The Range of Block Hankel Operators

In Sung Hwang ${ }^{\text {a }}$, In Hyoun Kim ${ }^{\text {b }}$, Sumin Kim ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea
${ }^{b}$ Department of Mathematics, Incheon National University, Incheon 406-772, Republic of Korea

Abstract

In this note we give a connection between the closure of the range of block Hankel operators acting on the vector-valued Hardy space $H_{\mathbb{C}^{n}}^{2}$ and the left coprime factorization of its symbol. Given a subset $F \subseteq H_{\mathbb{C}^{n}}^{2}$, we also consider the smallest invariant subspace S_{F}^{*} of the backward shift S^{*} that contains F.

1. Introduction

Let \mathcal{H} and \mathcal{K} be separable complex Hilbert spaces, and let $\mathcal{B}(\mathcal{H}, \mathcal{K})$ be the set of all bounded linear operators from \mathcal{H} to $\mathcal{K} . \mathcal{B}(\mathcal{H}, \mathcal{H})$ is denoted simply by $\mathcal{B}(\mathcal{H})$. A closed subspace $\mathcal{L} \subset \mathcal{H}$ is called an invariant subspace for the operator $T \in \mathcal{B}(\mathcal{H})$ if $T \mathcal{L} \subset \mathcal{L}$. The theory of invariant subspaces of the backward shift operator has enabled important contributions to numerous applications in operator theory and function theory $([6],[13])$. Given a subset $F \subseteq H_{\mathbb{C}^{n}}^{2}$, the subspace

$$
S_{F}^{*}:=\bigvee\left\{S^{* n} f: f \in F, n \geq 0\right\}
$$

is the smallest invariant subspace of the backward shift S^{*} that contains F. If $S_{F}^{*} \neq H_{\mathbb{C}^{n}}^{2}$ then by the Beurling-Lax-Halmos Theorem, there is an inner matrix function $\Theta \in H_{M_{n \times m}}^{2}$ such that

$$
\begin{equation*}
S_{F}^{*}=H_{\mathbb{C}^{n}}^{2} \ominus \Theta H_{\mathbb{C}^{n}}^{2} \tag{1}
\end{equation*}
$$

The purpose of this note is to determine the inner matrix function $\Theta \in H_{M_{n \times m}}^{\infty}$ satisfying (1).
Let us recall the basic properties of unbounded operators ([2]). If $A: \mathcal{H} \rightarrow \mathcal{K}$ is a linear operator, then A is also a linear operator from the closure of the domain of A, denoted by cl[dom $A]$, into \mathcal{K}. So we will only consider A such that $\operatorname{dom} A$ is dense in \mathcal{H}. Then, such an operator A is said to be densely defined. If $A: \mathcal{H} \rightarrow \mathcal{K}$ is densely defined, we write $\operatorname{ker} A$ and $\operatorname{ran} A$ for the kernel and range of A, respectively. For a set $\mathcal{M}, \mathrm{cl} \mathcal{M}$ and \mathcal{M}^{\perp} respectively denote the closure and orthogonal complement of \mathcal{M}. Let $A: \mathcal{H} \rightarrow \mathcal{K}$ be densely defined, and let

$$
\operatorname{dom} A^{*}=\{k \in \mathcal{K}:\langle A h, k\rangle \text { is a bounded linear functional on } \operatorname{dom} A\} .
$$

[^0]Then for each $k \in \operatorname{dom} A^{*}$, there exists a unique $f \in \mathcal{K}$ such that $\langle A h, k\rangle=\langle h, f\rangle$ for all $h \in \operatorname{dom} A$. Denote this unique vector f as $f=A^{*} k$. Thus $\langle A h, k\rangle=\left\langle h, A^{*} k\right\rangle$ for h in $\operatorname{dom} A$ and k in $\operatorname{dom} A^{*}$.

We review a few essential facts for Toeplitz operators and Hankel operators, and for that we will use [3], [4], [5], [11] and [12]. For E a Hilbert space, let $L_{E}^{2}=L_{E}^{2}(\mathbb{T})$ be the set of all E-valued square-integrable measurable functions on the unit circle \mathbb{T} and H_{E}^{2} be the corresponding Hardy space. For $f, g \in L_{E}^{2}$, the inner product $\langle f, g\rangle$ is defined by

$$
\langle f, g\rangle:=\int_{\mathbb{T}}\langle f(z), g(z)\rangle_{E} d m(z)
$$

where m denotes the normalized Lebesgue measure on the unit circle \mathbb{T}. Let M_{n} denote the set of $n \times n$ complex matrices, and let $\mathcal{P}_{\mathbb{C}^{n}}$ be the set of all polynomials p with value in \mathbb{C}^{n}, which is dense in $H_{\mathbb{C}^{n}}^{2}$. For $\Phi \in L_{M_{n^{\prime}}}^{2}$, the (unbounded) Hankel operator H_{Φ} on $H_{\mathbb{C}^{n}}^{2}$ and (unbounded) Toeplitz operator T_{Φ} on $H_{\mathbb{C}^{n}}^{2}$ are defined by

$$
H_{\Phi} p:=J P^{\perp}(\Phi p) \quad \text { and } \quad T_{\Phi} p:=P(\Phi p) \quad\left(p \in \mathcal{P}_{\mathbb{C}^{n}}\right)
$$

where P and P^{\perp} denote the orthogonal projections that map from $L_{\mathbb{C}^{n}}^{2}$ onto $H_{\mathbb{C}^{n}}^{2}$ and $\left(H_{\mathbb{C}^{n}}^{2}\right)^{\perp}$, respectively, and J denotes the unitary operator from $L_{\mathbb{C}^{n}}^{2}$ onto $L_{\mathbb{C}^{n}}^{2}$, given by $(J g)(z):=\bar{z} I_{n} g(\bar{z})$ for $g \in L_{\mathbb{C}^{n}}^{2}\left(I_{n}:=\right.$ the $n \times n$ identity matrix). For $\Phi \in L_{M_{n \times m}}^{2}$, we write

$$
\widetilde{\Phi}(z) \equiv \Phi^{*}(\bar{z}) .
$$

A matrix-valued function $\Theta \in H_{M_{n \times m}}^{\infty}$ is called an inner if Θ is an isometric a.e. on \mathbb{T}. The following basic relations can be easily derived from the definition:

$$
\begin{align*}
& T_{\Phi}^{*}=T_{\Phi^{*}}, H_{\Phi}^{*}=H_{\widetilde{\Phi}} \quad\left(\Phi \in L_{M_{n}}^{\infty}\right) \tag{2}\\
& H_{\Phi} T_{\Psi}=H_{\Phi \Psi}, \quad H_{\Psi \Phi}=T_{\widetilde{\Psi}}^{*} H_{\Phi} \quad\left(\Phi \in L_{M_{n}}^{\infty}, \Psi \in H_{M_{n}}^{\infty}\right) \tag{3}\\
& H_{\Phi}^{*} H_{\Phi}-H_{\Theta \Phi}^{*} H_{\Theta \Phi}=H_{\Phi}^{*} H_{\Theta^{*}} H_{\Theta^{*}}^{*} H_{\Phi} \quad\left(\Theta \in H_{M_{n}}^{\infty} \text { is inner, } \Phi \in L_{M_{n}}^{\infty}\right) . \tag{4}
\end{align*}
$$

The shift operator S on $H_{\mathbb{C}^{n}}^{2}$ is defined by

$$
S:=T_{z I_{n}} .
$$

The following fundamental result known as the Beurling-Lax-Halmos theorem is useful in the sequel.
The Beurling-Lax-Halmos Theorem. ([7], [11]) A nonzero subspace M of $H_{\mathbb{C}^{n}}^{2}$ is invariant for the shift operator S on $H_{\mathbb{C}^{n}}^{2}$ if and only if $M=\Theta H_{\mathbb{C}^{m}}^{2}$, where Θ is an inner matrix function in $H_{M_{n \times m}}^{\infty}$. Furthermore, Θ is unique up to a unitary constant right factor. That is, if $M=\Delta H_{\mathbb{C}^{r}}^{2}$ (for Δ an inner function in $H_{M_{n \times r}}^{\infty}$), then $m=r$ and $\Theta=\Delta W$, where W is a unitary matrix mapping \mathbb{C}^{m} onto \mathbb{C}^{m}.

As is customarily done, we say that two matrix functions A and B are equal if they are equal up to a unitary constant right factor. If $\Phi \in L_{M_{n}}^{\infty}$, then by (3), $\operatorname{ker} H_{\Phi}$ is an invariant subspace of the shift operators on $H_{\mathbb{C}^{n}}^{2}$. Thus, if $\operatorname{ker} H_{\Phi} \neq\{0\}$, then the Beurling-Lax-Halmos Theorem,

$$
\operatorname{ker} H_{\Phi}=\Theta H_{\mathbb{C}^{m}}^{2}
$$

for some inner matrix function $\Theta \in H_{M_{n \times m}}^{\infty}$.
A function $\phi \in L^{2}$ is said to be of a bounded type if there are functions $\psi_{1}, \psi_{2} \in H^{\infty}$ such that $\phi=\frac{\psi_{1}}{\psi_{2}}$ a.e. on \mathbb{T}. For a matrix-valued function $\Phi \equiv\left[\phi_{i j}\right] \in L_{M_{n \times m}}^{2}$, we say that Φ is of bounded type if each entry $\phi_{i j}$ is of bounded type. For a matrix-valued function $\Phi \in H_{M_{n \times r}}^{2}$, we say that $\Delta \in H_{M_{n \times m}}^{2}$ is a left inner divisor of Φ if Δ is an inner matrix function such that $\Phi=\Delta A$ for some $A \in H_{M_{m \times r}}^{2}$. We also say that two matrix functions $\Phi \in H_{M_{n \times r}}^{2}$ and $\Psi \in H_{M_{n \times m}}^{2}$ are left coprime if the only common left inner divisor of both Φ and Ψ is a unitary
constant and that $\Phi \in H_{M_{n \times r}}^{2}$ and $\Psi \in H_{M_{m \times r}}^{2}$ are right coprime if $\widetilde{\Phi}$ and $\widetilde{\Psi}$ are left coprime. We would remark that if $\Phi \in H_{M_{n}}^{2}$ is such that $\operatorname{det} \Phi$ is not identically zero, then any left inner divisor Δ of Φ is square, i.e., $\Delta \in H_{M_{n}}^{2}$. If $\Phi \in H_{M_{n}}^{2}$ is such that $\operatorname{det} \Phi$ is not identically zero, then we say that $\Delta \in H_{M_{n}}^{2}$ is a right inner divisor of Φ if $\widetilde{\Delta}$ is a left inner divisor of $\widetilde{\Phi}$ ([3], [7]).

From now on, for notational convenience, we write

$$
I_{\omega}:=\omega I_{n}\left(\omega \in H^{2}\right) .
$$

Let $\Phi \in L_{M_{n}}^{2}$ with Φ be of bounded type. Then it is well known ([9]) that Φ can be represented as

$$
\begin{equation*}
\Phi=I_{\theta}^{*} A \quad\left(A \in H_{M_{n}}^{2}, \theta \text { is inner }\right) . \tag{5}
\end{equation*}
$$

In (5), I_{θ} and A need not be left coprime. If $\Omega=$ left-g.c.d. $\left\{I_{\theta}, A\right\}$, then $I_{\theta}=\Omega \Omega_{\ell}$ and $A=\Omega A_{\ell}$ for some inner matrix Ω_{ℓ} and A_{ℓ} in $H_{M_{n}}^{2}$. Therefore we can write

$$
\begin{equation*}
\Phi=\Omega_{\ell}^{*} A_{\ell,} \quad \text { where } A_{\ell} \text { and } \Omega_{\ell} \text { are left coprime. } \tag{6}
\end{equation*}
$$

In this case, $\Omega_{\ell}^{*} A_{\ell}$ is called the left coprime factorization of Φ, and we write

$$
\Phi=\Omega_{\ell}^{*} A_{\ell} \text { (left coprime). }
$$

Similarly, we can write

$$
\begin{equation*}
\Phi=A_{r} \Omega_{r}^{*}, \quad \text { where } A_{r} \text { and } \Omega_{r} \text { are right coprime. } \tag{7}
\end{equation*}
$$

In this case, $A_{r} \Omega_{r}^{*}$ is called the right coprime factorization of Φ, and we write

$$
\Phi=A_{r} \Omega_{r}^{*} \text { (right coprime). }
$$

Our main theorem is now stated as:
Theorem 1.1. Let $F \in H_{M_{n}}^{2}$ be such that F^{*} is of a bounded type. Then in view of (6), we may write

$$
\left.F^{*}=\Theta^{*} A \quad \text { (left coprime }\right) .
$$

Then

$$
\text { cl ran } H_{F^{*}}=\mathcal{H}(\widetilde{\Theta}) .
$$

2. The Proof of Main Theorem

In this section we give a proof of Theorem 1.1. We recall the inner-outer factorization of vector-valued functions. Let D and E be Hilbert spaces. If F is a function with values in $\mathcal{B}(E, D)$ such that $F(\cdot) e \in H_{D}^{2}$ for each $e \in E$, then F is called a strong H^{2}-function. The strong H^{2}-function F is called an inner function if $F(\cdot)$ is an isometric operator from D into E. Write \mathcal{P}_{E} for the set of all polynomials with values in E. Then the function $F p=\sum_{k=0}^{n} F \widehat{p}(k) z^{k}$ belongs to H_{D}^{2}. The strong H^{2}-function F is called outer if cl $F \cdot \mathcal{P}_{E}=H_{D}^{2}$. We then have an analogue of the scalar inner-outer factorization Theorem. Note that every $F \in H_{M_{n}}^{2}$ is a strong H^{2}-function.

Lemma 2.1. ([11]) Every strong H^{2}-function F with values in $\mathcal{B}(E, D)$ can be expressed in the form

$$
F=F_{i} F_{e},
$$

where F_{e} is an outer function with values in $\mathcal{B}\left(E, D^{\prime}\right)$ and F_{i} is an inner function with values in $\mathcal{B}\left(D^{\prime}, D\right)$, for some Hilbert space D^{\prime}.

For $\phi=\left[\phi_{1}, \phi_{2}, \cdots, \phi_{n}\right]^{t} \in L_{\mathbb{C}^{n}}^{2}$, we write

$$
\bar{\phi}:=\left[\bar{\phi}_{1}, \bar{\phi}_{2}, \cdots, \bar{\phi}_{n}\right]^{t} \quad \text { and } \quad \breve{\phi}:=\left[\overline{\bar{\phi}}_{1}, \widetilde{\bar{\phi}}_{2}, \cdots, \overline{\bar{\phi}}_{n}\right]^{t}
$$

Then it is easy to show that

$$
\begin{equation*}
S^{*} \bar{g}=J \breve{\bar{g}} \quad \text { if } g \in\left(H_{\mathbb{C}^{n}}^{2}\right)^{\perp} \tag{8}
\end{equation*}
$$

Lemma 2.2. Let $f \equiv\left[f_{1}, f_{2}, \cdots, f_{n}\right]^{t} \in H_{\mathbb{C}^{n}}^{2}$. Then,

$$
S_{f}^{*}=c l \operatorname{ranH}_{\bar{z} f} .
$$

Proof. For each $n \in \mathbb{N}$, it follows from (8) that

$$
\begin{aligned}
S^{* n} f & =S^{*}\left(P\left(\bar{z}^{n-1} f\right)\right) \\
& =S^{*}\left((I-P)\left(z^{n-1} \bar{f}\right)\right) \\
& =J(I-P)\left(z^{n-1} \breve{f}\right) \\
& =H_{\bar{z} f} z^{n} .
\end{aligned}
$$

Thus,

$$
S_{f}^{*}=\bigvee\left\{S^{* n} f: n \geq 0\right\}=\mathrm{cl} \operatorname{ran} H_{\bar{z} f^{\prime}}
$$

which gives the result.
For an inner matrix function $\Theta \in H_{M_{n \times m}}^{\infty}$, we write $\mathcal{H}(\Theta):=H_{\mathbb{C}^{n}}^{2} \ominus \Theta H_{\mathbb{C}^{m}}^{2}$. It is easy to show that [11]:

$$
\begin{equation*}
f \in \mathcal{H}(\Theta) \Longleftrightarrow \Theta^{*} f \in\left(H_{\mathbb{C}^{n}}^{2}\right)^{\perp} \tag{9}
\end{equation*}
$$

We now recall the notion of the reduced minimum modulus([1], [10]). The reduced minimum modulus of operators measures the closedness for the range of operators. If $T \in \mathcal{B}(\mathcal{H})$ then the reduced minimum modulus of T is defined by

$$
\gamma(T)=\left\{\begin{array}{cl}
\inf \{\|T x\|: \operatorname{dist}(x, \operatorname{ker} T)=1\} & \text { if } T \neq 0 \\
0 & \text { if } T=0
\end{array}\right.
$$

It is easy to see that $\gamma(T)>0$ if and only if $T\left(\mathcal{H}_{0}\right)$ is closed for each closed subspace \mathcal{H}_{0} of \mathcal{H}. If $T \in \mathcal{B}(\mathcal{H})$ is a nonzero operator, then we can see that $\gamma(T)=\inf (\sigma(|T|) \backslash\{0\})$, where $|T|$ denotes $\left(T^{*} T\right)^{\frac{1}{2}}$. Thus we have that $\gamma(T)=\gamma\left(T^{*}\right)([8])$. For \mathcal{X} a closed subspace of $H_{\mathbb{C}^{n}}^{2}, P_{\mathcal{X}}$ denotes the orthogonal projection from $H_{\mathbb{C}^{n}}^{2}$ onto X.

Lemma 2.3. ([9]) For $\Phi \in L_{M_{n}}{ }^{\prime}$, the following statements are equivalent:
(i) Φ is of bounded type;
(ii) $\operatorname{ker} H_{\Phi}=\Theta H_{\mathbb{C}^{n}}^{2}$ for some square inner matrix function Θ;
(iii) $\Phi=A \Theta^{*}$ (right coprime).

Lemma 2.4. Let $\Theta, \Delta \in H_{M_{n}}^{2}$ be inner functions. Then
(a) $H_{\Theta^{*}}\left(\Delta H_{\mathbb{C}^{n}}^{2}\right)$ is closed.
(b) If Θ and Δ are left coprime, then $H_{\Theta^{*}}\left(\Delta H_{\mathbb{C}^{n}}^{2}\right)=\mathcal{H}(\widetilde{\Theta})$.

Proof. If $\Theta \in M_{n}$, then Θ is a unitary matrix, and hence $\widetilde{\Theta} \in M_{n}$ is a unitary matrix. Thus, $H_{\Theta^{*}}\left(\Delta H_{\mathbb{C}^{n}}^{2}\right)=\{0\}=$ $\mathcal{H}(\widetilde{\Theta})$. This gives the result. Let $\Theta \notin M_{n}$. Since Θ is an inner function, by (4), we have $H_{\Theta^{*}}^{*} H_{\Theta^{*}}=P_{\mathcal{H}(\Theta)}$, so that $\left|H_{\Theta^{*}}\right|=P_{\mathcal{H}(\Theta)} \neq 0$. Thus $\gamma\left(H_{\Theta^{*}}\right)=\inf \left(\sigma\left(\left|H_{\Theta^{*}}\right|\right) \backslash\{0\}\right)=1$, and hence $H_{\Theta^{*}}\left(\Delta H_{\mathbb{C}^{n}}^{2}\right)$ is closed. This proves (a). Suppose Θ and Δ are left coprime inner functions. Then $\Theta H_{\mathbb{C}^{n}}^{2} V \Delta H_{\mathbb{C}^{n}}^{2}=H_{\mathbb{C}^{n}}^{2}$. Thus,

$$
\mathcal{A} \equiv\left\{\Theta h_{1}+\Delta h_{2}: h_{1}, h_{2} \in H_{\mathbb{C}^{n}}^{2}\right\}
$$

is dense in $H_{\mathbb{C}^{n}}^{2}$. On the other hand, it follows from Lemma 2.3 that $\operatorname{ker} H_{\Theta^{*}}=\Theta H_{\mathbb{C}^{n}}^{2}$, and hence $\operatorname{cl} H_{\Theta^{*}}(\mathcal{A})=$ $H_{\Theta^{*}}\left(\Delta H_{\mathbb{C}^{n}}^{2}\right)$. Since $\mathcal{H}(\widetilde{\Theta})=\left(\operatorname{ker} H_{\Theta^{*}}^{*}\right)^{\perp}=\operatorname{ran} H_{\Theta^{*}}$, it follows that

$$
\mathcal{H}(\widetilde{\Theta})=H_{\Theta^{*}}(\mathrm{cl} \mathcal{A}) \subseteq \operatorname{cl} H_{\Theta^{*}}(\mathcal{A})=H_{\Theta^{*}}\left(\Delta H_{\mathbb{C}^{n}}^{2}\right) \subseteq \operatorname{ran} H_{\Theta^{*}}=\mathcal{H}(\widetilde{\Theta}),
$$

which gives (b).
Proof of Theorem 1.1. Let $p \in \mathcal{P}_{\mathbb{C}^{n}}$ be arbitrary. Write $p_{1} \equiv P_{\mathcal{H}(\Theta)} A p$. Then it follows from (9) that

$$
H_{F^{*}} p=J(I-P)\left(\Theta^{*} A p\right)=J\left(\Theta^{*} p_{1}\right)=\bar{z} \widetilde{\Theta} \breve{p}_{1},
$$

which implies that $\widetilde{\Theta}^{*} H_{F^{*}} p \in\left(H_{\mathbb{C}^{n}}^{2}\right)^{\perp}$. Thus, by again (9), $H_{F^{*}} p \in \mathcal{H}(\widetilde{\Theta})$, so that

$$
\mathrm{cl} \operatorname{ran} H_{F^{*}} \subseteq \mathcal{H}(\widetilde{\Theta})
$$

For the converse inclusion, let $h \in \operatorname{ker} H_{F^{*}}^{*}$ be arbitrary. Since $A \in H_{M_{n}}^{2}$ is a strong H^{2}-function, by Lemma 2.1, we can write

$$
A=A_{i} A_{e},
$$

where $A_{i} \in H_{M_{n \times m}}^{2}$ is inner and $A_{e} \in H_{M_{m \times n}}^{2}$ is outer. Then we have that (cf. [11, p.44])

$$
\begin{equation*}
\operatorname{cl} A \mathcal{P}_{\mathbb{C}^{n}}=A_{i} H_{\mathbb{C}^{n}}^{2} \tag{10}
\end{equation*}
$$

For each $p \in \mathcal{P}_{\mathbb{C}^{n}}$, we have

$$
0=\left\langle p, H_{F^{*}}^{*} h\right\rangle=\left\langle J(I-P) \Theta^{*} A p, h\right\rangle=\left\langle\Theta^{*} A p, J h\right\rangle
$$

Thus, it follows from (10) that

$$
\begin{equation*}
\left\langle H_{\Theta^{*}}\left(A_{i} f\right), h\right\rangle=\left\langle\Theta^{*} A_{i} f, J h\right\rangle=0 \quad \text { for all } f \in H_{\mathbb{C}^{n}}^{2} . \tag{11}
\end{equation*}
$$

On the other hand, since Θ and A are left coprime, Θ and A_{i} are left coprime. Thus, it follows from Lemma 2.4 and (11) that $\operatorname{ker} H_{F^{*}}^{*} \subseteq\left(H_{\Theta^{*}}\left(A_{i} H^{2}\right)\right)^{\perp}=\widetilde{\Theta} H_{\mathbb{C}^{n}}^{2}$, so that

$$
\mathcal{H}(\widetilde{\Theta}) \subseteq\left(\operatorname{ker} H_{F^{*}}^{*}\right)^{\perp}=\mathrm{cl} \operatorname{ran} H_{F^{*}}
$$

This completes the proof.
For $F=\left\{f_{1}, f_{2}, f_{3}, \cdots, f_{m}\right\} \subset H_{\mathbb{C}^{n}}^{2}(m \leq n)$, let

$$
\Phi_{F} \equiv \bar{z}\left[\breve{f}_{1}, \breve{f}_{2}, \cdots, \breve{f}_{m}, 0, \cdots, 0\right] \in H_{M_{n}}^{2} .
$$

We then have:

Corollary 2.5. Let $F \equiv\left\{f_{1}, f_{2}, \cdots, f_{m}\right\} \subset H_{\mathbb{C}^{n}}^{2}(m \leq n)$ be such that \bar{f}_{i} is of bounded type for each i. Then in view of (6), we may write

$$
\left.\Phi_{F}=\Theta^{*} A \quad \text { (left coprime }\right) .
$$

Then

$$
S_{F}^{*}=\mathcal{H}(\widetilde{\Theta}) .
$$

Proof. It follows from Lemma 2.2 and Theorem 1.1 that

$$
S_{F}^{*}=\bigvee_{k=1}^{m} \operatorname{ran} H_{\bar{z} \check{f_{k}}}=\operatorname{cl} \operatorname{ran} H_{\Phi_{F}}=\mathcal{H}(\widetilde{\Theta})
$$

This completes the proof.

Remark 2.6. Suppose $F \equiv\left\{f_{1}, f_{2}, \cdots, f_{N}\right\} \subset H_{\mathbb{C}^{n}}^{2}(N>n)$ be such that \bar{f}_{i} is of a bounded type for each i. Let

$$
\Phi_{F} \equiv \bar{z}\left[\begin{array}{cccc}
\breve{f}_{1} & \breve{f}_{2} & \cdots & \breve{f}_{N} \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right]=\Theta^{*} A \in H_{M_{N}}^{2} \quad \text { (left coprime). }
$$

Then, it follows from Corollary 2.5 that

$$
\left.S_{F}^{*} \bigoplus 0\right|_{\mathbb{C}^{N-n}}=\mathcal{H}(\widetilde{\Theta})
$$

Example 2.7. Let a and c be nonzero complex numbers and $f=\left[a z, c b_{\alpha}\right]^{t} \quad\left(b_{\alpha}(z):=\frac{z-\alpha}{1-\bar{\alpha} z}, 0<|\alpha|<1\right)$. Put

$$
\Phi=\left[\begin{array}{cc}
a \bar{z}^{2} & 0 \\
c \bar{z} b_{\alpha}(\bar{z}) & 0
\end{array}\right] .
$$

Observe that for $x, y \in H^{2}$,

$$
\begin{align*}
{\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \operatorname{ker} H_{\tilde{\Phi}} } & \Longleftrightarrow \bar{a} b_{\alpha} x+\bar{c} z y \in z^{2} b_{\alpha} H^{2} \\
& \Longrightarrow\left\{\begin{array}{l}
\overline{a_{\alpha}}(0) x(0)=0 \\
\bar{c} \alpha y(\alpha)=0 .
\end{array}\right. \tag{12}\\
& \Longrightarrow\left\{\begin{array}{l}
x=z x_{1} \text { for some } x_{1} \in H^{2} \\
y=b_{\alpha} y_{1} \text { for some } y_{1} \in H^{2} .
\end{array}\right.
\end{align*}
$$

By (12), we have that $x=z x_{1}$ and $y=b_{\alpha} y_{1}$ for some $x_{1}, y_{1} \in H^{2}$. We thus have

$$
\begin{align*}
{\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \operatorname{ker} H_{\widetilde{\Phi}} } & \Longleftrightarrow \bar{a} x_{1}(0)+\bar{c} y_{1}(0)=0 \tag{13}\\
& \Longleftrightarrow x_{1}(0)=\gamma y_{1}(0) \quad\left(\gamma:=-\frac{\bar{c}}{\bar{a}}\right)
\end{align*}
$$

Put

$$
\Theta:=\frac{1}{\sqrt{1+|\gamma|^{2}}}\left[\begin{array}{cc}
z & 0 \\
0 & b_{\alpha}
\end{array}\right]\left[\begin{array}{cc}
z & \gamma \\
-\bar{\gamma} z & 1
\end{array}\right]
$$

Then Θ is inner, and it follows from (13) that

$$
\operatorname{ker} H_{\widetilde{\Phi}}=\Theta H_{\mathbb{C}^{2}}^{2}
$$

Thus by Lemma 2.3, we have $\widetilde{\Phi}=A \Theta^{*}$ (right coprime) and hence $\Phi=\widetilde{\Theta}^{*} \widetilde{A}$ (left coprime). It thus follows from Corollary 2.5 that

$$
S_{f}^{*}=\mathcal{H}(\Theta)
$$

Corollary 2.8. Let $f \in H^{2}$.
(a) \bar{f} is not of bounded type if and only if $S_{f}^{*}=H^{2}$.
(b) If \bar{f} is of bounded type of the form

$$
f=\theta \bar{a} \quad \text { (left coprime), }
$$

then

$$
S_{f}^{*}= \begin{cases}\mathcal{H}(z \theta) & \text { if } a(0) \neq 0 \\ \mathcal{H}(\theta) & \text { if } a(0)=0\end{cases}
$$

Proof. Note that \bar{f} is of a bounded type if and only if $\bar{z} \breve{f}$ is of a bounded type. Thus, it follows from Corollary 2.5 that \bar{f} is of a bounded type if and only if $S_{f}^{*} \neq H^{2}$. This proves (a). For (b), let $a(0) \neq 0$. Then, z and a are coprime so that $z \tilde{\theta}$ and \tilde{a} are coprime. Thus

$$
\bar{z} \breve{f}=\overline{(z \widetilde{\theta})} \widetilde{a} \quad \text { (left coprime). }
$$

It follows from Corollary 2.5 that $S_{f}^{*}=\mathcal{H}(z \theta)$. If instead $a(0)=0$, then we may write $a=z a^{\prime}$ for some $a^{\prime} \in H^{2}$ so that

$$
\bar{z} \breve{f}=\overline{\widetilde{\theta}} \widetilde{a}^{\prime} \quad \text { (left coprime) }
$$

Thus, again by Corollary 2.5 , we have $S_{f}^{*}=\mathcal{H}(\theta)$. This completes the proof.

References

[1] C. Apostol The reduced minimum modulus, Michigan Math. J. 32 (1985), 279-294.
[2] John B. Conway A Course in Functional Analysis, Springer, New York, 1990.
[3] R.E. Curto, I.S. Hwang and W.Y. Lee, Hyponormality and subnormality of block Toeplitz operators, Adv. Math. 230(2012), $2094-2151$.
[4] R.G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York, 1972.
[5] R.G. Douglas, Banach algebra techniques in the theory of Toeplitz operators, CBMS 15, Providence, Amer. Math. Soc. 1973.
[6] R.G. Douglas, H.S. Shapiro and A.L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier 20(1970), 37-76.
[7] C. Foiaş and A. Frazho, The commutant lifting approach to interpolation problems, Operator Theory: Adv. Appl. vol 44, Birkhäuser, Boston, 1993.
[8] S. Goldberg Unbounded Linear Operators, McGraw-Hill, New York, 1966.
[9] C. Gu, J. Hendricks and D. Rutherford, Hyponormality of block Toeplitz operators, Pacific J. Math. 223(2006), 95-111.
[10] I.S. Hwang and W.Y. Lee, The Reduced Minimum Modulus of Operator, J. Math. Anal. Appl. 267(2002), 679-694.
[11] N.K. Nikolskii, Treatise on the Shift Operator, Springer, New York, 1986.
[12] V.V. Peller, Hankel Operators and Their Applications, Springer, New York, 2003.
[13] William T. Ross, The backward shift on H^{p}, Oper. Theory Adv. Appl. 158(2005), 191-211.

[^0]: 2010 Mathematics Subject Classification. 30H10, 30J05, 46E40, 47B35; Secodary 43A15
 Keywords. block Hankel operators, bounded type functions, the Beurling-Lax-Halmos theorem
 Received: 22 August 2017; Accepted: 12 August 2018
 Communicated by Dragan Djordjević
 The work of the first named author was supported by NRF(Korea) grant No. NRF-2016R1A2B4012378. The work of the second named author was supported by NRF(Korea) grant No. NRF-2016R1D1A1B03930744.

 Email addresses: ihwang@skku. edu (In Sung Hwang), ihkim@inu. ac.kr (In Hyoun Kim), suminkim@skku. edu (Sumin Kim)

