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Available at: http://www.pmf.ni.ac.rs/filomat

T0-Reflection and Some Separation Axioms in PRETOP

Abdelwaheb Mhemdia, Sami Lazaarb, Mouldi Abbassib

aDepartment of Mathematics, Faculty of Sciences and Humanities in Aflaj, Prince Sattam Bin Abdul-Aziz University, Kingdom of Saudi Arabia
bDepartment of Mathematics, Faculty of Sciences of Tunis. University Tunis-El Manar. “Campus Universitaire” 2092 Tunis, Tunisia

Abstract. We give the T0-reflection in the category of pretopological spaces with p-continuous maps as
arrows. After that we will study some separation axioms in this category.

1. Introduction

The notion of pretopological spaces represent a generalization of topological spaces. Those spaces give
larger variety of properties for sets. Today, pretopological spaces are applied in different areas like complex
modelling, image analysis, graph theory and economical modelling (for more information see [3, 4, 11]).

The construction of the T0-reflection in the category TOP is given by Herrlich and Strecker in [7].
After that, some authors have been interested in the T0-reflection in other categories as a generalization.
Künzi and Richmond considered the category PREORDTOP whose objects are preorder-topological spaces
(X, τ,≤) and continuous increasing maps as arrows [8]. Mirhosseinkhani in [11] gave the T0-reflection in
the category GenTOP with objects generalized topological spaces and arrows g-continuous maps. As a
continuation of this work, in this paper we consider the construction of the T0-reflection in the category
PreTOP.

In the second section we introduce some preliminary results in order to define the category PreTOP
with p-continuous maps as arrows.

In the third section, we give the construction of the T0-reflection in PreTOP. Morphisms rendered
invertible by this reflector are given. Finally, in the fourth section we investigate some new separation
axioms in the category PreTOP. Some interesting results in [2] are deduced.

2. Preliminary Results

Definition 2.1. Let X be a nonempty set and P (X) the power set of X. A pseudo-closure on X is a map a
from P (X) onto itself such that:

a (∅) = ∅,
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A ⊆ a (A) for all A ∈ P (X) .

The couple (X, a) is called a pretopological space.

Examples 2.2. (1) Let X be a topological space and a the operator from P(X) to itself defined by a(A) = A
(Kuratowski operator). (X, a) is a pretopological space. Note that a pretopological space (X, a) is a topological
space if, additionally, a preserves binary unions and is idempotent.

(2) Consider X = R and a the operator from P(R) to itself defined by

a(∅) = ∅,

a([x, y]) = [x, y + 1] for all x ≤ y ∈ R,

a(A) = R if A , [x, y] for any x ≤ y in R and A , ∅.

(X, a) is a pretopological space which is not a topological space since a is not idempotent.

Now, we will present the category of pretopological spaces but, first, let us start with some definitions
and notations.

Definition 2.3. Let (X, a) be a pretopological space and A ∈ P (X) .

A is called p-closed if there exists B ∈ P (X) such that A = a (B),

A is called p-open if Ac is p-closed.

We denote by PC ((X, a)) (respectively, PO ((X, a))) the set of all p-closed (respectively, p-open) subsets of X.

Notation 2.4. Let (X, a) be a pretopological space.
We denote by i the pseudo-interior in (X, a) defined by:

i (A) = (a (Ac))c for all A ∈ P (X) .

Proposition 2.5. Let (X, a) be a pretopological space and A ∈ P (X) .
A is p-open if and only if there exists B ∈ P (X) such that A = i (B) .

Proof. If A is p-open then there exists B ∈ P (X) such that Ac = a (B) and then A = i (Bc) . Conversely, if
A = i (B) for some B ∈ P (X) then A = (a (Bc))c and Ac = a (Bc) so that Ac is p-closed which implies that A is
p-open.

Definition 2.6. Let (X, a) and (Y, b) be two pretopological spaces and f a map from X to Y. f is called
p-continuous if f−1 (A) ∈ PO ((X, a)) for all A ∈ PO ((Y, b)).

The following result is immediate.

Proposition 2.7. Let (X, a) and (Y, b) be two pretopological spaces and f a map from X to Y. f is p-continuous, if and
only if, f−1 (A) ∈ PC ((X, a)) for all A ∈ PC ((Y, b)).

Let (X, a) be a pretopological space. For all x ∈ X we denote by pc (x) the intersection of all p-closed
subsets of X containing x and we call it the preclosure of x. More generally, given a subset A of X, we define
the preclosure of A, denoted by pc(A), to be the intersection of all p-closed subsets of X containing A.

Now, we introduce and characterize some separation axioms in the category PreTOP.

Proposition 2.8. Let (X, a) be a pretopological space. The following statements are equivalent:

1. pc (x) = pc
(
y
)

=⇒ x = y.
2. If x , y then there exists a p-closed subset of X containing one of the points x, y and not the other.
3. If x , y then there exists a p-open subset of X containing one of the points x, y and not the other.



A. Mhemdi et al. / Filomat 32:9 (2018), 3289–3296 3291

Definition 2.9. A pretopological space satisfying one of the previous equivalent statements is called T0-
pretopological.

Definition 2.10. A pretopological space (X, a) is called a TD-pretopological space if for all x ∈ X we have
pc (x) \ {x} is p-closed.

Definition 2.11. A pretopological space (X, a) is said to be T1-pretopological if for all distinct points x and y,
there exists a p-open set containing x which does not contain y.

The following proposition characterizes T1-pretopological spaces.

Proposition 2.12. A pretopological space (X, a) is T1-pretopological if and only if pc (x) = {x} for all x ∈ X.

Remark 2.13. In the category TOP, a topological space is T1 if and only if every point is closed. In PreTOP,
it is clear that if {x} is p-closed for any x ∈ X, then (X, a) is a T1-pretopological space. The following example
shows that the converse is not true.

Let X = {1, 2, 3} and a the precolsure on A defined by:
a (∅) = ∅, a ({1}) = {1, 2} , a ({2}) = {2, 3} , a ({3}) = {1, 3} else a (A) = X.
Then (X, a) is a T1 pretopological space but {1} , {2} and {3} are not p-closed subsets.

Regarding the previous remark, we define a new pretopological space as follow.

Definition 2.14. A pretopological space (X, a) is called a Tk
1-pretopological space if for all x ∈ X, {x} is p-closed.

Finally, we close this section by giving the definition of T2-pretopological spaces.

Definition 2.15. A pretopological space (X, a) is said to be a T2-pretopological space if for all distinct points
x and y, there exist two disjoint p-open subsets A and B such that x ∈ A and y ∈ B.

Remark 2.16. Let (X, a) be a pretopological space.
1. (X, a) is a Tk

1-pretopological space if and only if for any x ∈ X, a({x}) = {x}.
2. If a is a Kuratowski closure operator (that is, furthermore, a(A ∪ B) = a(A) ∩ a(B) and a(a(A)) = a(A)

for all A,B ⊆ X), then Tk
1 = T1.

3. It is clear that in the category PreTOP, we have the following implications:

T2 =⇒ Tk
1 =⇒ T1 =⇒ TD =⇒ T0.

4. A Tk
1-pretopological space need not be a T2-pretopological space. For this consider a set X with

cardinality greater than or equal to 3 and define a on X by:
a({x}) = {x} for any x ∈ X, a(∅) = ∅ and a(A) = X if not. Then by definition X is a Tk

1-pretopological space
which is not T2-pretopological.

3. T0-Reflection

First, let us denote by PreTop0, the full subcategory of PreTop whose objects are T0-pretopological
spaces.

The main goal of this paper is to construct the T0 reflection of a pretopological space (X, a) . For this
reason consider the equivalence relation on X defined by:

x ∼ y if and only if pc (x) = pc
(
y
)
.

Let us denote by µX the canonical surjection from X to X/∼. We define the map ã from P(X/∼) to itself by:
ã (A) = A if µ−1

X (A) is a p-closed subset in X and ã (A) = X/∼ if not.
One can see easily that with this construction (X/∼, ã) is a pretopological space and µX is a p-continuous

map from (X, a) to (X/∼, ã).
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Theorem 3.1. (X/∼, ã) is a T0-pretopological space.

Proof. We start by showing that : µ−1
X

(
µX (a (A))

)
= a (A) .

It is clear that a (A) ⊆ µ−1
X

(
µX (a (A))

)
. Conversely, let x ∈ µ−1

X
(
µX (a (A))

)
then there exists y ∈ a (A) such

that µX(x) = µX(y) so that pc (x) = pc
(
y
)

and thus x ∈ pc(y) ⊂ a(A). Therefore, x ∈ a (A) .
If µX(x) , µX(y), then there exists A ⊆ X such that, after possible relabeling of x and y, x ∈ a (A) and

y < a (A) . Using the previous result we can see that
µX(x) ∈ µX (a (A)) = ã

(
µX (a (A))

)
but µX(y) < µX (a (A)) = ã

(
µX (a (A))

)
.

Theorem 3.2. PreTop0 is reflective in PreTop.

Proof. It is sufficient to prove that for any pretopological space (X, a) , (X/∼, ã) is the T0 reflection of (X, a).
For this, using the characterization given by MacLane in [10, page 89], we must prove that for every

T0-pretopological space and every p-continuous map from (X, a) to (Y, b) there exists a unique p-continuous
map f̃ rending the following diagram commutative.

(X, a)

5

µX // (X/∼, ã)

f̃{{
(Y, b)
##f

Uniqueness:
Clearly, if f̃ exist then it is unique and naturally defined by f̃

(
µX(x)

)
= f (x) .

f̃ is well defined:
Suppose x, y ∈ X and µX(x) = µX(y). If f (x) , f

(
y
)

then there exists a p-closed subset F containing for
example f (x) and not containing f

(
y
)

so that f−1 (F) is a p-closed subset containing x and not containing y
which is impossible, so that f (x) = f

(
y
)
.

f̃ is p-continuous :
Let F be a p-closed subset in (Y, b). Then µ−1

X

(
f̃−1 (F)

)
= f−1 (F) is a p-closed subset in (X, a). Since f is

p-continuous, then by the construction of ã, ã
(

f̃−1 (F)
)

= f̃−1 (F) which is p-closed.

Now, using the definition of the T0-reflection of a pretopological space, for any p-continuous map f from
(X, a) to (Y, b) there exists a unique p-continuous map T0

(
f
)

from T0((X, a)) = (X/∼, ã) to T0((Y, b)) =
(

Y/∼, b̃
)

making commutative the following diagram.

(X, a)
f //

µX

��
	

(Y, b)

µY

��
T0 ((X, a))

T0( f )
// T0 ((Y, b))

The notion of quasihomeomorphisms between topological spaces was introduced for the first time by
Grothendieck and Dieudonné in [5] to answer some problems in algebraic topology.

Now, let us introduce the notion of a quasihomeomorphism between two pretopological spaces.

Definition 3.3. Let f : (X, a) −→ (Y, b) be a p-continuous map between two pretopological spaces. f is
said to be a quasihomeomorphism if the correspondence b(A) 7−→ f−1 (b(A)) defines a bijection from PC((Y, b))
(respectively, PO((Y, b)) ) to PC((X, a)) (respectively, PO((X, a)).

Clearly every homeomorphism between pretopological spaces is a quasihomeomorphism. The converse
is not true as shown by the following example.

Example 3.4. Let X = {1, 2, 3, 4} and a, b the two pseudo-closures defined by:
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a (∅) = ∅,

a ({1, 2}) = {1, 2},

a ({1, 2, 3}) = {1, 2, 3},

a (A) = X ∀A ∈ P (X) \
{
∅, {1, 2} , {1, 2, 3}

}
and

b (∅) = ∅,

b ({2, 3}) = {2, 3},

b ({1, 2, 3}) = {1, 2, 3},

b (A) = X ∀A ∈ P (X) \
{
∅, {2, 3} , {1, 2, 3}

}
.

Let f : (X, a) −→ (X, b) be defined by f (1) = f (2) = 2, f (3) = 1 and f (4) = 4.
f is a quasi-homeomorphism but is not a homeomorphism.

Remark 3.5. (Never two without three) Let f : (X, a) −→ (Y, b) and 1 : (Y, b) −→ (Z, d) be two p-continuous
maps. If two of the three maps f , 1, 1 ◦ f are quasihomeomorphisms then so is the third one.

Proposition 3.6. µX is a quasihomemorphism.

Proof. It is sufficient to use µ−1
X

(
µX (a (A))

)
= a (A) .

Proposition 3.7. Let f : (X, a) −→ (Y, b) be a quasihomemorphism.

1. If (X, a) is a T0-pretopological space then f is one to one.
2. If (Y, b) is a Tk

1-pretopological space then f is onto.
3. If (X, a) is a T0-pretopological space and (Y, b) is a Tk

1-pretopological space then f is a homeomorphism.

Proof. 1. Let x, y ∈ X such that f (x) = f
(
y
)
. Suppose that x , y. Since (X, a) is a T0 preordered topological

space then there exists a subset A ⊆ X such that x ∈ a (A) and y < a (A) . Let B ⊆ Y such that f−1 (b (B)) = a (A) .
Now, f (x) ∈ b (B) and thus f

(
y
)
∈ b (B) which implies that y ∈ a (A) which leads to a contradiction.

2. Let y ∈ Y. Since (Y, b) is a Tk
1-pretopological space, {y} = a({y}) is a non empty p-closed subset of Y.

Now, since f is a quasihomeomorphism, then f−1({y}) is a non empty p-closed subset of X. Therefore, f is
onto.

3. An immediate consequence of (1) and (2).

Remark 3.8. In [2, Lemma 3.7], the authors showed that given a quasihomeomorphism q : X −→ Y between
two topological spaces, if Y is a TD-space, then q is onto. The following example shows that this result is
not true in the category PreTOP even if Y is a T1 pretopological space.

Indeed, let X = {1, 2, 3} and Y = {1, 2, 3, 4}.
Define a on X by a(∅) = ∅, a({1}) = {1}, a({2}) = {2}, a({3}) = X, a({2, 3}) = {2, 3}, a({1, 2}) = {1, 2},

a({1, 3}) = {1, 3} and finally a(X) = X.
Define b on Y by, b(∅) = ∅, b({2, 3}) = {2, 3}, b({1, 2}) = {1, 2}, b({1, 3}) = {1, 3}, b({1, 4}) = {1, 4}, b({4, 2}) = {4, 2}

and b(A) = X if not.
Clearly, (Y, b) is a T1-pretopological space.
Define q from X to Y by q(x) = x for every x. One can see easily that q is a quasihomeomorphism which

is not onto.

Definition 3.9. Let f : (X, a) −→ (Y, b) be a p-continuous map. f is called p-onto if for any y ∈ Y there exists
x ∈ X such that pc

(
y
)

= pc
(

f (x)
)
.
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For any functor F : C −→ D between two categories, the family of all arrows in C rendered invertible
by F has some important applications. Note that, the class D⊥ (the class of morphisms orthogonal to
all X in D) is the collection of all morphisms of C rendered invertible by the functor F ( i.e. D⊥ ={
f ∈ homC : F

(
f
)

is an isomorphism o f D
}
)[1, Proposition 2.3]. The following result characterizes morphisms

in PreTop rendered invertible by the functor T0.

Proposition 3.10. Let f : (X, a) −→ (Y, b) be a p-continuous map. Then, the following statements are equivalent:

1. f is a p-onto quasihomeomorphism;
2. T0

(
f
)

is a homeomorphism.

Proof. (1)⇒ (2) Since T0( f ) ◦ µX = (µY ◦ f ), then using Remark 3.5, T0( f ) is quasihomeomorphism.
T0 (f) is onto:

Let µY(y) ∈ T0 ((Y, b)) . Since f is p-onto then there is x ∈ X such that pc
(

f (x)
)

= pc
(
y
)

and then:
µY

(
y
)

= µY
(

f (x)
)

= T0
(

f
) (
µX(x)

)
, so T0

(
f
)

is onto.
T0 (f) is one to one:

Let µX(x1), µX(x2) ∈ T0 ((X, a)) such that T0
(

f
) (
µX(x1))

)
= T0

(
f
) (
µX(x2))

)
. Then,

(T0
(

f
)
◦ µX) (x1) = (T0

(
f
)
◦ µX) (x2)

=⇒(µY ◦ f ) (x1) = (µY ◦ f ) (x2)
=⇒pc

(
f (x1)

)
= pc

(
f (x2)

)
=⇒pc (x1) = pc (x2) (Since f is a quasihomeomorphism)
=⇒µX(x1) = µX(x2).
Then T0

(
f
)

is one to one.
As a bijective quasihomeomorphism, T0

(
f
)

is a homeomorphism.
(2)⇒ (1) Since µX, µY, T0

(
f
)

are quasihomeomorphisms and T0
(

f
)
◦ µX = µY ◦ f then, by Remark 3.5, f

is a quasihomeomorphism.
Now to conclude it is sufficient to see that T0

(
f
)

is onto if and only if f is p-onto.

Corollary 3.11. ([2, Theorem 2.4]) Let q : X −→ Y be a continuous map between two topological spaces. Then the
following statements are equivalent:

(i) q is a topologically onto quasihomeomorphism;

(ii) T0(q) is a homeomorphism.

Proof. It is sufficient to take the closure operator on X (respectively, on Y) and apply Proposition 3.10.

4. Some New Separation Axioms

New separation axioms are presented in [2] in the category of Topological spaces. After that this concept
is studied in different categories such as the category of ordered topological spaces in [8, 9] and the category
of generalized topological spaces in [11].

The definition given in [2] can be stated in the category PreTop. Hence, a pretopological space is said
to be a T(0,1) (respectively, T(0,2),T(0,D),T(0,1k))-pretopological space if its T0-reflection is a T1 (respectively, T2,

TD, Tk
1)-pretopological space. In this part we will find some characterizations for such spaces. Regarding

topological spaces as a particular case of pretopological spaces, all results given next are a generalization
of some results given in [2] in the case of topological spaces. Note that if there is no confusion we can write
T(0,i)-space instead of T(0,i)-pretopological space.

By Remark 2.16 (3), we can deduce easily the following result:

Proposition 4.1. T(0,2) =⇒ T(0,1k) =⇒ T(0,1) =⇒ T(0,D).

Let us start by characterizing T(0,D)-pretopological spaces.
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Theorem 4.2. Let (X, a) be a pretopological space. Then the following statements are equivalent:

1. (X, a) is a T(0,D)-pretopological space;
2. For all x ∈ X the subset pc (x) \

{
y | pc

(
y
)

= pc (x)
}

is p-closed.

Proof. It is sufficient to see that

µ−1
X

(
pc

(
µX(x)

)
\
{
µX (x)

})
= pc (x) \

{
y | pc

(
y
)

= pc (x)
}
.

Let X be a topological space and a its closure operator. Then (X, a) is a pretopological space satisfying
pc(x) = {x} and thus pc (x) \

{
y | pc

(
y
)

= pc (x)
}

is exactly the subset γ(X) defined in [2, Remark 3.2]. Hence
the following corollary is straightforward.

Corollary 4.3. ([2, Theorem 3.3]) Let X be a topological space. Then the following statements are equivalent:

1. X is a T(0,D) space;
2. For each x ∈ X, γ(X) is a closed subset of X.

Now, we give the characterization of T(0,1)-pretopological spaces.

Theorem 4.4. Let (X, a) be a pretopological space. The following statements are equivalent :

1. (X, a) is a T(0,1)-pretopological space.
2. For each x, y ∈ X such that pc(x) , pc(y), there is a p-closed subset containing x which does not contain y.
3. For any x, y ∈ X, x ∈ pc(y) =⇒ y ∈ pc(x).
4. For each x ∈ X and each subset A ⊆ X, if pc (x) ∩ a (A) , ∅ then x ∈ a (A) .
5. For each subset A ⊆ X, if x ∈ i (A) then pc (x) ⊆ i (A) .

Proof. (1)⇒ (2) : Suppose x, y ∈ X and pc(x) , pc(y). Then µX(x) , µX(y). Since (X/∼, ã) is T1, then there exists
a p-closed set ã (B) containing µX(x) and not containing µX(y), so that µ−1

X (ã (B)) is a p-closed subset of (X, a)
which contain x and does not contain y.

(2) ⇒ (3) : Let x, y ∈ X such that x ∈ pc(y). Then x belongs to every p-closed subset of X containing y.
Now, suppose that y < pc(x). Then pc(x) , pc(y) and, by (2), there exists a p-closed subset of X containing y
not containing x, which leads to a contradiction.

(3)⇒ (4) : Let x be a point in X and A be a subset of X such that pc (x)∩ a (A) , ∅. If y ∈ pc (x)∩ a (A), then
y ∈ pc(x) and thus by (3), x ∈ pc(y) which means that x belongs to every p-closed subset of X containing y.
In particular x ∈ a(A).

(4) ⇒ (5) : Let x be a point in X and A be a subset of X such that x ∈ i (A). If pc(x) * i(A), then
pc(x) ∩ (i(A))c , ∅. So, by (4), x ∈ (i(A))c which is impossible.

(5)⇒ (1) : Let x be in X. To prove that pc({µX(x)}) = {µX(x)}, consider y ∈ X such that µX(y) ∈ pc({µX(x)}).
Then µX(y) belongs to every p-closed subset of T0(X) containing µX(x). That is, y belongs to every p-closed
subset of X containing x and thus y ∈ pc(x).

Now, suppose that x < pc(y), so x ∈ (pc(y))c. Hence by hypothesis, pc(x) ⊆ (pc(y))c which means that
pc(x) ∩ pc(y) = ∅ which is impossible because it contains y. Thus x ∈ pc(y) and hence pc(x) = pc(y) which
means that µX(y) = µX(x) as desired.

Corollary 4.5. ([2, Theorem 3.5]) Let (X, τ) be a topological space. Then the following statements are equivalent:

(i) X is a T(0,1)-space;

(ii) For each open subset U of X and each x ∈ U, we have {x} ⊆ U;

(iii) For each x ∈ X and each closed subset C of X such that {x} ∩ C , ∅, we have x ∈ C.



A. Mhemdi et al. / Filomat 32:9 (2018), 3289–3296 3296

Theorem 4.6. Let (X, a) be a pretopological space. Then the following statements are equivalent:

1. (X, a) is a T(0,1k)-pretopological space;
2. For each x ∈ X the subset {y ∈ X | pc(y) = pc(x)} is p-closed.

Proof. (1) =⇒ (2) Let x be in X. Since T0(X) is a Tk
1-space. Then by Remarks 2.16 (1), ã({µX(x)}) = {µX(x)}. So

µ−1
X ({µX(x)}) is a p-closed subset of X. Therefore {y ∈ X | pc(y) = pc(x)} is p-closed.

(2) =⇒ (1) Let x be in X. By hypothesis, the subset {y ∈ X | pc(y) = pc(x)} is p-closed in X which means
that µ−1

X ({µX(x)}) is a p-closed subset of X. Then ã({µX(x)}) = {µX(x)} and consequently, by Remarks 2.16 (1),
(X, a) is a T(0,1k)-pretopological space.

Theorem 4.7. Let (X, a) be a pretopological space. Then the following statements are equivalent :

1. (X, a) is a T(0,2)-pretopological space.
2. For each x, y ∈ X such that pc(x) , pc(y) there are two disjoint p-closed subsets in X containing respectively x

and y.

Proof. (1) ⇒ (2) : Let x, y ∈ X such that pc(x) , pc(y). Then µX(x) , µX(y). Since (X/∼, ã) is T2, there exist
two p-closed subsets of T0(X) ã (B) and ã (B′) containing respectively µX(x) and µX(y). Hence µ−1

X (ã (B)) and
µ−1

X (ã (B′)) are two disjoint p-closed subsets of X containing respectively x and y.
(2) ⇒ (1) : Let µX(x) , µX(y) ∈ X/∼. Then pc(x) , pc(y). Using (2) , there exists two disjoint p-closed

subsets a (A) and a (A′) in X containing respectively x and y. Hence µX (a (A)) and µX (a (A′)) are two disjoint
p-closed subsets in T0(X) containing respectively µX(x) and µX(y). Therefore (X/∼, ã) is T2 and (X, a) is a T(0,2)
pretopological space.

Corollary 4.8. ([2, Theorem 3.12]) Let (X, τ) be a topological space. Then the following statements are equivalent:

(i) X is a T(0,2)-space;

(ii) For each x, y ∈ X such that {x} , {y}, there are two disjoints open subsets U and V in X with x ∈ U and y ∈ V.
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[4] Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar. 106 (2005) 53–66.
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