
Filomat 32:9 (2018), 3245–3252
https://doi.org/10.2298/FIL1809245I

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. An automorphism σ of a finite simple graph Γ is a shift, if for every vertex v ∈ V(Γ), σv is adjacent
to v in Γ. The graph Γ is shift-transitive, if for every pair of vertices u, v ∈ V(Γ) there exists a sequence
of shifts σ1, σ2, ..., σk ∈ Aut(Γ) such that σ1σ2...σku = v. If, in addition, for every pair of adjacent vertices
u, v ∈ V(Γ) there exists exactly one shift σ ∈ Aut(Γ) sending u to v, then Γ is uniquely shift-transitive. The
purpose of this paper is to prove that, if Γ is a uniquely shift-transitive graph of valency 5 and SΓ is the set
of shifts of Γ then 〈SΓ〉, the subgroup generated by SΓ is an Abelian regular subgroup of Aut(Γ).

1. Introduction

Throughout this paper, groups are finite and graphs are simple, finite, connected and undirected. For
graph and group-theoretic concepts not defined here, we refer the reader to [1] and [4]. We start by recalling
some notations and definitions from [2] and [5]: If u and v are two adjacent vertices in graph Γ, we write
u ∼ v. Let G be a group and S a subset of G that is closed under inverses and does not contain the identity.
The Cayley graph Γ = Cay(G,S) with connection set S is the graph whose vertex set is G, two vertices u, v
being joined by an edge if uv−1

∈ S. A quasi-Abelian Cayley graph is a Cayley graph Γ = Cay(G,S), where S is
the union of conjugacy classes in G. An automorphism σ of a graph Γ is a shift, if for every vertex v ∈ V(Γ),
we have σv ∼ v.

We call a graph Γ shift-transitive if for every pair of vertices u, v ∈ V(Γ), there exists a sequence of
shifts σ1, σ2, ..., σk ∈ Aut(Γ), such that σ1σ2...σku = v. If, in addition, for every pair of adjacent vertices
u, v ∈ V(Γ) there exists exactly one (respectively, at least one) shift σ ∈ Aut(Γ) sending u to v, then Γ is
uniquely shift-transitive (respectively, strongly shift-transitive).

Since uniquely shift-transitive graphs are strongly shift-transitive and strongly shift-transitivity implies
vertex transitivity, we find that if Γ is a uniquely shift-transitive graph, then it is vertex-transitive. So Γ is
regular and the size of SΓ, which is the set of shifts of Γ, and the valency of Γ are equal.

In [3] the authors investigate these concepts in some standard graph products and the following two
questions are posed in [2].

Question 1.1. Is every uniquely shift-transitive Cayley graph isomorphic with a Cayley graph of an Abelian group?

Question 1.2. Does there exist a uniquely shift-transitive non-Cayley graph?
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Our motivation for this paper is to give an answer to the Question 1.1 without assuming that Γ is a
Cayley graph, and a partial answer to the Question 1.2.

In Section 2 we give some propositions that will be used in Section 3 and finally in Section 3 we prove
the following main result.

Theorem 1.3. Every uniquely shift-transitive graph Γ of valency 5 is isomorphic with a Cayley graph of an Abelian
group.

2. Preliminaries

In this section we prove some propositions to show that in a uniquely shift-transitive graph of valency
5 the shifts commute with each other.

Remark 2.1. If Γ is a uniquely shift-transitive graph and α, β ∈ Aut(Γ) are two shifts such that αv = βv for some
v ∈ V(Γ), then α = β. Also if Γ is a uniquely shift-transitive graph of valency 5 and SΓ = {α, β, γ, δ, η} is the set of
shifts of Γ then |V(Γ)| ≥ 8 and since 〈SΓ〉 acts transitively on V(Γ), so |〈SΓ〉| ≥ 8.

Proposition 2.2. ([2, Proposition 4.1]) Let Γ = Cay(G,S) be a quasi-Abelian Cayley graph of a non-Abelian group
G, Then Γ is not uniquely shift-transitive.

Proposition 2.3. Let Γ be a uniquely shift-transitive graph of valency 5 and SΓ = {α, β, γ, δ, η} be the set of shifts
of Γ. Moreover assume that α2 = β2 = γ2 = δ2 = η2 = id, where by id we mean the identity permutation. Then

(1) If αβα = γ and βαβ = γ then αδα , δ.

(2) If αβα = γ and βαβ = δ then βγβ , γ.

(3) If αβα = γ, βαβ = δ and βγβ = η then αδα , η.

Proof. (1) : Suppose, in contrary, that αδα = δ. Since αβα = γ, we have αηα = η. Now consider the shift
βδβ. If βδβ = η, then we have

η = αηα = αβδβα = γαδαγ = γδγ = γβηβγ = βαηαβ = βηβ = δ,

which is a contradiction. Thus βδβ = δ and so βηβ = η. Therefore we have the following equalities:

αβα = γ, αδα = δ, αηα = η, βαβ = γ, βδβ = δ, βηβ = η, δηδ = η. (2.1)

Let G = 〈SΓ〉, H = 〈α, β, γ, δ, η | α2 = β2 = γ2 = δ2 = η2 = id, αβα = γ, αδα = δ, αηα =
η, βαβ = γ, βδβ = δ, βηβ = η, δηδ = η〉, M = 〈 α, β, γ | α2 = β2 = γ2 = id, αβα = γ, βαβ = γ〉 and
N = 〈 δ, η | δ2 = η2 = id, δη = ηδ〉. Then by Equation 2.1 we have MEH, N EH, M∩N = {id} and H = MN.
Thus H = M × N. Since M � S3 and N � C2

2, so H � S3 × C2
2 and G is isomorphic to a quotient of S3 × C2

2.
Since |V(Γ)| divides |G| and |G| divides |H| = 24, we find that |G| = 8 or 12 or 24. If G has order 8 or 12
we have |V(Γ)| = |G| which means that G acts regularly on V(Γ). So Γ is a quasi-Abelian Cayley graph of a
non-Abelian group G with connection set SΓ. By Proposition 2.2, Γ is not uniquely shift-transitive, which is
a contradiction. If |G| = 24 then G � S3 × C2

2 and

G = {id, α, β, γβ, γ, βγ, δ, αδ, η, αη, βδ, γβδ, γδ, βγδ,
ηδ, αηδ, βη, γβη, γηα, γη, ηβδ, γηβδ, αηβδ, γηδ}.

Now note that the stabiliser of a vertex v in G is a core-free subgroup of S3 × C2
2, which has order 1 or 2.

Recall that a subgroup H of a group G is called core-free if
⋂
1∈G H1 = 1.Moreover if H is a core-free subgroup

of G then the largest normal subgroup of G which is contained in H is 1. If Gv has order 2 then Gv = {id, θ}
where θ2 = id. Thus,

θ ∈ {α, β, γ, δ, η, αδ, αη, βδ, βη, γδ, γη, ηδ, αηδ, βηδ, γηδ}.
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Since the shifts fix no vertices so θ < {α, β, γ, δ, η}.Also if θ = αδ then αδv = v. Thus αv = δv which implies
α = δ, a contradiction. So θ < {αδ, αη, βδ, βη, γδ, γη, ηδ}. Therefore Gv is one of {id, αηδ}, {id, βηδ} or {id, γηδ}
and Γ has order 12. Without loss of generality we may assume that Gv = {id, αηδ}. Thus αηδv = v and so
ηδv = αv. Therefore by Equation 2.1 we find that Γ has vertex set,

V(Γ) = {v, αv, βv, γβv, γv, βγv, δv, αδv, γδv, βγδv, βδv, γβδv}.

In this graph,
σ = δη = (v αv)(βv γβv)(γv βγv)(δv αδv)(γδv βγδv)(βδv γβδv),

is a shift different from α, β, γ, δ and η. This is a contradiction with the unique shift-transitivity of Γ.
Assume that Gv has order 1. Then Γ has order 24 and G acts regularly on V(Γ). Hence Γ is a quasi-

Abelian Cayley graph of a non-Abelian group G with connection set SΓ. By Proposition 2.2, Γ is not uniquely
shift-transitive, which is a contradiction.

So in the above cases, we obtain a contradiction. Therefore the proof of Part (1) is complete.

(2) : Suppose, to the contrary, that βγβ = γ. Thus βηβ = η. Since βαβ = δ and αβα = γ so αδα = αβαβα =
γβα = βγα = βαβ = δ and αηα = η. Therefore we have the following relations between the shifts of Γ:

αβα = γ, αδα = δ, αηα = η, βαβ = δ, βγβ = γ, βηβ = η. (2.2)

Let G = 〈SΓ〉, H = 〈α, β, γ, δ, η | α2 = β2 = γ2 = δ2 = η2 = id, αβα = γ, αδα = δ, αηα = η, βαβ =
δ, βγβ = γ, βηβ = η〉, M = 〈 α, β, γ, δ | α2 = β2 = γ2 = δ2 = id, αβα = γ, αδα = δ, βαβ = δ, βγβ = γ〉 and
N = 〈 η |η2 = id〉, then by Equation 2.2 we have M EH, N EH, M ∩N = {id} and H = MN. So H = M ×N.
Since M � D8 and N � C2 thus H � D8 × C2 and G is isomorphic to a quotient of D8 × C2.

By Remark 2.1, we find that |G| = 8 or 16. If |G| = 8, then |V(Γ)| = 8 and G acts regularly on V(Γ). So in
this case Γ is a quasi-Abelian Cayley graph of a non-Abelian group G with connection set SΓ. By Proposition
2.2, Γ is not uniquely shift-transitive, which is a contradiction. If |G| = 16 then G � D8 × C2 and

G = {id, β, α, γα, γ, βγ, δ, γδ, η, βη, ηγ, βηγ, αη, γαη, δη, γδη}.

Now the stabiliser of a vertex v in G is a core-free subgroup of D8 × C2, and so it has order 1 or 2. If Gv has
order 2 then Gv = {id, θ}, where θ2 = id. Thus,

θ ∈ {α, β, γ, δ, η, βγ, αη, βη, γη, δη, αδ, βηγ}.

By a similar argument as Part(1), θ < {α, β, γ, δ, η, βγ, αη, βη, γη, δη, αδ}. If θ = βηγ then Gv E G, which is a
contradiction because Gv is a core-free subgroup of G.

If Gv has order 1 then, G acts regularly on V(Γ). So Γ is a quasi-Abelian Cayley graph of a non-Abelian
group G with connection set SΓ.By Proposition 2.2, Γ is not uniquely shift-transitive, which is a contradiction.
Therefore the proof of Part (2) is complete.

(3) : Suppose, by way of contradiction, that αδα = η. We have the following relations between the shifts of
Γ:

αβα = γ, αδα = η, βαβ = δ, βγβ = η, (2.3)

Let G = 〈SΓ〉, a = βα and b = α. Then by Equation 2.3, we have a5 = b2 = (ba)2 = id. Thus G � D10 and,

G = {id, α, β, βα, γ, γα, δ, δα, η, ηα}.

Now the stabiliser of a vertex in G is a core-free subgroup of D10, so it has order 1 or 2. If it has order 2 then
Γ has order 5 which is impossible. If it has order 1 then Γ has order 10 and G acts regularly on V(Γ). So Γ is
a quasi-Abelian Cayley graph of non-Abelian group G with connection set SΓ. By Proposition 2.2 Γ is not
uniquely shift-transitive which is a contradiction.

Proposition 2.4. Let Γ be a uniquely shift-transitive graph of valency 5 and SΓ = {α, β, γ, δ, δ−1
} be the set of shifts

of Γ, such that α2 = β2 = γ2 = id. Then
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(1) If αβα = γ, αδα = δ and βαβ = γ, then βδβ , δ.

(2) If αβα = γ, αδα = δ−1, βαβ = γ and βδβ = δ−1, then δ−1αδ , β.

(3) If αβα = β, αγα = γ and βγβ = γ, then δ−1αδ , β.

Proof. (1) : Suppose as a contradiction that βδβ = δ. We number the equalities as follows:

αβα = γ, αδα = δ, βαβ = γ, βδβ = δ (2.4)

Let G = 〈SΓ〉, |δ| = n ≥ 3, H = 〈α, β, γ, δ | α2 = β2 = γ2 = δn = id, αβα = γ, αδα = δ, βαβ = γ, βδβ =
δ〉, M = 〈α, β, γ | α2 = β2 = γ2 = id, αβα = γ, βαβ = γ〉 and N = 〈δ | δn = id〉. Then by Equation 2.4, we
have M EH, N EH, M ∩N = {id} and H = MN. So H � M ×N.

But M � S3 and N � Cn. Thus H � S3 × Cn and G is isomorphic to a quotient of S3 × Cn. Since δ ∈ G so
n divides |G|. Thus |G| = n, 2n, 3n or 6n. If |G| = n then G = 〈δ〉 is a cyclic group, which is a contradiction. If
|G| = 6n then G � S3 × Cn and

G = {id, α, β, γ, γβ, βγ, δ, αδ, βδ, γβδ, γδ, βγδ, · · · ,
δn−1, αδn−1, βδn−1, γβδn−1, γδn−1, βγδn−1

}.

Here, a core-free subgroup has order at most 3. The stabiliser of a vertex v in G is a core-free subgroup of
S3 × Cn, so it has order at most 3. Note that the shifts fix no vertices. If Gv has order 3 then Gv is one of
{id, δk, δ2k

} or {id, γβδk, βγδ2k
}where 3k = n.

If Gv = {id, δk, δ2k
} then Gv E G, which is a contradiction, because Gv is a core-free subgroup of G.

Let Gv = {id, γβδk, βγδ2k
} then δkv = βγv. In this case,

V(Γ) = {v, αv, βv, γβv, γv, βγv, δv, αδv, βδv, γβδv, γδv, βγδv, · · ·

, δk−1v, αδk−1v, βδk−1v, γβδk−1v, γδk−1v, βγδk−1v}

and

σ = αδk = (v βv γβv αv βγv γv)(δv βδv γβδv αδv βγδv γδv) · · ·

(δk−1v βδk−1v γβδk−1v αδk−1v βγδk−1v γδk−1v)

is a shift not in {α, β, γ, δ, δ−1
}, which contradicts the unique shift-transitivity of Γ.

If Gv has order 2 then Gv is one of {id, δk
}, {id, αδk

}, {id, βδk
} or {id, γδk

}where 2k = n. If Gv = {id, δk
} then

Gv E G which is a contradiction. Without loss of generality we may assume that Gv = {id, αδk
}. By using

Equation 2.4, we obtain:

V(Γ) = {v, αv, βv, γβv, γv, βγv, δv, αδv, βδv, γβδv, γδv, βγδv, · · ·

, δk−1v, αδk−1v, βδk−1v, γβδk−1v, γδk−1v, βγδk−1v}.

In this case

σ = δk = (v αv)(βv γβv)(γv βγv)(δv αδv)(βδv γβδv)(γδv βγδv) · · ·

(δk−1v αδk−1v)(βδk−1v γβδk−1v)(γδk−1v βγδk−1v)

is a shift not in {α, β, γ, δ, δ−1
}, which is a contradiction.

Now assume Gv has order 1. Then G acts regularly on V(Γ), and Γ is a quasi-Abelian Cayley graph of a
non-Abelian group G with connection set SΓ. By Proposition 2.2 Γ is not uniquely shift-transitive which is
a contradiction. Hence in the above two cases, we obtain a contradiction.

If |G| = 2n then G � H/R where R EH and |R| = 3. Since

H = {xδt
| x ∈ {id, α, β, γ, γβ, βγ}, 0 ≤ t ≤ n − 1},

so the elements of order 3 in H are γβ, βγ, δk, δ2k, γβδk, βγδk, γβδ2k, βγδ2k where 3k = n. Note that the last six
elements are exist whenever 3 divides n.This implies that R is one of A1 = {id, βγ, γβ},A2 = {id, δk, δ2k

},A3 =
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{id, γβδk, βγδ2k
} or A4 = {id, βγδk, γβδ2k

}. It is easy to see that only A1 and A2 are normal subgroups of
H. Suppose first that R = A1. Then H/R = {R, αR, δR, αδR, · · · , δn−1R, αδn−1R}. In this case G � H/R is an
Abelian group which is a contradiction. If R = A2, then

H/R = {xδtR | x ∈ {id, α, β, γ, γβ, βγ}, 0 ≤ t ≤ k − 1}.

Let M1 = {R, αR, βR, γR, βγR, γβR} and N1 = {R, δR, δ2R, · · · , δk−1R}.Then M1 E H/R, N1 E H/R M1∩N1 = {R}
and M1N1 = H/R. Hence H/R � M1 ×N1. Since M1 � S3 and N1 � Ck, we conclude that G � H/R � S3 × Ck.
Now by a similar argument as in case |G| = 6n we obtain that Γ is not uniquely shift-transitive which is a
contradiction.

Let |G| = 3n. Then G � H/R where R EH and |R| = 2. An easy calculation shows elements of order 2 in
H are α, β, γ, δm, αδm, βδm, γδm where n = 2m. Thus the only normal subgroup of order 2 in H is {id, δm

}. In
this case we have:

H/R = {xδtR | x ∈ {id, α, β, γ, γβ, βγ}, 0 ≤ t ≤ m − 1}

Let M = {R, αR, βR, γR, γβR, βγR} and N = {δiR | 0 ≤ i ≤ m − 1}. Then M E H/R, N E H/R M ∩N = {R} and
MN = H/R. Hence H/R � M × N. Since M � S3 and N � Cm, we have G � H/R � S3 × Cm. Now a similar
argument as in case |G| = 6n we shows that Γ is not uniquely shift-transitive which is a contradiction. This
complete the proof of (1).

(2) Assume, to the contrary, that δ−1αδ = β. Since Γ is uniquely shift-transitive, we have the following
relations between the shifts of Γ:

αβα = γ, αδα = δ−1, βαβ = γ, βδβ = δ−1, δ−1αδ = β, δ−1βδ = γ, δ−1γδ = α. (2.5)

Let G = 〈SΓ〉, a = δ and b = β. Then by Equation 2.5, we have a6 = b2 = (ba)2 = id. So G is a quotient of D12.
Since |G| ≥ 8 we conclude that G � D12 � S3 × C2 and

G = {id, α, β, γ, δ, γβ, βγ, γδ, δ−1, βδ−1, βδ, αβδ},

Here, a core-free subgroup has order at most 2. The stabiliser of a vertex in G is a core-free subgroup of
S3 × C2, so it has order 1 or 2. It follows that Γ has order 6 or 12. If Γ has order 6 then Γ is a complete
graph, which is not uniquely shift-transitive. When Γ has order 12, Γ is a quasi-Abelian Cayley graph of a
non-Abelian group G with connection set SΓ. By Proposition 2.2 Γ is not uniquely shift-transitive, which is
a contradiction.

(3) : Suppose, for a proof by contradiction, that δ−1αδ = β. Since Γ is uniquely shift-transitive, we have the
following equalities:

αβα = β, αγα = γ, αδα = δ−1, βγβ = γ, βδβ = δ−1,

δ−1αδ = β, δ−1βδ = α, δ−1γδ = γ.

A similar argument as in Part (2) of Proposition 2.3 shows that G � D8 × C2 and we find again a contradic-
tion.

Proposition 2.5. Suppose that Γ is a uniquely shift-transitive graph of valency 5 and SΓ = {α, β, β−1, γ, γ−1
} be

the set of shifts of Γ. If α2 = id, αβα = β, αγα = γ and β−1γβ = γ−1, then γ−1βγ , β−1.

Proof. Suppose that the statement is not true, i.e. γ−1βγ = β−1. Let G = 〈SΓ〉 and H = 〈α, β, γ| α2 = id, αβα =
β, αγα = γ, β−1γβ = γ−1, γ−1βγ = β−1

〉. Set M = 〈β, γ| β−1γβ = γ−1, γ−1βγ = β−1
〉 and N = 〈α | α2 = id〉.

Then these relations imply, MEG, NEG, M∩N = {id} and H = MN. Thus H = M×N. But H � Q8,N � C2.
So H � Q8 × C2 and G is a quotient of Q8 × C2. Since |G| ≥ 8 so |G| = 8 or 16. If |G| = 8 then |V(Γ)| = 8 and G
acts regularly on V(Γ). So Γ is a quasi-Abelian Cayley graph of a non-Abelian group G with connection set
SΓ. By Proposition 2.2 Γ is not uniquely shift-transitive, which is a contradiction.

If |G| = 16 then G � Q8 × C2 and

G = {id, α, β, γ, αβ, γβ, β−1, β2, γ−1, γ−1β, αβ−1, αβ2, αγ−1, αγ−1β, αγ, αγβ}.
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The only core-free subgroup of this group is the identity, so Γ is a quasi-Abelian Cayley graph on G with
the connection set SΓ. By Proposition 2.2 Γ is not uniquely shift-transitive which is a contradiction.

3. Uniquely Shift-Transitive Graphs of Valency 5

Theorem 3.1. Let Γ be a uniquely shift-transitive graph of valency 5 and SΓ = {α, β, γ, δ, η} be the set of distinct
shifts of Γ. Then 〈SΓ〉, is an Abelian group.

Proof. Since the inverse of a shift is a shift, we must only consider the three following cases:

(1) : α2 = β2 = γ2 = δ2 = η2 = id.

(2) : α2 = β2 = γ2 = δη = id.

(3) : α2 = βγ = δη = id.
First we consider Case (1). In this case it is enough to prove that αβ = βα. We will prove this by

contradiction. Suppose αβ , βα. It is obvious that the conjugate of a shift is also a shift, so αβα , α is a shift
of Γ. Since αβα , β so αβα ∈ {γ, δ, η}. Let

αβα = γ (3.1)

Consider the shift βαβ. Then βαβ ∈ {γ, δ, η}. First assume that

βαβ = γ (3.2)

then consider the shift αδα , α, β, γ. By Part(1) of Proposition 2.3, αδα = δ, which is impossible. Therefore

αδα = η. (3.3)

By Equations 3.1, 3.2 and 3.3 we have:

βδβ = η. (3.4)

Now consider the shift δαδ which is neither α nor δ.
If δαδ = β, then by Equations 3.1, 3.2, 3.3 and 3.4 we have:

δγδ = δ(βαβ)δ = (δβ)α(βδ) = αδαδα = α(δαδ)α = αβα = γ. So γδγ = δ.
On the other hand γδγ = αβαδαβα = αβηβα = αδα = η. Thus δ = η which is a contradiction.
If δαδ = γ, then by Equations 3.1, 3.2 and 3.4 we have:

δβδ = δ(αγα)δ = (δα)γ(αδ) = γδγδγ = γαγ = αβγ = ααβ = β. So βδβ = δ = η, which is another contradiction.
If δαδ = η, then δβδ ∈ {β, γ}. If δβδ = β then by Equation 3.4 we obtain βδβ = δ = η, which is a

contradiction. Finally if δβδ = γ then by Equations 3.1, 3.3 and 3.4 we have:
η = δαδ = (αηα)αδ = αηδ = α(βδβ)δ = αβγ = ααβ = β which is another contradiction.
So in either case we have a contradiction and consequently Equation 3.2 can not arise.
Now let we have:

βαβ = δ. (3.5)

Then βγβ ∈ {γ, η}. By Part(2) of Proposition 2.3, the equation βγβ = γ can not arise.
Therefore

βγβ = η. (3.6)

Now consider the shift αδα ∈ {δ, η}.
If αδα = δ then αηα = η and by these equalities and Equations 3.1, 3.5 and 3.6 we obtain

δ = βαβ = βηαηβ = βη(βδβ)ηβ = (βηβ)δ(βηβ) = γδγ = (αβα)δ(αβα) = αβ(αδα)βα = αβδβα = ααα = α which
is a contradiction. The second case cannot arise by Part(3) of Proposition 2.3. So we find that Equation 3.5
can not occur.
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By a similar argument we can show that the equality βαβ = η is impossible. So the Equation 3.1 can not
occur. (For cases αβα = δ or αβα = η the proof is similar). Thus βα = αβ and the proof is complete.

Proof of theorem in Case (2): In this case SΓ = {α, β, γ, δ, δ−1
}. It is sufficient to prove αβ = βα and αδ = δα.

First we prove αβ = βα: Consider the shift αβα. Since αβα is of order two so αβα = β or γ. If αβα = β
then the proof is complete. So we suppose

αβα = γ. (3.7)

Therefore

βαβ = γ. (3.8)

Since αδα and δ have the same order, we have αδα = δ or δ−1

First assume that

αδα = δ. (3.9)

Then βδβ ∈ {δ, δ−1
}.

If βδβ = δ−1 then γδγ ∈ {δ, δ−1
}.

If γδγ = δ then by Equations 3.8 and 3.9 we conclude that
δ = γδγ = (αβα)δ(αβα) = αβ(αδα)βα = αβδβα = αδ−1α = δ−1, which is a contradiction.

If γδγ = δ−1 then by Equations 3.8 and 3.9 we obtain
δ−1 = γδγ = (βαβ)δ(βαβ) = βα(βδβ)αβ = βαδ−1αβ = βδ−1β = δ, which is again a contradiction.

The second case cannot arise by Part(1) of Proposition 2.4. From these contradictions, we conclude that
Equation 3.9 can not occur.

Now assume that

αδα = δ−1. (3.10)

Consider the shift βδβ. This shift can be δ or δ−1. If βδβ = δ then γδγ = δ or δ−1. If γδγ = δ then by
Equations 3.9 and 3.10 we have δ = γδγ = (βαβ)δ(βαβ) = βα(βδβ)αβ = βαδαβ = βδ−1β = δ−1 a contradiction.
If γδγ = δ−1 then by Equations 3.7 and 3.10 we have
δ−1 = γδγ = (αβα)δ(αβα) = αβ(αδα)βα = αβδ−1βα = αδ−1α = δ, which is a contradiction. So βδβ = δ−1.

Since α and δ−1αδ have the same order, then δ−1αδ = α, β or γ. If δ−1αδ = α then δ = αδα = δ−1 which
is a contradiction. Indeed by Part(2) of Proposition 2.4 the case δ−1αδ = β is impossible (for case δ−1αδ = γ
the proof is similar). Thus αβ = βα. A similar argument shows that αγ = γα and γβ = βγ.

By using Part(3) of Proposition 2.4, we find that δ−1αδ , β, γ. Hence αδ = δα and the proof in Case(2) is
complete.

Proof of theorem in Case(3): In this case SΓ = {α, β, β−1, γ, γ−1
}, and it is enough to prove that αβ = βα and

βγ = γβ. Since α and β−1αβ have the same order, we have β−1αβ = α and αβ = βα.Hence either β−1γβ = γ or
β−1γβ = γ−1. If β−1γβ = γ then γβ = βγ and the proof is complete. So assume that β−1γβ = γ−1. In this case
γ−1βγ = β−1 and by Proposition 2.5, such a graph can not exist.
Since we have proved in all cases that the shifts commute with each other, so 〈SΓ〉 is an Abelian subgroup
of Aut(Γ).

Lemma 3.2. ([1, Lemma 16.3]): Let Γ be a connected graph. The automorphism group Aut(Γ) has a subgroup H
which acts regularly on V(Γ) if and only if Γ is a Cayley graph, Cay(H,Ω), for some set Ω generating H.

Theorem 3.3. (Main Theorem) Every uniquely shift-transitive graph Γ of valency 5 is isomorphic with a Cayley
graph of an Abelian group.

Proof. By Theorem 3.1, 〈SΓ〉 is an Abelian group. Now by [4, Proposition 4.4], 〈SΓ〉 is regular on V(Γ) and
by Lemma 3.2, Γ is isomorphic with Cay(〈SΓ〉,SΓ). So Γ is isomorphic with a Cayley graph of an Abelian
group.
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Remark 3.4. The converse of Theorem 3.3 is not true, because if Γ is isomorphic with C4 or Kn, then Γ is a Cayley
graph of an Abelian group, but Γ is not uniquely shift-transitive graph. Moreover the converse of Theorem 3.1 is true
whenever Γ is a strongly shift-transitive graph by the next proposition.

Proposition 3.5. Let Γ be a strongly shift-transitive graph and SΓ be the set of shifts of Γ. If 〈SΓ〉 is an Abelian group,
then Γ is uniquely shift-transitive.

Proof. Suppose Γ is not uniquely shift-transitive, so there exist adjacent vertices u and v and distinct shifts
α and β of Γ, such that αu = v = βu. Since α , β so there exists vertex x , u of Γ such that αx , βx. But Γ
is shift-transitive, so there exists a sequence of shifts σ1, σ2, · · · , σk ∈ Aut(Γ), such that σ1σ2 · · · σkv = x. Now
we have:

αx = ασ1σ2 · · · σkv = ασ1σ2 · · · σkβu = αβσ1σ2 · · · σku,
βx = βσ1σ2 · · · σkv = βσ1σ2 · · · σkαu = αβσ1σ2 · · · σku.

Thus αx = βx which is a contradiction.
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