Filomat 32:9 (2018), 3237–3243 https://doi.org/10.2298/FIL1809237H

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The Range of Block Hankel Operators

In Sung Hwang^a, In Hyoun Kim^b, Sumin Kim^a

^aDepartment of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea ^bDepartment of Mathematics, Incheon National University, Incheon 406-772, Republic of Korea

Abstract. In this note we give a connection between the closure of the range of block Hankel operators acting on the vector-valued Hardy space $H^2_{\mathbb{C}^n}$ and the left coprime factorization of its symbol. Given a subset $F \subseteq H^2_{\mathbb{C}^n}$, we also consider the smallest invariant subspace S^*_F of the backward shift S^* that contains F.

1. Introduction

Let \mathcal{H} and \mathcal{K} be separable complex Hilbert spaces, and let $\mathcal{B}(\mathcal{H}, \mathcal{K})$ be the set of all bounded linear operators from \mathcal{H} to \mathcal{K} . $\mathcal{B}(\mathcal{H}, \mathcal{H})$ is denoted simply by $\mathcal{B}(\mathcal{H})$. A closed subspace $\mathcal{L} \subset \mathcal{H}$ is called an invariant subspace for the operator $T \in \mathcal{B}(\mathcal{H})$ if $T\mathcal{L} \subset \mathcal{L}$. The theory of invariant subspaces of the backward shift operator has enabled important contributions to numerous applications in operator theory and function theory ([6],[13]). Given a subset $F \subseteq H^2_{\mathbb{C}^n}$, the subspace

$$S_F^* := \bigvee \{S^{*n}f : f \in F, n \ge 0\}$$

is the smallest invariant subspace of the backward shift S^* that contains F. If $S_F^* \neq H_{\mathbb{C}^n}^2$ then by the Beurling-Lax-Halmos Theorem, there is an inner matrix function $\Theta \in H_{M_{nym}}^2$ such that

$$S_F^* = H_{\mathbb{C}^n}^2 \ominus \Theta H_{\mathbb{C}^m}^2.$$
⁽¹⁾

The purpose of this note is to determine the inner matrix function $\Theta \in H^{\infty}_{M_{uvww}}$ satisfying (1).

Let us recall the basic properties of unbounded operators ([2]). If $A : \mathcal{H} \to \mathcal{K}$ is a linear operator, then A is also a linear operator from the closure of the domain of A, denoted by cl[dom A], into \mathcal{K} . So we will only consider A such that dom A is dense in \mathcal{H} . Then, such an operator A is said to be densely defined. If $A : \mathcal{H} \to \mathcal{K}$ is densely defined, we write ker A and ran A for the kernel and range of A, respectively. For a set \mathcal{M} , cl \mathcal{M} and \mathcal{M}^{\perp} respectively denote the closure and orthogonal complement of \mathcal{M} . Let $A : \mathcal{H} \to \mathcal{K}$ be densely defined, and let

dom $A^* = \{k \in \mathcal{K} : \langle Ah, k \rangle \text{ is a bounded linear functional on dom} A\}.$

Keywords. block Hankel operators, bounded type functions, the Beurling-Lax-Halmos theorem

²⁰¹⁰ Mathematics Subject Classification. 30H10, 30J05, 46E40, 47B35; Secodary 43A15

Received: 22 August 2017; Accepted: 12 August 2018

Communicated by Dragan Djordjević

The work of the first named author was supported by NRF(Korea) grant No. NRF-2016R1A2B4012378. The work of the second named author was supported by NRF(Korea) grant No. NRF-2016R1D1A1B03930744.

Email addresses: ihwang@skku.edu (In Sung Hwang), ihkim@inu.ac.kr (In Hyoun Kim), suminkim@skku.edu (Sumin Kim)

Then for each $k \in \text{dom}A^*$, there exists a unique $f \in \mathcal{K}$ such that $\langle Ah, k \rangle = \langle h, f \rangle$ for all $h \in \text{dom}A$. Denote this unique vector f as $f = A^*k$. Thus $\langle Ah, k \rangle = \langle h, A^*k \rangle$ for h in domA and k in dom A^* .

We review a few essential facts for Toeplitz operators and Hankel operators, and for that we will use [3], [4], [5], [11] and [12]. For *E* a Hilbert space, let $L_E^2 = L_E^2(\mathbb{T})$ be the set of all *E*-valued square-integrable measurable functions on the unit circle \mathbb{T} and H_E^2 be the corresponding Hardy space. For $f, g \in L_E^2$, the inner product $\langle f, g \rangle$ is defined by

$$\langle f, g \rangle := \int_{\mathbb{T}} \langle f(z), g(z) \rangle_E dm(z),$$

where *m* denotes the normalized Lebesgue measure on the unit circle \mathbb{T} . Let M_n denote the set of $n \times n$ complex matrices, and let $\mathcal{P}_{\mathbb{C}^n}$ be the set of all polynomials *p* with value in \mathbb{C}^n , which is dense in $H^2_{\mathbb{C}^n}$. For $\Phi \in L^2_{M_n}$, the (unbounded) Hankel operator H_{Φ} on $H^2_{\mathbb{C}^n}$ and (unbounded) Toeplitz operator T_{Φ} on $H^2_{\mathbb{C}^n}$ are defined by

$$H_{\Phi}p := JP^{\perp}(\Phi p) \text{ and } T_{\Phi}p := P(\Phi p) \quad (p \in \mathcal{P}_{\mathbb{C}^n})$$

where *P* and P^{\perp} denote the orthogonal projections that map from $L^2_{\mathbb{C}^n}$ onto $H^2_{\mathbb{C}^n}$ and $(H^2_{\mathbb{C}^n})^{\perp}$, respectively, and *J* denotes the unitary operator from $L^2_{\mathbb{C}^n}$ onto $L^2_{\mathbb{C}^n}$, given by $(Jg)(z) := \overline{z}I_ng(\overline{z})$ for $g \in L^2_{\mathbb{C}^n}$ $(I_n := \text{the } n \times n \text{ identity matrix})$. For $\Phi \in L^2_{M_{n \times m}}$, we write

$$\Phi(z) \equiv \Phi^*(\overline{z})$$

A matrix-valued function $\Theta \in H^{\infty}_{M_{n \times m}}$ is called an *inner* if Θ is an isometric a.e. on \mathbb{T} . The following basic relations can be easily derived from the definition:

$$T^*_{\Phi} = T_{\Phi^*}, \quad H^*_{\Phi} = H_{\widetilde{\Phi}} \quad (\Phi \in L^{\infty}_{M_n}); \tag{2}$$

$$H_{\Phi}T_{\Psi} = H_{\Phi\Psi}, \quad H_{\Psi\Phi} = T^*_{\widetilde{\Psi}}H_{\Phi} \quad (\Phi \in L^{\infty}_{M_n}, \Psi \in H^{\infty}_{M_n}); \tag{3}$$

$$H^*_{\Phi}H_{\Phi} - H^*_{\Theta\Phi}H_{\Theta\Phi} = H^*_{\Phi}H_{\Theta^*}H_{\Phi} \quad (\Theta \in H^{\infty}_{M_u} \text{ is inner, } \Phi \in L^{\infty}_{M_u}).$$

$$\tag{4}$$

The *shift* operator *S* on $H^2_{\mathbb{C}^n}$ is defined by

$$S := T_{zI_n}$$

The following fundamental result known as the Beurling-Lax-Halmos theorem is useful in the sequel.

The Beurling-Lax-Halmos Theorem. ([7], [11]) A nonzero subspace M of $H^2_{\mathbb{C}^n}$ is invariant for the shift operator S on $H^2_{\mathbb{C}^n}$ if and only if $M = \Theta H^2_{\mathbb{C}^m}$, where Θ is an inner matrix function in $H^{\infty}_{M_{n\times m}}$. Furthermore, Θ is unique up to a unitary constant right factor. That is, if $M = \Delta H^2_{\mathbb{C}^r}$ (for Δ an inner function in $H^{\infty}_{M_{n\times r}}$), then m = r and $\Theta = \Delta W$, where W is a unitary matrix mapping \mathbb{C}^m onto \mathbb{C}^m .

As is customarily done, we say that two matrix functions *A* and *B* are *equal* if they are equal up to a unitary constant right factor. If $\Phi \in L^{\infty}_{M_n}$, then by (3), ker H_{Φ} is an invariant subspace of the shift operators on $H^2_{\mathbb{C}^n}$. Thus, if ker $H_{\Phi} \neq \{0\}$, then the Beurling-Lax-Halmos Theorem,

$$\ker H_{\Phi} = \Theta H_{\mathbb{C}^n}^2$$

for some inner matrix function $\Theta \in H^{\infty}_{M_{u \times u}}$.

A function $\phi \in L^2$ is said to be of a *bounded type* if there are functions $\psi_1, \psi_2 \in H^\infty$ such that $\phi = \frac{\psi_1}{\psi_2}$ a.e. on \mathbb{T} . For a matrix-valued function $\Phi \equiv [\phi_{ij}] \in L^2_{M_{n\times m}}$, we say that Φ is of *bounded type* if each entry ϕ_{ij} is of bounded type. For a matrix-valued function $\Phi \in H^2_{M_{n\times r}}$, we say that $\Delta \in H^2_{M_{n\times m}}$ is a *left inner divisor* of Φ if Δ is an inner matrix function such that $\Phi = \Delta A$ for some $A \in H^2_{M_{m\times r}}$. We also say that two matrix functions $\Phi \in H^2_{M_{n\times r}}$ and $\Psi \in H^2_{M_{n\times m}}$ are *left coprime* if the only common left inner divisor of both Φ and Ψ is a unitary

(7)

constant and that $\Phi \in H^2_{M_{n\times r}}$ and $\Psi \in H^2_{M_{n\times r}}$ are *right coprime* if $\widetilde{\Phi}$ and $\widetilde{\Psi}$ are left coprime. We would remark that if $\Phi \in H^2_{M_n}$ is such that det Φ is not identically zero, then any left inner divisor Δ of Φ is square, i.e., $\Delta \in H^2_{M_n}$. If $\Phi \in H^2_{M_n}$ is such that det Φ is not identically zero, then we say that $\Delta \in H^2_{M_n}$ is a *right inner divisor* of Φ if $\widetilde{\Delta}$ is a left inner divisor of $\widetilde{\Phi}$ ([3], [7]).

From now on, for notational convenience, we write

$$I_{\omega} := \omega I_n \ (\omega \in H^2)$$

Let $\Phi \in L^2_{M_n}$ with Φ be of bounded type. Then it is well known ([9]) that Φ can be represented as

$$\Phi = I_{\theta}^* A \qquad (A \in H_{M_{\theta'}}^2, \ \theta \text{ is inner}). \tag{5}$$

In (5), I_{θ} and A need not be left coprime. If $\Omega = \text{left-g.c.d.} \{I_{\theta}, A\}$, then $I_{\theta} = \Omega \Omega_{\ell}$ and $A = \Omega A_{\ell}$ for some inner matrix Ω_{ℓ} and A_{ℓ} in $H^2_{M_{\pi}}$. Therefore we can write

 $\Phi = \Omega_{\ell}^* A_{\ell}, \quad \text{where } A_{\ell} \text{ and } \Omega_{\ell} \text{ are left coprime.}$ (6)

In this case, $\Omega_{\ell}^* A_{\ell}$ is called the *left coprime factorization* of Φ , and we write

$$\Phi = \Omega_{\ell}^* A_{\ell}$$
 (left coprime)

Similarly, we can write

 $\Phi = A_r \Omega_r^*$, where A_r and Ω_r are right coprime.

In this case, $A_r \Omega_r^*$ is called the *right coprime factorization* of Φ , and we write

 $\Phi = A_r \Omega_r^*$ (right coprime).

Our main theorem is now stated as:

Theorem 1.1. Let $F \in H^2_{M_n}$ be such that F^* is of a bounded type. Then in view of (6), we may write

 $F^* = \Theta^* A$ (left coprime).

Then

cl ran
$$H_{F^*} = \mathcal{H}(\Theta)$$
.

2. The Proof of Main Theorem

In this section we give a proof of Theorem 1.1. We recall the inner-outer factorization of vector-valued functions. Let *D* and *E* be Hilbert spaces. If *F* is a function with values in $\mathcal{B}(E, D)$ such that $F(\cdot)e \in H_D^2$ for each $e \in E$, then *F* is called a strong H^2 -function. The strong H^2 -function *F* is called an *inner* function if $F(\cdot)$ is an isometric operator from *D* into *E*. Write \mathcal{P}_E for the set of all polynomials with values in *E*. Then the function $Fp = \sum_{k=0}^{n} Fp(k)z^k$ belongs to H_D^2 . The strong H^2 -function *F* is called *outer* if $\operatorname{cl} F \cdot \mathcal{P}_E = H_D^2$. We then have an analogue of the scalar inner-outer factorization Theorem. Note that every $F \in H_{M_n}^2$ is a strong H^2 -function.

Lemma 2.1. ([11]) Every strong H^2 -function F with values in $\mathcal{B}(E, D)$ can be expressed in the form

 $F = F_i F_e,$

where F_e is an outer function with values in $\mathcal{B}(E, D')$ and F_i is an inner function with values in $\mathcal{B}(D', D)$, for some Hilbert space D'.

For $\phi = \left[\phi_1, \phi_2, \cdots, \phi_n\right]^t \in L^2_{\mathbb{C}^n}$, we write

$$\overline{\phi} := \left[\overline{\phi}_1, \overline{\phi}_2, \cdots, \overline{\phi}_n\right]^t$$
 and $\check{\phi} := \left[\overline{\phi}_1, \overline{\phi}_2, \cdots, \overline{\phi}_n\right]^t$.

Then it is easy to show that

$$S^*\overline{g} = J\overline{g} \quad \text{if } g \in \left(H^2_{\mathbb{C}^n}\right)^\perp.$$
(8)

Lemma 2.2. Let $f \equiv [f_1, f_2, \dots, f_n]^t \in H^2_{\mathbb{C}^n}$. Then,

$$S_f^* = cl \ ran H_{\overline{z}f}.$$

Proof. For each $n \in \mathbb{N}$, it follows from (8) that

$$S^{*n}f = S^* \left(P(\overline{z}^{n-1}f) \right)$$
$$= S^* \overline{\left((I-P)(z^{n-1}\overline{f}) \right)}$$
$$= J(I-P)(z^{n-1}\overline{f})$$
$$= H_{\overline{z}}fz^n.$$

Thus,

$$S_f^* = \bigvee \{S^{*n}f : n \ge 0\} = \operatorname{cl} \operatorname{ran} H_{\overline{z}f}.$$

which gives the result. \Box

For an inner matrix function $\Theta \in H^{\infty}_{M_{n\times m}}$, we write $\mathcal{H}(\Theta) := H^2_{\mathbb{C}^n} \ominus \Theta H^2_{\mathbb{C}^m}$. It is easy to show that [11]:

$$f \in \mathcal{H}(\Theta) \Longleftrightarrow \Theta^* f \in (H^2_{\mathbb{C}^n})^{\perp}.$$
(9)

We now recall the notion of the reduced minimum modulus([1], [10]). The reduced minimum modulus of operators measures the closedness for the range of operators. If $T \in \mathcal{B}(\mathcal{H})$ then the *reduced minimum modulus* of *T* is defined by

$$\gamma(T) = \begin{cases} \inf\{||Tx|| : \operatorname{dist}(x, \operatorname{ker} T) = 1\} & \operatorname{if} T \neq 0\\ 0 & \operatorname{if} T = 0. \end{cases}$$

It is easy to see that $\gamma(T) > 0$ if and only if $T(\mathcal{H}_0)$ is closed for each closed subspace \mathcal{H}_0 of \mathcal{H} . If $T \in \mathcal{B}(\mathcal{H})$ is a nonzero operator, then we can see that $\gamma(T) = \inf(\sigma(|T|) \setminus \{0\})$, where |T| denotes $(T^*T)^{\frac{1}{2}}$. Thus we have that $\gamma(T) = \gamma(T^*)$ ([8]). For X a closed subspace of $H^2_{\mathbb{C}^n}$, P_X denotes the orthogonal projection from $H^2_{\mathbb{C}^n}$ onto X.

Lemma 2.3. ([9]) For $\Phi \in L^{\infty}_{M_n}$, the following statements are equivalent:

- (*i*) Φ *is of bounded type;*
- (ii) ker $H_{\Phi} = \Theta H_{\mathbb{C}^n}^2$ for some square inner matrix function Θ ;
- (iii) $\Phi = A\Theta^*$ (right coprime).

Lemma 2.4. Let Θ , $\Delta \in H^2_{M_n}$ be inner functions. Then

(a) $H_{\Theta^*}(\Delta H^2_{\mathbb{C}^n})$ is closed.

(b) If Θ and Δ are left coprime, then $H_{\Theta^*}(\Delta H^2_{\mathbb{C}^n}) = \mathcal{H}(\widetilde{\Theta})$.

Proof. If $\Theta \in M_n$, then Θ is a unitary matrix, and hence $\widetilde{\Theta} \in M_n$ is a unitary matrix. Thus, $H_{\Theta^*}(\Delta H^2_{\mathbb{C}^n}) = \{0\} = \mathcal{H}(\widetilde{\Theta})$. This gives the result. Let $\Theta \notin M_n$. Since Θ is an inner function, by (4), we have $H^*_{\Theta^*}H_{\Theta^*} = P_{\mathcal{H}(\Theta)}$, so that $|H_{\Theta^*}| = P_{\mathcal{H}(\Theta)} \neq 0$. Thus $\gamma(H_{\Theta^*}) = \inf(\sigma(|H_{\Theta^*}|) \setminus \{0\}) = 1$, and hence $H_{\Theta^*}(\Delta H^2_{\mathbb{C}^n})$ is closed. This proves (a). Suppose Θ and Δ are left coprime inner functions. Then $\Theta H^2_{\mathbb{C}^n} \vee \Delta H^2_{\mathbb{C}^n} = H^2_{\mathbb{C}^n}$. Thus,

$$\mathcal{A} \equiv \left\{ \Theta h_1 + \Delta h_2 : h_1, h_2 \in H^2_{\mathbb{C}^n} \right\}$$

is dense in $H^2_{\mathbb{C}^n}$. On the other hand, it follows from Lemma 2.3 that ker $H_{\Theta^*} = \Theta H^2_{\mathbb{C}^n}$, and hence cl $H_{\Theta^*}(\mathcal{A}) = H_{\Theta^*}(\Delta H^2_{\mathbb{C}^n})$. Since $\mathcal{H}(\widetilde{\Theta}) = \left(\ker H^*_{\Theta^*}\right)^{\perp} = \operatorname{ran} H_{\Theta^*}$, it follows that

$$\mathcal{H}(\widetilde{\Theta}) = H_{\Theta^*}(\mathrm{cl}\mathcal{A}) \subseteq \mathrm{cl}\,H_{\Theta^*}(\mathcal{A}) = H_{\Theta^*}(\Delta H^2_{\mathbb{C}^n}) \subseteq \mathrm{ran}\,H_{\Theta^*} = \mathcal{H}(\widetilde{\Theta}),$$

which gives (b). \Box

Proof of Theorem 1.1. Let $p \in \mathcal{P}_{\mathbb{C}^n}$ be arbitrary. Write $p_1 \equiv P_{\mathcal{H}(\Theta)}Ap$. Then it follows from (9) that

$$H_{F^*}p = J(I - P)(\Theta^* A p) = J(\Theta^* p_1) = \overline{z} \overline{\Theta} \overline{p}_1,$$

which implies that $\widetilde{\Theta}^* H_{F^*} p \in (H^2_{\mathbb{C}^n})^{\perp}$. Thus, by again (9), $H_{F^*} p \in \mathcal{H}(\widetilde{\Theta})$, so that

cl ran
$$H_{F^*} \subseteq \mathcal{H}(\Theta)$$
.

For the converse inclusion, let $h \in \text{ker}H^*_{F^*}$ be arbitrary. Since $A \in H^2_{M_n}$ is a strong H^2 -function, by Lemma 2.1, we can write

$$A=A_iA_e\,,$$

where $A_i \in H^2_{M_{n \times m}}$ is inner and $A_e \in H^2_{M_{m \times n}}$ is outer. Then we have that (cf. [11, p.44])

$$\operatorname{cl} A\mathcal{P}_{\mathbb{C}^n} = A_i H_{\mathbb{C}^n}^2.$$

$$\tag{10}$$

For each $p \in \mathcal{P}_{\mathbb{C}^n}$, we have

$$0 = \left\langle p, H_{F^*}^* h \right\rangle = \left\langle J(I - P)\Theta^* Ap, h \right\rangle = \left\langle \Theta^* Ap, Jh \right\rangle.$$

Thus, it follows from (10) that

$$\langle H_{\Theta^*}(A_i f), h \rangle = \langle \Theta^* A_i f, Jh \rangle = 0 \quad \text{for all } f \in H^2_{\mathbb{C}^n}.$$
 (11)

On the other hand, since Θ and A are left coprime, Θ and A_i are left coprime. Thus, it follows from Lemma 2.4 and (11) that ker $H_{F^*}^* \subseteq (H_{\Theta^*}(A_iH^2))^{\perp} = \widetilde{\Theta}H_{\mathbb{C}^n}^2$, so that

$$\mathcal{H}(\widetilde{\Theta}) \subseteq \left(\ker H_{F^*}^*\right)^{\perp} = \operatorname{cl} \operatorname{ran} H_{F^*}$$

This completes the proof. \Box

For $F = \{f_1, f_2, f_3, \dots, f_m\} \subset H^2_{\mathbb{C}^n} \ (m \le n)$, let

$$\Phi_F \equiv \overline{z}[\check{f}_1, \check{f}_2, \cdots, \check{f}_m, 0, \cdots, 0] \in H^2_{M_n}$$

We then have:

Corollary 2.5. Let $F \equiv \{f_1, f_2, \dots, f_m\} \subset H^2_{\mathbb{C}^n}$ $(m \le n)$ be such that \overline{f}_i is of bounded type for each *i*. Then in view of (6), we may write

$$\Phi_F = \Theta^* A$$
 (left coprime).

Then

 $S_F^* = \mathcal{H}(\widetilde{\Theta}).$

Proof. It follows from Lemma 2.2 and Theorem 1.1 that

$$S_F^* = \bigvee_{k=1}^m \operatorname{ran} H_{\overline{z}f_k} = \operatorname{cl} \operatorname{ran} H_{\Phi_F} = \mathcal{H}(\widetilde{\Theta}).$$

This completes the proof. \Box

Remark 2.6. Suppose $F \equiv \{f_1, f_2, \dots, f_N\} \subset H^2_{\mathbb{C}^n}$ (N > n) be such that \overline{f}_i is of a bounded type for each *i*. Let

т

$$\Phi_{F} \equiv \overline{z} \begin{bmatrix} \check{f}_{1} & \check{f}_{2} & \cdots & \check{f}_{N} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} = \Theta^{*}A \in H^{2}_{M_{N}} \qquad (left \ coprime)$$

Then, it follows from Corollary 2.5 that

$$S_F^* \bigoplus 0|_{\mathbb{C}^{N-n}} = \mathcal{H}(\widetilde{\Theta}).$$

Example 2.7. Let a and c be nonzero complex numbers and $f = [az, cb_{\alpha}]^{t}$ $(b_{\alpha}(z) := \frac{z-\alpha}{1-\overline{\alpha}z}, 0 < |\alpha| < 1)$. Put

$$\Phi = \begin{bmatrix} a\overline{z}^2 & 0 \\ c\overline{z}b_\alpha(\overline{z}) & 0 \end{bmatrix}.$$

Observe that for $x, y \in H^2$ *,*

$$\begin{bmatrix} x \\ y \end{bmatrix} \in \ker H_{\widetilde{\Phi}} \iff \overline{a}b_{\alpha}x + \overline{c}zy \in z^{2}b_{\alpha}H^{2}$$

$$\implies \begin{cases} \overline{a}b_{\alpha}(0)x(0) = 0\\ \overline{c}\alpha y(\alpha) = 0. \end{cases}$$

$$\implies \begin{cases} x = zx_{1} \text{ for some } x_{1} \in H^{2}\\ y = b_{\alpha}y_{1} \text{ for some } y_{1} \in H^{2}. \end{cases}$$
(12)

By (12), we have that $x = zx_1$ and $y = b_{\alpha}y_1$ for some $x_1, y_1 \in H^2$. We thus have

$$\begin{bmatrix} x \\ y \end{bmatrix} \in \ker H_{\widetilde{\Phi}} \iff \overline{a}x_1(0) + \overline{c}y_1(0) = 0$$

$$\iff x_1(0) = \gamma y_1(0) \quad \left(\gamma := -\frac{\overline{c}}{\overline{a}}\right).$$

$$(13)$$

Put

$$\Theta := \frac{1}{\sqrt{1+|\gamma|^2}} \begin{bmatrix} z & 0\\ 0 & b_\alpha \end{bmatrix} \begin{bmatrix} z & \gamma\\ -\overline{\gamma}z & 1 \end{bmatrix}.$$

Then Θ *is inner, and it follows from (13) that*

$$\ker H_{\widetilde{\Phi}} = \Theta H_{\mathbb{C}^2}^2.$$

Thus by Lemma 2.3, we have $\widetilde{\Phi} = A\Theta^*$ (right coprime) and hence $\Phi = \widetilde{\Theta}^* \widetilde{A}$ (left coprime). It thus follows from Corollary 2.5 that

$$S_f^* = \mathcal{H}(\Theta).$$

Corollary 2.8. Let $f \in H^2$.

- (a) \overline{f} is not of bounded type if and only if $S_f^* = H^2$.
- (b) If \overline{f} is of bounded type of the form

$$f = \theta \overline{a}$$
 (left coprime),

then

$$S_f^* = \begin{cases} \mathcal{H}(z\theta) & \text{if } a(0) \neq 0\\ \mathcal{H}(\theta) & \text{if } a(0) = 0. \end{cases}$$

Proof. Note that \overline{f} is of a bounded type if and only if $\overline{z}f$ is of a bounded type. Thus, it follows from Corollary 2.5 that \overline{f} is of a bounded type if and only if $S_f^* \neq H^2$. This proves (a). For (b), let $a(0) \neq 0$. Then, z and a are coprime so that $z\overline{\theta}$ and \overline{a} are coprime. Thus

$$\overline{z}\check{f} = (z\widetilde{\theta})\widetilde{a}$$
 (left coprime).

It follows from Corollary 2.5 that $S_f^* = \mathcal{H}(z\theta)$. If instead a(0) = 0, then we may write a = za' for some $a' \in H^2$ so that

$$\overline{z}\check{f} = \overline{\widetilde{\theta}}\widetilde{a'}$$
 (left coprime).

Thus, again by Corollary 2.5, we have $S_f^* = \mathcal{H}(\theta)$. This completes the proof. \Box

References

- [1] C. Apostol The reduced minimum modulus, Michigan Math. J. 32 (1985), 279–294.
- [2] John B. Conway A Course in Functional Analysis, Springer, New York, 1990.
- [3] R.E. Curto, I.S. Hwang and W.Y. Lee, Hyponormality and subnormality of block Toeplitz operators, Adv. Math. 230(2012), 2094–2151.
- [4] R.G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York, 1972.
- [5] R.G. Douglas, Banach algebra techniques in the theory of Toeplitz operators, CBMS 15, Providence, Amer. Math. Soc. 1973.
- [6] R.G. Douglas, H.S. Shapiro and A.L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier 20(1970), 37–76.
- [7] C. Foiaş and A. Frazho, *The commutant lifting approach to interpolation problems*, Operator Theory: Adv. Appl. vol 44, Birkhäuser, Boston, 1993.
- [8] S. Goldberg Unbounded Linear Operators, McGraw-Hill, New York, 1966.
- [9] C. Gu, J. Hendricks and D. Rutherford, Hyponormality of block Toeplitz operators, Pacific J. Math. 223(2006), 95-111.
- [10] I.S. Hwang and W.Y. Lee, The Reduced Minimum Modulus of Operator, J. Math. Anal. Appl. 267(2002), 679–694.
- [11] N.K. Nikolskii, Treatise on the Shift Operator, Springer, New York, 1986.
- [12] V.V. Peller, Hankel Operators and Their Applications, Springer, New York, 2003.
- [13] William T. Ross, The backward shift on H^p, Oper. Theory Adv. Appl. 158(2005), 191–211.

3243