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Abstract. In this note we give a connection between the closure of the range of block Hankel operators
acting on the vector-valued Hardy space H2

Cn and the left coprime factorization of its symbol. Given a
subset F ⊆ H2

Cn , we also consider the smallest invariant subspace S∗F of the backward shift S∗ that contains F.

1. Introduction

Let H and K be separable complex Hilbert spaces, and let B(H ,K ) be the set of all bounded linear
operators from H to K . B(H ,H) is denoted simply by B(H). A closed subspace L ⊂ H is called
an invariant subspace for the operator T ∈ B(H) if TL ⊂ L. The theory of invariant subspaces of the
backward shift operator has enabled important contributions to numerous applications in operator theory
and function theory ([6],[13]). Given a subset F ⊆ H2

Cn , the subspace

S∗F :=
∨
{S∗n f : f ∈ F, n ≥ 0},

is the smallest invariant subspace of the backward shift S∗ that contains F. If S∗F , H2
Cn then by the

Beurling-Lax-Halmos Theorem, there is an inner matrix function Θ ∈ H2
Mn×m

such that

S∗F = H2
Cn 	ΘH2

Cm . (1)

The purpose of this note is to determine the inner matrix function Θ ∈ H∞Mn×m
satisfying (1).

Let us recall the basic properties of unbounded operators ([2]). If A : H → K is a linear operator, then
A is also a linear operator from the closure of the domain of A, denoted by cl[dom A], into K . So we will
only consider A such that dom A is dense inH . Then, such an operator A is said to be densely defined. If
A : H → K is densely defined, we write ker A and ran A for the kernel and range of A, respectively. For a
setM, clM andM⊥ respectively denote the closure and orthogonal complement ofM. Let A : H → K be
densely defined, and let

dom A∗ =
{
k ∈ K : 〈Ah, k〉 is a bounded linear functional on domA

}
.
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Then for each k ∈ domA∗, there exists a unique f ∈ K such that 〈Ah, k〉 = 〈h, f 〉 for all h ∈ domA. Denote
this unique vector f as f = A∗k. Thus 〈Ah, k〉 = 〈h,A∗k〉 for h in domA and k in domA∗.

We review a few essential facts for Toeplitz operators and Hankel operators, and for that we will use
[3], [4], [5], [11] and [12]. For E a Hilbert space, let L2

E = L2
E(T) be the set of all E-valued square-integrable

measurable functions on the unit circle T and H2
E be the corresponding Hardy space. For f , 1 ∈ L2

E, the
inner product 〈 f , 1〉 is defined by

〈 f , 1〉 :=
∫
T

〈 f (z), 1(z)〉Edm(z),

where m denotes the normalized Lebesgue measure on the unit circle T. Let Mn denote the set of n × n
complex matrices, and let PCn be the set of all polynomials p with value in Cn, which is dense in H2

Cn . For
Φ ∈ L2

Mn
, the (unbounded) Hankel operator HΦ on H2

Cn and (unbounded) Toeplitz operator TΦ on H2
Cn are

defined by
HΦp := JP⊥(Φp) and TΦp := P(Φp) (p ∈ PCn ),

where P and P⊥ denote the orthogonal projections that map from L2
Cn onto H2

Cn and
(
H2
Cn

)⊥
, respectively,

and J denotes the unitary operator from L2
Cn onto L2

Cn , given by (J1)(z) := zIn1(z) for 1 ∈ L2
Cn (In := the n × n

identity matrix). For Φ ∈ L2
Mn×m

, we write

Φ̃(z) ≡ Φ∗(z).

A matrix-valued function Θ ∈ H∞Mn×m
is called an inner if Θ is an isometric a.e. on T. The following basic

relations can be easily derived from the definition:

T∗Φ = TΦ∗ , H∗Φ = HΦ̃ (Φ ∈ L∞Mn
); (2)

HΦTΨ = HΦΨ, HΨΦ = T∗
Ψ̃

HΦ (Φ ∈ L∞Mn
,Ψ ∈ H∞Mn

); (3)

H∗ΦHΦ −H∗ΘΦHΘΦ = H∗ΦHΘ∗H∗Θ∗HΦ (Θ ∈ H∞Mn
is inner, Φ ∈ L∞Mn

). (4)

The shift operator S on H2
Cn is defined by

S := TzIn .

The following fundamental result known as the Beurling-Lax-Halmos theorem is useful in the sequel.

The Beurling-Lax-Halmos Theorem. ([7], [11]) A nonzero subspace M of H2
Cn is invariant for the shift

operator S on H2
Cn if and only if M = ΘH2

Cm , where Θ is an inner matrix function in H∞Mn×m
. Furthermore, Θ

is unique up to a unitary constant right factor. That is, if M = ∆H2
Cr (for ∆ an inner function in H∞Mn×r

), then
m = r and Θ = ∆W, where W is a unitary matrix mapping Cm onto Cm.

As is customarily done, we say that two matrix functions A and B are equal if they are equal up to a
unitary constant right factor. If Φ ∈ L∞Mn

, then by (3), kerHΦ is an invariant subspace of the shift operators
on H2

Cn . Thus, if kerHΦ , {0}, then the Beurling-Lax-Halmos Theorem,

kerHΦ = ΘH2
Cm

for some inner matrix function Θ ∈ H∞Mn×m
.

A function φ ∈ L2 is said to be of a bounded type if there are functions ψ1, ψ2 ∈ H∞ such that φ =
ψ1

ψ2
a.e.

on T. For a matrix-valued function Φ ≡
[
φi j

]
∈ L2

Mn×m
, we say that Φ is of bounded type if each entry φi j is of

bounded type. For a matrix-valued function Φ ∈ H2
Mn×r

, we say that ∆ ∈ H2
Mn×m

is a left inner divisor of Φ if
∆ is an inner matrix function such that Φ = ∆A for some A ∈ H2

Mm×r
. We also say that two matrix functions

Φ ∈ H2
Mn×r

and Ψ ∈ H2
Mn×m

are left coprime if the only common left inner divisor of both Φ and Ψ is a unitary
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constant and that Φ ∈ H2
Mn×r

and Ψ ∈ H2
Mm×r

are right coprime if Φ̃ and Ψ̃ are left coprime. We would remark
that if Φ ∈ H2

Mn
is such that det Φ is not identically zero, then any left inner divisor ∆ of Φ is square, i.e.,

∆ ∈ H2
Mn

. If Φ ∈ H2
Mn

is such that det Φ is not identically zero, then we say that ∆ ∈ H2
Mn

is a right inner

divisor of Φ if ∆̃ is a left inner divisor of Φ̃ ([3], [7]).

From now on, for notational convenience, we write

Iω := ω In (ω ∈ H2).

Let Φ ∈ L2
Mn

with Φ be of bounded type. Then it is well known ([9]) that Φ can be represented as

Φ = I∗θA (A ∈ H2
Mn
, θ is inner). (5)

In (5), Iθ and A need not be left coprime. If Ω = left-g.c.d. {Iθ,A}, then Iθ = ΩΩ` and A = ΩA` for some
inner matrix Ω` and A` in H2

Mn
. Therefore we can write

Φ = Ω∗`A`, where A` and Ω` are left coprime. (6)

In this case, Ω∗`A` is called the left coprime factorization of Φ, and we write

Φ = Ω∗`A` (left coprime).

Similarly, we can write

Φ = ArΩ
∗

r, where Ar and Ωr are right coprime. (7)

In this case, ArΩ
∗
r is called the right coprime factorization of Φ, and we write

Φ = ArΩ
∗

r (right coprime).

Our main theorem is now stated as:

Theorem 1.1. Let F ∈ H2
Mn

be such that F∗ is of a bounded type. Then in view of (6), we may write

F∗ = Θ∗A (left coprime).

Then
cl ran HF∗ = H(Θ̃).

2. The Proof of Main Theorem

In this section we give a proof of Theorem 1.1. We recall the inner-outer factorization of vector-valued
functions. Let D and E be Hilbert spaces. If F is a function with values in B(E,D) such that F(·)e ∈ H2

D for
each e ∈ E, then F is called a strong H2-function. The strong H2-function F is called an inner function if F(·)
is an isometric operator from D into E. Write PE for the set of all polynomials with values in E. Then the
function Fp =

∑n
k=0 Fp̂(k)zk belongs to H2

D. The strong H2-function F is called outer if cl F · PE = H2
D. We

then have an analogue of the scalar inner-outer factorization Theorem. Note that every F ∈ H2
Mn

is a strong
H2-function.

Lemma 2.1. ([11]) Every strong H2-function F with values in B(E,D) can be expressed in the form

F = FiFe,

where Fe is an outer function with values in B(E,D′) and Fi is an inner function with values in B(D′,D), for some
Hilbert space D′.
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For φ =
[
φ1, φ2, · · · , φn

]t
∈ L2
Cn , we write

φ :=
[
φ1, φ2, · · · , φn

]t
and φ̆ :=

[
φ̃1, φ̃2, · · · , φ̃n

]t
.

Then it is easy to show that

S∗1 = J1̆ if 1 ∈
(
H2
Cn )⊥. (8)

Lemma 2.2. Let f ≡ [ f1, f2, · · · , fn]t
∈ H2

Cn . Then,

S∗f = cl ranHz f̆ .

Proof. For each n ∈N, it follows from (8) that

S∗n f = S∗
(
P(zn−1 f )

)
= S∗

(
(I − P)(zn−1 f )

)
= J(I − P)(zn−1 f̆ )
= Hz f̆ z

n.

Thus,
S∗f =

∨
{S∗n f : n ≥ 0} = cl ranHz f̆ ,

which gives the result.

For an inner matrix function Θ ∈ H∞Mn×m
, we writeH(Θ) := H2

Cn 	ΘH2
Cm . It is easy to show that [11]:

f ∈ H(Θ)⇐⇒ Θ∗ f ∈ (H2
Cn )⊥. (9)

We now recall the notion of the reduced minimum modulus([1], [10]). The reduced minimum modulus
of operators measures the closedness for the range of operators. If T ∈ B(H) then the reduced minimum
modulus of T is defined by

γ(T) =

inf
{
||Tx|| : dist (x, kerT) = 1

}
if T , 0

0 if T = 0.

It is easy to see that γ(T) > 0 if and only if T(H0) is closed for each closed subspaceH0 ofH . If T ∈ B(H)
is a nonzero operator, then we can see that γ(T) = inf

(
σ(|T|) \ {0}

)
, where |T| denotes (T∗T)

1
2 . Thus we have

that γ(T) = γ(T∗) ([8]). ForX a closed subspace of H2
Cn , PX denotes the orthogonal projection from H2

Cn onto
X.

Lemma 2.3. ([9]) For Φ ∈ L∞Mn
, the following statements are equivalent:

(i) Φ is of bounded type;

(ii) ker HΦ = ΘH2
Cn for some square inner matrix function Θ;

(iii) Φ = AΘ∗ (right coprime).

Lemma 2.4. Let Θ, ∆ ∈ H2
Mn

be inner functions. Then

(a) HΘ∗ (∆H2
Cn ) is closed.
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(b) If Θ and ∆ are left coprime, then HΘ∗ (∆H2
Cn ) = H(Θ̃).

Proof. If Θ ∈Mn, then Θ is a unitary matrix, and hence Θ̃ ∈Mn is a unitary matrix. Thus, HΘ∗ (∆H2
Cn ) = {0} =

H(Θ̃). This gives the result. Let Θ < Mn. Since Θ is an inner function, by (4), we have H∗
Θ∗

HΘ∗ = PH(Θ), so
that |HΘ∗ | = PH(Θ) , 0. Thus γ(HΘ∗ ) = inf

(
σ(|HΘ∗ |) \ {0}

)
= 1, and hence HΘ∗ (∆H2

Cn ) is closed. This proves
(a). Suppose Θ and ∆ are left coprime inner functions. Then ΘH2

Cn

∨
∆H2

Cn = H2
Cn . Thus,

A ≡

{
Θh1 + ∆h2 : h1, h2 ∈ H2

Cn

}
is dense in H2

Cn . On the other hand, it follows from Lemma 2.3 that ker HΘ∗ = ΘH2
Cn , and hence cl HΘ∗ (A) =

HΘ∗ (∆H2
Cn ). SinceH(Θ̃) =

(
ker H∗

Θ∗

)⊥
= ran HΘ∗ , it follows that

H(Θ̃) = HΘ∗ (clA) ⊆ cl HΘ∗ (A) = HΘ∗ (∆H2
Cn ) ⊆ ran HΘ∗ = H(Θ̃),

which gives (b).

Proof of Theorem 1.1. Let p ∈ PCn be arbitrary. Write p1 ≡ PH(Θ)Ap. Then it follows from (9) that

HF∗p = J(I − P)(Θ∗Ap) = J(Θ∗p1) = zΘ̃p̆1,

which implies that Θ̃∗HF∗p ∈ (H2
Cn )⊥. Thus, by again (9), HF∗p ∈ H(Θ̃), so that

cl ran HF∗ ⊆ H(Θ̃).

For the converse inclusion, let h ∈ kerH∗F∗ be arbitrary. Since A ∈ H2
Mn

is a strong H2-function, by Lemma
2.1, we can write

A = Ai Ae ,

where Ai ∈ H2
Mn×m

is inner and Ae ∈ H2
Mm×n

is outer. Then we have that (cf. [11, p.44])

cl APCn = AiH2
Cn . (10)

For each p ∈ PCn , we have

0 =
〈
p, H∗F∗h

〉
=

〈
J(I − P)Θ∗Ap, h

〉
=

〈
Θ∗Ap, Jh

〉
.

Thus, it follows from (10) that〈
HΘ∗ (Ai f ), h

〉
=

〈
Θ∗Ai f , Jh

〉
= 0 for all f ∈ H2

Cn . (11)

On the other hand, since Θ and A are left coprime, Θ and Ai are left coprime. Thus, it follows from Lemma

2.4 and (11) that ker H∗F∗ ⊆
(
HΘ∗ (AiH2)

)⊥
= Θ̃H2

Cn , so that

H(Θ̃) ⊆
(
ker H∗F∗

)⊥
= cl ran HF∗ .

This completes the proof. �

For F = { f1, f2, f3, · · · , fm} ⊂ H2
Cn (m ≤ n), let

ΦF ≡ z[ f̆1, f̆2, · · · , f̆m, 0, · · · , 0] ∈ H2
Mn
.

We then have:
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Corollary 2.5. Let F ≡ { f1, f2, · · · , fm} ⊂ H2
Cn (m ≤ n) be such that f i is of bounded type for each i. Then in view

of (6), we may write
ΦF = Θ∗A (left coprime).

Then
S∗F = H(Θ̃).

Proof. It follows from Lemma 2.2 and Theorem 1.1 that

S∗F =

m∨
k=1

ranHz f̆k = cl ran HΦF = H(Θ̃).

This completes the proof.

Remark 2.6. Suppose F ≡ { f1, f2, · · · , fN} ⊂ H2
Cn (N > n) be such that f i is of a bounded type for each i. Let

ΦF ≡ z


f̆1 f̆2 · · · f̆N
0 0 · · · 0
...

...
...

...
0 0 · · · 0

 = Θ∗A ∈ H2
MN

(left coprime).

Then, it follows from Corollary 2.5 that
S∗F

⊕
0|CN−n = H(Θ̃).

Example 2.7. Let a and c be nonzero complex numbers and f = [az, cbα]t (bα(z) := z−α
1−αz , 0 < |α| < 1). Put

Φ =

[
az2 0

czbα(z) 0

]
.

Observe that for x, y ∈ H2,[
x
y

]
∈ ker HΦ̃ ⇐⇒ abαx + czy ∈ z2bαH2

=⇒

abα(0)x(0) = 0
cαy(α) = 0.

=⇒

x = zx1 for some x1 ∈ H2

y = bαy1 for some y1 ∈ H2.

(12)

By (12), we have that x = zx1 and y = bαy1 for some x1, y1 ∈ H2. We thus have[
x
y

]
∈ ker HΦ̃ ⇐⇒ ax1(0) + cy1(0) = 0

⇐⇒ x1(0) = γy1(0)
(
γ := −

c
a

)
.

(13)

Put

Θ :=
1√

1 + |γ|2

[
z 0
0 bα

] [
z γ
−γz 1

]
.
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Then Θ is inner, and it follows from (13) that

ker HΦ̃ = ΘH2
C2 .

Thus by Lemma 2.3, we have Φ̃ = AΘ∗ (right coprime) and hence Φ = Θ̃∗Ã (left coprime). It thus follows from
Corollary 2.5 that

S∗f = H(Θ).

Corollary 2.8. Let f ∈ H2.

(a) f is not of bounded type if and only if S∗f = H2.

(b) If f is of bounded type of the form
f = θa (left coprime),

then

S∗f =

H(zθ) if a(0) , 0
H(θ) if a(0) = 0.

Proof. Note that f is of a bounded type if and only if z f̆ is of a bounded type. Thus, it follows from
Corollary 2.5 that f is of a bounded type if and only if S∗f , H2. This proves (a). For (b), let a(0) , 0. Then,

z and a are coprime so that zθ̃ and ã are coprime. Thus

z f̆ = (zθ̃)̃a (left coprime).

It follows from Corollary 2.5 that S∗f = H(zθ). If instead a(0) = 0, then we may write a = za′ for some
a′ ∈ H2 so that

z f̆ = θ̃ã′ (left coprime).

Thus, again by Corollary 2.5, we have S∗f = H(θ). This completes the proof.
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