Theory Appl. (2017), 1145–1163] with very much weaker
conditions. Also, we provide some examples show that our main theorem is a generalization of previous
results. Finally, we give an application to the boundary value system for our results.

1. Introduction and preliminaries

The Banach contraction mapping principle is one of the pivotal results in fixed point theory which their
conditions dropped by a large number of researchers(see [1, 7–9, 13]). Recently, Jleli and Samet [11] provided
sufficient conditions for the existence of a fixed point of T satisfying the two constraint inequalities: Ax �1 Bx
and Cx �2 Dx, where T : X → X defined on a complete metric space equipped with two partial orders
” �1 ” and ” �2 ” and A,B,C,D : X → X are self-operators. In the other words, this problem containes:
finding x ∈ X such that

x = Tx,
Ax �1 Bx,
Cx �2 Dx.

(1)

Ansari, Kumam and Samet in [2] proved that this problem has a unique solution without continuity of C
and D.
Before presenting the main result obtained in [2], let us recall some concepts introduced in [11].

Definition 1.1. [11] Let (X, d) be a metric space. A partial order ”� ” on X is d-regular if for any two sequences {un}

and {vn} in X, we have

lim
n→∞

d(un,u) = lim
n→∞

d(vn, v) = 0,un � vn for all n =⇒ u � v,

where (u, v) ∈ X × X.

2010 Mathematics Subject Classification. Primary 47H10; Secondary 45G15
Keywords. Fixed point, Constraint inequalities, Partial order, SO-complete metric space, SO-continuous
Received: 03 April 2017; Revised: 24 July 2017; Accepted: 10 August 2017
Communicated by Vasile Berinde
Email addresses: z.ahmadiz@yahoo.com (Z. Ahmadi), lashkari@hamoon.usb.ac.ir ( R. Lashkaripour), h.baghani@gmail.com (H.

Baghani)



Z. Ahmadi et al. / Filomat 32:9 (2018), 3365–3379 3366

Definition 1.2. [11] Let ” �1 ” and ” �2 ” be two partial orders on X and operators T,A,B,C,D : X → X be
given. The operator T is called (A,B,C,D,�1,�2)-stable if

x ∈ X, Ax �1 Bx =⇒ CTx �2 DTx.

Let Φ be the set of all functions ϕ : R+
→ R+ satisfying the following conditions:

(Φ1) ϕ is a lower semicontinuous function;
(Φ2) ϕ−1({0}) = {0}.

The main theorem presented in [2] is given by the following result.

Theorem 1.3. Let (X, d) be a complete metric space endowed with two partial orders ” �1 ” and ” �2 ”. Let operators
T,A,B,C,D : X→ X be given. Suppose that the following conditions are satisfied:

(i) ” �i ” is d-regular, i = 1, 2;
(ii) A,B are continuous;

(iii) there exists x0 ∈ X such that Ax0 �1 Bx0;
(iv) T is (A,B,C,D,�1,�2)-stable;
(v) T is (C,D,A,B,�2,�1)-stable;

(vi) there exsists ϕ ∈ Φ such that

Ax �1 Bx, Cy �2 Dy =⇒ d(Tx,Ty) ≤ d(x, y) − ϕ(d(x, y)).

Then the sequence {Tnx0} converges to some x∗ ∈ X, which is a unique solution to (1).

In this paper, we address the following questions.
Q1: Is it possible to remove the completness assumption of the space in Theorem 1.3?
Q2: Is it possible to remove the continuity conditions of the mappings A and B in Theorem 1.3?
Q3: Is condition (vi) have to satisfy all the x and y that Ax �1 Bx and Cy �2 Dy or not, we can limite it?

In future, we show that Theorem 1.3 is hold whenever X is not a complete metric space and condition
(iv) is suffitient to satisfy more limited number x and y in X. For this purpose, we review the concept of
orthogonal sets introduced in [4, 5, 10]. Also, we prove that continuity assumptions of the mappings A and
B in Theorem 1.3 are not necessary. Finally, we give an application related to boundary value systems. For
more application of fixed point theorem the reads can see [6, 12, 15, 16].
At first, we recall some important definitions.

Definition 1.4. [3, 10] Let X , ∅ and ⊥ ⊆ X × X be a binary relation. If ” ⊥ ” satisfies the following condition:

∃x0: (∀y, y⊥x0) or (∀y, x0⊥y),

then ” ⊥ ” is called an orthogonality relation and the pair (X,⊥) an orthogonal set(briefly O-set).

Note that in above definition, we say that x0 is an orthogonal element. Also, we say that elements x, y ∈ X
are ⊥-comparable either x⊥y or y⊥x.

Definition 1.5. [3, 10] Let (X,⊥) be an O-set. A sequence {xn} is called an orthogonal sequence(briefly, O-sequence)
if

(∀n, xn⊥xn+1) or (∀n, xn+1⊥xn).

Next, we introduce the new type of sequences in O-sets.

Definition 1.6. [14] Let (X,⊥) be an O-set. A sequence {xn} is called a strongly orthogonal sequence(briefly,
SO-sequence) if

(∀n, k; xn⊥xn+k) or (∀n, k; xn+k⊥xn).
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It is obvious that every SO-sequence is an O-sequence. The following example shows that the converse is
not true in general.

Example 1.7. Let X =N ∪ {0}. Suppose x⊥y iff xy = 0. Define the sequence {xn} as follows:

xn =

0 n = 2k, f or some k ∈ N ∪ {0},
n n = 2k + 1, f or some k ∈ N ∪ {0}.

Then for all n ∈N ∪ {0}, xn⊥xn+1, but x2n+1 is not orthogonal to x4n+1. Therefore {xn} is an O-sequence which is not
SO-sequence.

Definition 1.8. [3, 10] Let (X,⊥, d) be an orthogonal metric space ((X,⊥) is an O-set and (X, d) is a metric space).
X is said to be orthogonal complete(briefly, O-complete) if every Cauchy O-sequence is convergent.

Definition 1.9. [14] Let (X,⊥, d) be an orthogonal metric space. X is said to be strongly orthogonal complete(briefly,
SO-complete) if every Cauchy SO-sequence is convergent.

Clearly, every O-complete metric space is SO-complete. In the next example X is SO-complete but it is not
O-complete.

Example 1.10. Let X = {
√

2} ∪ {
1

2n
}n>1 with the Euclidean metric. Define orthogonal relation ” ⊥ ” as follows:

x ⊥ y ⇐⇒
x
y
<N − {1} and x ≥ y.

Clearly, X is O-set with x0 =
√

2. Obviously, X is SO-complete metric space. But X is not O-complete metric space.
Because the Cauchy O-sequence xn = 1/2n in X is not convergent in X.

Definition 1.11. [3, 10] Let (X,⊥, d) be an orthogonal metric space. A mapping f : X → X is orthogonal
continuous(briefly, O-continuous) in a ∈ X if for each O-sequence {an} in X if an → a, then f (an)→ f (a). Also, f is
O-continuous on X if f is O-continuous in each a ∈ X.

Definition 1.12. [14] Let (X,⊥, d) be an orthogonal metric space. A mapping f : X → X is strongly orthogonal
continuous(briefly, SO-continuous) in a ∈ X if for each SO-sequence {an} in X if an → a, then f (an)→ f (a). Also, f
is SO-continuous on X if f is SO-continuous in each a ∈ X.

It is easy to see that every continuous mapping is O-continuous and every O-continuous mapping is
SO-continuous. The following example shows that the converse is not true in general.

Example 1.13. Let X = [0, 1] with the Euclidean metric. Assume ” ⊥ ” is the orthogonal relation in Example 1.7.
Define f : X→ X by

f (x) =

1 x ∈ Q ∩ [0, 1],
x x ∈ Qc

∩ [0, 1].

Notice that f is not continuous but we can see that f is SO-continuous. If {xn} is a SO-sequence in X which converges
to x ∈ X. Applying definition ” ⊥ ” we obtain xn = 0. This implies that 1 = f (xn) → f (x) = 1. To see that f is not
O-continuous, consider the sequence

xn =

0 n = 2k + 1, f or some k ∈ N ∪ {0},
√

3
k n = 2k, f or some k ∈ N ∪ {0}.

It’s clear that xn → 0 while the sequence { f (xn)} is not convergent to f (0).
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Definition 1.14. Let (X,⊥, d) be an orthogonal metric space. Then X is said to be ⊥-regular if for each SO-sequence
{xn} with xn → x for some x ∈ X, we conclude that

(∀n; xn⊥x) or (∀n; x⊥xn).

Definition 1.15. Let (X,⊥, d) be an orthogonal metric space. We say that a partial order ” � ” on X is d⊥-regular if
for each two SO-sequences {un} and {vn} in X, we have

lim
n→∞

d(un,u) = lim
n→∞

d(vn, v) = 0,un � vn for all n =⇒ u � v,

where (u, v) ∈ X × X.

It is easy to see that every partial order ” � ” which is d-regular also is d⊥-regular but the converse is not
true in general.

Example 1.16. Let X = {0, 1,
1
2
,

2
3
,

1
3
,

3
4
, · · · ,

1
n + 1

,
n + 1
n + 2

, · · · }. Define partial order ” � ” on X as follows:

x � y⇐⇒ (x = y = 1) or (y , 1 and x ≤ y).

We claim that ” � ” is not d-regular.

For this purpose, we consider two sequences tn = {
n + 1
n + 2

} and t′n = {
1

n + 1
}. We have limn→∞ d(tn, 1) =

limn→∞ d(t′n, 0) = 0, t′n � tn for all n but 0 � 1. Now for all x, y ∈ X define x ⊥ y if and only if either x = 0

or x ≤ y ≤
1
2
. Then (X,⊥) is an O-set with orthogonal element x0 = 0 and also it is d⊥-regular.

Definition 1.17. [3, 10] Let (X,⊥) be an O-set. A mapping T : X → X is said to be ⊥-preserving if x⊥y implies
T(x)⊥T(y).

Proposition 1.18. Let (X,⊥, d) be an O-set with orthogonal element x0 and T : X→ X be ⊥-preserving. Let {xn} be
Picard iterative sequence with initial point x0 in X, i.e. xn = Tnx0. Then {xn} is a SO-sequence.

Proof. From the definition of orthogonal element x0, we have

x0 ⊥ Tx0 = x1, x0 ⊥ T2x0 = x2, . . . , x0⊥Tnx0 = xn, · · · ,

or
x1 = Tx0 ⊥ x0, x2 = T2x0 ⊥ x0, . . . , xn = Tnx0⊥ x0, · · · .

Also, since T is ⊥-preserving, we have

x1 = Tx0 ⊥ T2x0 = x2, x1 = Tx0 ⊥ T3x0 = x3, . . . , x1⊥ xn+1, · · · ,

or
x2 = T2x0 ⊥ Tx0 = x1, x3 = T3x0 ⊥ Tx0 = x1, . . . , xn+1⊥ x1, · · · .

Continuing this process, we have

xn = Tnx0 ⊥ Tn+1x0 = xn+1, xn = Tnx0 ⊥ Tn+2x0 = xn+2, . . . , xn ⊥ xn+k, . . . ,

or
xn+1 = Tn+1x0 ⊥ Tnx0 = xn, xn+2 = Tn+2x0 ⊥ Tnx0 = xn, . . . , xn+k ⊥ xn, . . . .

Therefore, we see that

(∀n, k; xn⊥xn+k) or (∀n, k; xn+k⊥xn).
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2. The main results

In the following theorem, which is our main result, we weaken assumptions (ii) and (vi) of Theorem 1.3.
Moreover, we show that under our assumptions, (1) has a unique solution. This gives a partial answer to
Q1, Q2 and Q3.

Theorem 2.1. Let (X,⊥, d) be an SO-complete metric space(not necessarily complete) with orthogonal element x0.
Let ” �1 ” and ” �2 ” be two partial order over X. Also, let operators T,A,B,C,D : X → X be given. Suppose that
the following conditions are satisfied:

(i) ” �i ” is d⊥-regular, i = 1, 2 and T is ⊥-preserving;

(ii) A,B are SO-continuous;

(iii) Ax0 �1 Bx0 and X is ⊥-regular;

(iv) T is (A,B,C,D,�1,�2)-stable;

(v) T is (C,D,A,B,�2,�1)-stable;

(vi) there exits ϕ ∈ Φ such that for each ⊥-comparable elements x, y ∈ X

(Ax �1 Bx and Cy �2 Dy) =⇒ d(Tx,Ty) 6 d(x, y) − ϕ(d(x, y)).

Then the sequence {Tnx0} converges to some x∗ ∈ X which is a solution to (1). Moreover, x∗ is the unique solution of
(1).

Proof. Consider the sequence {xn} defined by xn = Tnx0, n = 0, 1, 2, · · · . Applying Proposition 1.18, {xn} is a
SO-sequence. Applying (iii), we have

Ax0 �1 Bx0.

On the other hand, since T is (A,B,C,D,�1,�2)-stable, we have

Ax0 �1 Bx0 =⇒ CTx0 �2 DTx0,

that is, Cx1 �2 Dx1. Hence
Ax0 �1 Bx0 and Cx1 �2 Dx1.

Since T is (C,D,A,B,�2,�1)-stable,

Cx1 �2 Dx1 =⇒ ATx1 �1 BTx1,

that is, Ax2 �1 Bx2.
Continuing this process, by induction, we get

Ax2n �1 Bx2n and Cx2n+1 �2 Dx2n+1, n = 0, 1, 2, · · · . (2)

Since {xn} is SO-sequence, applying (2) and (vi), we have

d(xn+1, xn) = d(Txn,Txn−1) ≤ d(xn, xn−1) − ϕ(d(xn, xn−1)). (3)

for each n ∈ N. This implies that d(xn+1, xn) < d(xn, xn−1) for all n ∈ N. Then {d(xn+1, xn)} is a decreasing
sequence and bounded below. Thus there exists r ≥ 0 such that

lim
n→∞

d(xn+1, xn) = r. (4)

Let r > 0. Applying (3), we have

d(xn+1, xn) + ϕ(d(xn, xn−1)) ≤ d(xn, xn−1), n = 0, 1, 2, 3, · · · .
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Therefore,
lim inf

n→∞
(d(xn+1, xn) + ϕ(d(xn, xn−1))) ≤ lim inf

n→∞
(d(xn, xn−1)).

Applying (4) and the lower semi-continuity of ϕ, we have

r + ϕ(r) ≤ r.

This is a contradiction, since ϕ(r) > 0. Thus

lim
n→∞

d(xn+1, xn) = 0. (5)

Now, we show that {xn} is a Cauchy SO-sequence. Suppose that {xn} is not a Cauchy SO-sequence. Then,
there exists some ε > 0 and two sequences of positive integers {m(k)} and {n(k)} such that, for all positive
integers k, we have

n(k) > m(k) > k, d(xm(k), xn(k)) ≥ ε, d(xm(k), xn(k)−1) < ε. (6)

To prove (6), suppose that∑
k

= {m ∈N; ∃mk ≥ k , d(xm, xmk ) ≥ ε , m > mk > k}.

Obviously,
∑

k , ∅ and
∑

k ⊆ N. Then by the well ordering principle, the minimum element of
∑

k exists
and denoted by nk, and clearly (6) holds. Applying (6), we deduce that

ε ≤ d(xm(k), xn(k)) ≤ d(xm(k), xn(k)−1) + d(xn(k)−1, xn(k)) < ε + d(xn(k)−1, xn(k)).

Let k→∞ and using (5), we have

lim
k→∞

d(xn(k), xm(k)) = ε. (7)

Triangle inequality, implies that

|d(xn(k)+1, xm(k)) − d(xm(k), xn(k))| ≤ d(xn(k)+1, xn(k)).

Applying (5) and (7), as k→∞, we have

lim
k→∞

d(xn(k)+1, xm(k)) = ε. (8)

Similarly,

lim
k→∞

d(xn(k), xm(k)−1) = ε, (9)

and also

lim
k→∞

d(xn(k)+1, xm(k)+1) = ε. (10)

We see that, for all k, there exists i(k) ∈ {0, 1} such that

n(k) −m(k) + i(k) ≡ 1(2).

Now, applying (2), for all k > 1, we deduce that

Axn(k) �1 Bxn(k) and Cxm(k)−i(k) �2 Dxm(k)−i(k),

or
Axm(k)−i(k) �1 Bxm(k)−i(k) and Cxn(k) �2 Dxn(k).
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Now, applying (vi), for k > 1, we conclude that

d(xn(k)+1, xm(k)−i(k)+1) = d(Txn(k),Txm(k)−i(k))
≤ d(xn(k), xm(k)−i(k)) − ϕ(d(xn(k), xm(k)−i(k))).

(11)

Define
Λ = {k > 1 : i(k) = 0} and ∆ = {k > 1 : i(k) = 1},

and investigate the following two cases:
Cace1. |Λ| = ∞.
Applying (11), for k ∈ Λ, we have

d(xn(k)+1, xm(k)+1) ≤ d(xn(k), xm(k)) − ϕ(d(xn(k), xm(k))).

Therefore
lim inf

k→∞
(d(xn(k)+1, xm(k)+1) + ϕ(d(xn(k), xm(k))) ≤ lim inf

k→∞
d(xn(k), xm(k)).

Applying (7), (10) and lower semi-continuity of ϕ, we have

ε + ϕ(ε) ≤ ε.

This is a contradiction, since ϕ(ε) > 0. Hence ε = 0.
Cace2. |Λ| < ∞.
Therefore, |∆| = ∞. Applying (11), we have

d(xn(k)+1, xm(k)) + ϕ(d(xn(k), xm(k)−1)) ≤ d(xn(k), xm(k)−1), k ∈ ∆.

Hence
lim inf

k→∞
(d(xn(k)+1, xm(k)) + ϕ(d(xn(k), xm(k)−1))) ≤ lim inf

k→∞
d(xn(k), xm(k)−1).

Applying (8), (9) and lower semi-continuity of ϕ, we deduce that

ε + ϕ(ε) ≤ ε,

which is a contradiction, since ϕ(ε) > 0. Thus ε = 0. Therefore {xn} is a Cauchy SO-sequence. Since (X,⊥, d)
is SO-complete, there exists x∗ ∈ X such that

lim
n→∞

d(xn, x∗) = 0. (12)

Since {xn} is SO-sequence, we deduce that {x2n} and {x2n+1} are SO-sequences. Applying the SO-continuity
of A and B, and (12), we deduce that

lim
n→∞

d(Ax2n,Ax∗) = lim
n→∞

d(Bx2n,Bx∗) = 0.

Since ” �1 ” is d⊥-regular, (2) implies that

Ax∗ �1 Bx∗. (13)

Since X is ⊥-regular, then

(∀n; x2n+1⊥x∗) or (∀n; x∗⊥x2n+1).

Applying (2), (13) and (vi), we obtain that

d(Tx∗,Tx2n+1) ≤ d(x∗, x2n+1) − ϕ(d(x∗, x2n+1)), n = 0, 1, 2 . . . .
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The triangle inequality implies that

d(Tx∗, x∗) ≤ d(Tx∗,Tx2n+1) + d(Tx2n+1, x∗)
≤ d(x∗, x2n+1) − ϕ(d(x2n+1, x∗)) + d(x2n+2, x∗).

Hence
lim inf

k→∞
(d(Tx∗, x∗) + ϕ(d(x∗, x2n+1))) ≤ lim inf

k→∞
(d(x∗, x2n+1) + d(x2n+2, x∗)).

The lower semi-continuity of ϕ, ϕ(0) = 0 and (12) imply that

d(x∗,Tx∗) = 0,

that is

Tx∗ = x∗. (14)

Since T is (A,B,C,D,�1,�2)-stable, applying (13), we have

CTx∗ �2 DTx∗,

and also (14) implies that

Cx∗ �2 Dx∗. (15)

Applying (13), (14) and (15), we deduce that x∗ is a solution of (1). We show that x∗ is unique. For this
purpose, let y∗ ∈ X be another solution of (1), that is

Ty∗ = y∗, Ay∗ �1 By∗, Cy∗ �2 Dy∗ and d(x∗, y∗) > 0. (16)

Since x0 is an orthogonal element, by the definition of orthogonality, we have

x0 ⊥ y∗ or y∗ ⊥ x0.

Since T is ” ⊥ ” preserving, then

x2n = T2nx0 ⊥ T2ny∗ = y∗ or y∗ = T2ny∗ ⊥ T2nx0 = x2n. (17)

Applying (2), (17), (16) and (vi), we have

d(Tx2n,Ty∗) ≤ d(x2n, y∗) − ϕ(d(x2n, y∗)).

Therefore

d(x2n+1, y∗) + ϕ(d(x2n, y∗)) ≤ d(x2n, y∗). (18)

Since ϕ is lower semi-continuous, we deduce that

d(x∗, y∗) + ϕ(d(x∗, y∗)) ≤ d(x∗, y∗).

This is a contradiction. Therefore x∗ = y∗ and x∗ is the unique solution of (1).
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3. Particular cases

Now, we consider some special cases, where in our result deduce several well-known fixed point theorems
of the existing literature.
In Theorem 2.1, by setting �1=�2=�, C = B and D = A, we get a generalization of Corollary 3.1 of [11].

Corollary 3.1. Let (X,⊥, d) be a SO-complete metric space(not necessarily complete) with orthogonal element x0.
Let ” � ” be a certain partial order over X. Also, let operators T,A,B : X → X be given. Suppose that the following
conditions are satisfied:

(i) ” � ” is d⊥-regular and T is ⊥-preserving;
(ii) A,B are SO-continuous;

(iii) Ax0 � Bx0 and X is ⊥-regular;
(iv) for all x ∈ X, we have

Ax � Bx =⇒ BTx � ATx;

(v) for all x ∈ X, we have
Bx � Ax =⇒ ATx � BTx;

(vi) there exists ϕ ∈ Φ such that for each ⊥-comparable elements x, y ∈ X

(Ax � Bx and By � Ay) =⇒ d(Tx,Ty) 6 d(x, y) − ϕ(d(x, y)).

Then
(1) The sequence {Tnx0} converges to x∗ ∈ X satisfying Ax∗ = Bx∗.
(2) The point x∗ ∈ X is a unique solution to following problemx = Tx,

Ax = Bx.

By setting A = D = Ix and C = B we get a generalization of Corollary 3.2 of [11].

Corollary 3.2. Let (X,⊥, d) be a SO-complete metric space(not necessarily complete) with orthogonal element x0.
Let ” � ” be a certain partial order over X. Also, let operators T,B : X → X be given. Suppose that the following
conditions are satisfied:

(i) ” � ” is d⊥-regular and T is ⊥-preserving;
(ii) B is SO-continuous;

(iii) x0 � Bx0 and X is ⊥-regular;
(iv) for all x ∈ X, we have

x � Bx =⇒ BTx � Tx;

(v) for all x ∈ X, we have
Bx � x =⇒ Tx � BTx;

(vi) there exists ϕ ∈ Φ such that for each ⊥-comparable elements x, y ∈ X

(x � Bx and By � y) =⇒ d(Tx,Ty) 6 d(x, y) − ϕ(d(x, y)).

Then
(1) The sequence {Tnx0} converges to x∗ ∈ X satisfying x∗ = Tx∗.
(2) The point x∗ ∈ X is a unique solution of following problemx = Tx,

x = Bx.
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By setting C = B = T and A = D = Ix, we obtain a generalization of Corollary 3.4 of [11].

Corollary 3.3. Let (X,⊥, d) be a SO-complete metric space(not necessarily complete) with orthogonal element x0.
Let ” � ” be a certain partial order over X. Also, let operator T : X → X be given. Suppose that the following
conditions are satisfied:

(i) ” � ” is d⊥-regular and T is ⊥-preserving;
(ii) T is SO-continuous;

(iii) x0 � Tx0 and X is ⊥-regular;
(iv) for all x ∈ X, we have

x � Tx =⇒ T2x � Tx;

(v) for all x ∈ X, we have
Tx � x =⇒ Tx � T2x;

(vi) there exists ϕ ∈ Φ such that for each ⊥-comparable elements x, y ∈ X

(x � Tx and Ty � y) =⇒ d(Tx,Ty) 6 d(x, y) − ϕ(d(x, y)).

Then
(1) The sequence {Tnx0} converges to x∗ ∈ X satisfying x∗ = Tx∗.
(2) The point x∗ ∈ X is a unique fixed point of T.

4. Some examples

Now, we illustrate our main results by the following examples.

Example 4.1. Let X = (−2, 3). Suppose that

x ⊥ y⇐⇒ (x = 0) or (−1 ≤ x ≤ y ≤ 1 and y , 0).

Then (X,⊥) is an O-set with orthogonal element x0 = 0. Clearly, X with the Euclidean metric is not a complete metric
space, but it is SO-complete(In fact, if {xk} is an arbitrary Cauchy SO-sequence in X, either there exists a subsequence
{xkn } of {xk} for which {xkn } = 0 for all n ≥ 1 or there exists a monotone subsequence {xkn } of {xk} for which−1 ≤ xkn ≤ 1
for all n ≥ 1. It follows that {xkn } converges to a point x ∈ [−1,+1] ⊆ X. On the other hand, we know that every
Cauchy sequence with a convergent subsequence is convergent. It follows that {xk} is convergent.).
We see that X is ⊥-regular. We take �1=�2=≤ . Let T : X→ X be the mapping defined by

T(x) =


0 x < 1
−1/2 x = 1
1 x > 1.

We show that T is ⊥-preserving. For all x, y ∈ X such that x ⊥ y, we consider the following cases:
Case1. If x < 1, then Tx = 0. Thus Tx ⊥ Ty.
Case2. If x = 1, then we have y = 1 and so Tx ⊥ Ty.
Case3. If x > 1, there is not y ∈ X such that x ⊥ y.
Therefore T is ⊥-preserving.
Consider the mappings A,B,C,D : X→ X defined by Ax = 0, Cx = x,

B(x) =

1 x ≤ 1
−x x > 1,
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and

D(x) =

1 − x x < 0
−x/2 x ≥ 0.

Obviously, ” �i ” is d⊥-regular, i = 1, 2. Moreover, A and B are SO-continuous mappings. If for some x ∈ X, we
have

Ax ≤ Bx,

then x ≤ 1, which yields
Tx = 0 or Tx = −1/2.

If Tx = 0, we have
CT(x) = C(0) = 0 = D(0) = DT(x).

On the other hand, if Tx = −1/2, we obtain

CT(x) = C(−1/2) = −1/2 ≤ 3/2 = D(−1/2) = DT(x).

Thus T is (A,B,C,D,�1,�2)-stable. If for some x ∈ X, we have

Cx ≤ Dx,

then x ≤ 0, which yields Tx = 0. Therefore

AT(x) = A(0) = 0 ≤ 1 = B(0) = BT(x).

Thus T is (C,D,A,B,�2,�1)-stable. For all (x, y) ∈ X × X, we have

Ax �1 Bx, Cy �2 Dy =⇒ (x ≤ 1 and y ≤ 0).

Therefore, either

(x < 1 and y ≤ 0) =⇒ (Tx,Ty) = (0, 0),

or

(x = 1 and y ≤ 0) =⇒ (Tx,Ty) = (−1/2, 0).

Thus
Ax �1 Bx and Cy �2 Dy =⇒ d(Tx,Ty) 6 d(x, y) − ϕ(d(x, y)),

where ϕ(t) = t/3, t ≥ 0. Applying Theorem 2.1, (1) has unique solution x∗ = 0.
Note that, the mappings B,C,D and T are not continuous and (X, d) is not a complete metric space.

Example 4.2. Let X = Q. Suppose that

x ⊥ y⇐⇒ (x = 0) or (y = 1/n, n ∈N).

Then (X,⊥) is an O-set with orthogonal element x0 = 1/2. Clearly, Q with the Euclidean metric is not a complete
metric space, but it is SO-complete. In fact, if {xk} is an arbitrary Cauchy SO-sequence in X, either there exists a
subsequence {xkn } of {xk} for which {xkn } = 0 for all n ≥ 1 or there exists a monotone subsequence {1/nk} of {1/n} for
which 1/nk → 0 as k→∞. It follows that {1/nk} converges to 0 ∈ X. On the other hand, we know that every Cauchy
sequence with a convergent subsequence is convergent. It follow that {xk} is convergent.
We see that X is ⊥-regular. We take �1=�2=≤ . Let T : X→ X be the mapping defined by

T(x) =


−1/2 x ∈ Q ∩ {x ≤ −1}
0 x ∈ Q ∩ {−1 < x ≤ 0}
1/2 x ∈ Q ∩ {x > 0}.

Observed that T is ⊥-preserving. Let x⊥y. Then we have two cases:
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(1) If x = 0, since Tx = 0, then for each y ∈ X, we have Tx ⊥ Ty.

(2) If x , 0, then for each n0 ∈N such that y = 1/n0. Since T(1/n0) = 1/2, then we have Tx ⊥ Ty.

Consider the mappings A,B,C,D : X→ X defined by Cx = 1,

A(x) =

x2 + 1 x ∈ Q ∩ {x ≥ −1}
1 x ∈ Q ∩ {x < −1},

B(x) =

5x/2 x ∈ Q ∩ {x ≥ 0}
−1 x ∈ Q ∩ {x < 0},

and

D(x) =

x + 1 x ∈ Q ∩ {x > 0}
−1 x ∈ Q ∩ {x ≤ 0}.

Obviously, ” �i ” is d⊥-regular, i = 1, 2. Moreover, A and B are SO-continuous mappings. If for some x ∈ X, we
have Ax ≤ Bx, then x ∈ Q ∩ [1/2, 2], which yields Tx = 1/2. Therefore

CT(x) = C(1/2) = 1 ≤ 3/2 = D(1/2) = DT(x).

Thus T is (A,B,C,D,�1,�2)-stable. If for some x ∈ X, we have Cx ≤ Dx, then x ∈ Q ∩ (0,+∞), which yields
Tx = 1/2. Therefore

AT(x) = A(1/2) = 5/4 = B(1/2) = BT(x).

Thus T is (C,D,A,B,�2,�1)-stable. Also, for all (x, y) ∈ X × X, we have

Ax �1 Bx,Cy �2 Dy =⇒ (x ∈ Q ∩ [1/2, 2] and y ∈ Q ∩ (0,+∞))
=⇒ (Tx,Ty) = (1/2, 1/2).

Therefore,
Ax �1 Bx and Cy �2 Dy =⇒ d(Tx,Ty) 6 d(x, y) − ϕ(d(x, y)),

where ϕ(t) = 1
3 t, t ≥ 0. Applying Theorem 2.1, (1) has unique solution x∗ = 1/2.

Note that, the mappings A,B,D and T are not continuous and (X, d) is not a complete metric space.

5. Application for boundary value differential systems

Let X = {u ∈ C[0, 1] : u(t) ≥ 0,∀t ∈ [0, 1]} endowed with the metric d induced by sup-norm. Consider the
following boundary value system

u(4)(t) − λ f (t,u(t)) = 0, for 0 < t < 1,
u(4)(t) − λ1(t,u(t)) = 0, for 0 < t < 1,
u(0) = u(1) = u′′ (0) = u′′ (1),

(19)

where 0 < λ < 1 is constant and f , 1 : [0, 1] × [0,∞) −→ [0,∞) are continuous functions for which:

(C1) 1(t,u) is decreasing related to the second variable.
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(C2) (i) For all u ∈ X, we have

u(t) ≤ λ
∫ 1

0

[∫ 1

0
k(t, s)k(s, x)1(x,u(x))dx

]
ds ⇒ 1(t,u(t)) ≤ f (t,u(t)),

where k : [0, 1] × [0, 1] −→ [0, 1] denotes the Green’s function for the boundary value system (19) and
is explicitly given by

k(t, s) =

t(1 − s) 0 ≤ t ≤ s ≤ 1
s(1 − t) 0 ≤ s ≤ t ≤ 1.

(ii) For all u ∈ X, we have

λ

∫ 1

0

[∫ 1

0
k(t, s)k(s, x)1(x,u(x))dx

]
ds ≤ u(t) ⇒ f (t,u(t)) ≤ 1(t,u(t)).

(C3) For all u, v ∈ X with u(t)v(t′ ) ≤ max{v(t), v(t′ )}, for each t, t′ ∈ [0, 1], we have(
f (t,u(t)) f (t

′

, v(t
′

)) ≤
1
λ

f (t, v(t)),∀t, t
′

∈ [0, 1]
)

or
(

f (t,u(t)) f (t
′

, v(t
′

)) ≤
1
λ

f (t
′

, v(t
′

)),∀t, t
′

∈ [0, 1]
)
.

(C4) For all u, v ∈ X with u(t)v(t) ≤ v(t), for each t ∈ [0, 1], we have

| f (t,u(t)) − f (t, v(t))| ≤
‖u − v‖

A
,

where ‖u‖ = maxt∈[0,1] u(t) and A = max0≤1

∫ 1

0

∫ 1

0 k(t, s)k(s, x)dxds.

Theorem 5.1. Let the above conditions are satisfied. Then the boundary value system (19) has a unique positive
solution.

Proof. We define two operator equations T,B : X→ X as follow:

Tu(t) = λ

∫ 1

0

[∫ 1

0
k(t, s)k(s, x) f (x,u(x))dx

]
ds,

Bu(t) = λ

∫ 1

0

[∫ 1

0
k(t, s)k(s, x)1(x,u(x))dx

]
ds.

(20)

We know that the boundary value system has a unique positive solution if and only if T and B have a
unique common fixed point in X. We consider the following orthogonality relation in X:

u ⊥ v ⇐⇒ u(t)v(t
′

) ≤ max{v(t), v(t
′

)}, (21)

for all t, t′ ∈ [0, 1] and u, v ∈ X. Since (X, d) is a complete metric space, then (X,⊥, d) is SO-complete. We
take �1=�2=≤. From definition, ” ≤ ” is d⊥-regular and X is ⊥-regular. Clearly, B is SO-continuous. Now,
we prove the following four steps to complete the proof.

Step1: T is ⊥- preserving. Let u, v ∈ X with u ⊥ v. We must show that

Tu(t)Tv(t
′

) ≤ max{T(v(t)),T(v(t
′

))},



Z. Ahmadi et al. / Filomat 32:9 (2018), 3365–3379 3378

for all t, t′ ∈ [0, 1]. Applying (20), we have

Tu(t)Tv(t
′

) = λ2
∫ 1

0

[∫ 1

0

[∫ 1

0

[∫ 1

0
k(t, s)k(s, x)k(t

′

, s
′

)k(s
′

, x
′

) f (x,u(x)) f (x
′

, v(x
′

))dx
]

dx
′

]
ds

]
ds
′

.

Applying (C3), we have two cases:

(1). f (t,u(t)) f (t′ , v(t′ )) ≤
1
λ

f (t, v(t)). Applying definition of k, we have

Tu(t)Tv(t
′

) ≤λ2
∫ 1

0

[∫ 1

0

[∫ 1

0

[∫ 1

0
k(t, s)k(s, x)k(t

′

, s
′

)k(s
′

, x
′

)
1
λ

f (x, v(x))dx
]

dx
′

]
ds

]
ds
′

≤λ2 1
λ

∫ 1

0

[∫ 1

0

[∫ 1

0

[∫ 1

0
k(t, s)k(s, x) f (x, v(x))dx

]
dx
′

]
ds

]
ds
′

=λ

∫ 1

0

[∫ 1

0
k(t, s)k(s, x) f (x, v(x))dx

]
ds

= T(v(t))

≤ max{T(v(t)),T(v(t
′

))}.

(2). f (t,u(t)) f (t′ , v(t′ )) 6
1
λ

f (t′ , v(t′ )). Applying definition of k, we have

Tu(t)Tv(t
′

) ≤λ2
∫ 1

0

[∫ 1

0

[∫ 1

0

[∫ 1

0
k(t, s)k(s, x)k(t

′

, s
′

)k(s
′

, x
′

)
1
λ

f (x
′

, v(x
′

))dx
]

dx
′

]
ds

]
ds
′

≤λ2 1
λ

∫ 1

0

[∫ 1

0

[∫ 1

0

[∫ 1

0
k(t

′

, s
′

)k(s
′

, x
′

) f (x
′

, v(x
′

))dx
]

dx
′

]
ds

]
ds
′

=λ

∫ 1

0

[∫ 1

0
k(t

′

, s
′

)k(s
′

, x
′

) f (x
′

, v(x
′

))dx
′

]
ds
′

= T(v(t
′

))

≤ max{T(v(t)),T(v(t
′

))}.

These imply that T is ⊥-preserving.

Step2: We must show that for all t ∈ [0, 1] and u ∈ X,

u(t) ≤ Bu(t) =⇒ BTu(t) ≤ Tu(t).

Let t ∈ [0, 1], u ∈ X and u(t) ≤ Bu(t). Applying part (i) of (C2), we have 1(t,u(t)) ≤ f (t,u(t)). Applying (20),
we conclude that Bu(t) ≤ Tu(t). Since u(t) ≤ Bu(t) ≤ Tu(t), part (i) of (C2) and (C1) imply that

1(t,Tu(t)) ≤ 1(t,Bu(t)) ≤ 1(t,u(t)) ≤ f (t,u(t)).

Therefore 1(t,Tu(t)) ≤ f (t,u(t)). Applying (20), we have BTu(t) ≤ Tu(t).

Step3: We must show that for all t ∈ [0, 1] and u ∈ X,

Bu(t) ≤ u(t) =⇒ Tu(t) ≤ BTu(t).

Let t ∈ [0, 1], u ∈ X and Bu(t) ≤ u(t). Applying part (ii) of (C2), we have f (t,u(t)) ≤ 1(t,u(t)). Applying (20),
we conclude that Tu(t) ≤ Bu(t). Since Tu(t) ≤ Bu(t) ≤ u(t), part (ii) of (C2) and (C1) imply that

f (t,u(t)) ≤ 1(t,u(t)) ≤ 1(t,Bu(t)) ≤ 1(t,Tu(t)).
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Therefore f (t,u(t)) ≤ 1(t,Tu(t)). Applying (20), we have Tu(t) ≤ BTu(t).

Step4: We show that there exists ϕ ∈ Φ such that for each ⊥-comparable elements u, v ∈ X

d(Tu,Tv) ≤ d(u, v) − ϕ(d(u, v)).

Let u, v ∈ X with u ⊥ v. Then for all t ∈ [0, 1], we have u(t)v(t) ≤ v(t). Applying (C4), we obtain that

|Tu(t) − Tv(t)| =

∣∣∣∣∣∣λ
[∫ 1

0

[∫ 1

0
k(t, s)k(s, x) f (x,u(x))dx

]
ds −

∫ 1

0

[∫ 1

0
k(t, s)k(s, x) f (x, v(x))dx

]
ds

]∣∣∣∣∣∣
≤λ

∫ 1

0

[∫ 1

0
k(t, s)k(s, x)| f (x,u(x)) − f (x, v(x))|dx

]
ds

=λ

∫ 1

0

[∫ 1

0
k(t, s)k(s, x)dx

]
ds
‖u − v‖

A
≤λ‖u − v‖
= ‖u − v‖ − (1 − λ)‖u − v‖,

for all t ∈ [0, 1]. By setting ϕ(t) = (1 − λ)t and applying Corollary 3.2, T and B have a unique common fixed
point in X which is a unique positive solution to the boundary value system (19).
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