Fekete-Szegö Inequality for Analytic and Bi-univalent Functions Subordinate to Chebyshev Polynomials

Feras Yousef ${ }^{\text {a }}$, B. A. Frasin ${ }^{\text {b }}$, Tariq Al-Hawary ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, Faculty of Science, The University of Jordan, Amman 11942, Jordan.
${ }^{b}$ Department of Mathematics, Faculty of Science, Al al-Bayt University, Mafraq 25113, Jordan.
${ }^{c}$ Department of Applied Science, Ajloun College, Al-Balqa Applied University, Ajloun 26816, Jordan.

Abstract

In the present study, a new subclass of analytic and bi-univalent functions by means of Chebyshev polynomials is introduced. Certain coefficient bounds for functions belong to this subclass are obtained. Furthermore, the Fekete-Szegö problem in this subclass is solved.

1. Introduction

The classical Chebyshev polynomials of degree n of the first and second kinds, which are denoted respectively by $T_{n}(t)$ and $U_{n}(t)$, have generated a great deal of interest in recent years. These orthogonal polynomials, in a real variable t and a complex variable z, have played an important role in applied mathematics, numerical analysis and approximation theory. For this reason, Chebyshev polynomials have been studied extensively, see [8, 10, 16]. In the study of differential equations, the Chebyshev polynomials of the first and second kinds are the solution to the Chebyshev differential equations

$$
\begin{equation*}
\left(1-t^{2}\right) y^{\prime \prime}-t y^{\prime}+n^{2} y=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1-t^{2}\right) y^{\prime \prime}-3 t y^{\prime}+n(n+2) y=0 \tag{2}
\end{equation*}
$$

respectively. The roots of the Chebyshev polynomials of the first kind are used as nodes in polynomial interpolation and the monic Chebyshev polynomials minimize all norms among monic polynomials of a given degree. For a brief history of Chebyshev polynomials of the first and second kinds and their applications, the reader is referred to [19, 22].

A classical result of Fekete and Szegö [13] determines the maximum value of $\left|a_{3}-\eta a_{2}^{2}\right|$, as a non-linear functional of the real parameter η, for the class of normalized univalent functions

$$
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots
$$

[^0]There are now several results of this type in the literature, each of them dealing with $\left|a_{3}-\eta a_{2}^{2}\right|$ for various classes of functions defined in terms of subordination (see e.g., [1, 20]). Motivated by the earlier work of Dziok et al. [10], the main focus of this work is to utilize the Chebyshev polynomials expansions to solve Fekete-Szegö problem for certain subclass of bi-univalent functions (see, for example, [5-7, 14]).

This paper is divided into three sections with this introduction being the first. In Section 2, we define the class of analytic and bi-univalent functions $\mathscr{B}_{\Sigma}(\lambda, \mu, t)$ using the generating function for the Chebyshev polynomials of the second kind, and we also discuss some other definitions and results. Section 3 is devoted to solve problems concerning the coefficients of functions in the class $\mathscr{B}_{\Sigma}(\lambda, \mu, t)$. Section 4 is the main part of the paper, we find the sharp bounds of functionals of Fekete-Szegö type.

2. Definitions and Preliminaries

Let \mathscr{A} denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{3}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. Further, by \mathscr{S} we shall denote the class of all functions in \mathscr{A} which are univalent in \mathbb{U}.

Given two functions $f, g \in \mathscr{A}$. The function $f(z)$ is said to be subordinate to $g(z)$ in \mathbb{U}, written $f(z)<g(z)$, if there exists a Schwarz function $\omega(z)$, analytic in \mathbb{U}, with

$$
\omega(0)=0 \text { and }|\omega(z)|<1 \text { for all } z \in \mathbb{U},
$$

such that $f(z)=g(\omega(z))$ for all $z \in \mathbb{U}$. Furthermore, if the function g is univalent in \mathbb{U}, then we have the following equivalence (see [17] and [23]):

$$
f(z)<g(z) \Leftrightarrow f(0)=g(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

The Koebe one-quarter theorem [9] asserts that the image of \mathbb{U} under each univalent function f in \mathscr{S} contains a disk of radius $\frac{1}{4}$. According to this, every function $f \in \mathscr{S}$ has an inverse map f^{-1}, defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right) .
$$

In fact, the inverse function is given by

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{4}
\end{equation*}
$$

A function $f \in \mathscr{A}$ is said to be bi-univalent in \mathbb{U} if both $f(z)$ and $f^{-1}(w)$ are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (3). For a brief history and some intriguing examples of functions and characterization of the class Σ, see Srivastava et al. [21] and Frasin and Aouf [11], see also [2-4, 12, 15, 18].

The Chebyshev polynomials of the first and second kinds are orthogonal for $t \in[-1,1]$ and defined as follows:

Definition 2.1. The Chebyshev polynomials of the first kind are defined by the following three-terms recurrence relation:

$$
\begin{aligned}
& T_{0}(t)=1 \\
& T_{1}(t)=t \\
& T_{n+1}(t):=2 t T_{n}(t)-T_{n-1}(t) .
\end{aligned}
$$

The first few of the Chebyshev polynomials of the first kind are

$$
\begin{equation*}
T_{2}(t)=2 t^{2}-1, T_{3}(t)=4 t^{3}-3 t, T_{4}(t)=8 t^{4}-8 t^{2}+1, \cdots \tag{5}
\end{equation*}
$$

The generating function for the Chebyshev polynomials of the first kind, $T_{n}(t)$, is given by:

$$
F(z, t)=\frac{1-t z}{1-2 t z+z^{2}}=\sum_{n=0}^{\infty} T_{n}(t) z^{n} \quad(z \in \mathbb{U})
$$

Definition 2.2. The Chebyshev polynomials of the second kind are defined by the following three-terms recurrence relation:

$$
\begin{aligned}
& U_{0}(t)=1 \\
& U_{1}(t)=2 t \\
& U_{n+1}(t):=2 t U_{n}(t)-U_{n-1}(t)
\end{aligned}
$$

The first few of the Chebyshev polynomials of the second kind are

$$
\begin{equation*}
U_{2}(t)=4 t^{2}-1, U_{3}(t)=8 t^{3}-4 t, U_{4}(t)=16 t^{4}-12 t^{2}+1, \cdots \tag{6}
\end{equation*}
$$

The generating function for the Chebyshev polynomials of the second kind, $U_{n}(t)$, is given by:

$$
H(z, t)=\frac{1}{1-2 t z+z^{2}}=\sum_{n=0}^{\infty} U_{n}(t) z^{n} \quad(z \in \mathbb{U})
$$

The Chebyshev polynomials of the first and second kinds are connected by the following relations:

$$
\frac{d T_{n}(t)}{d t}=n U_{n-1}(t) ; T_{n}(t)=U_{n}(t)-t U_{n-1}(t) ; 2 T_{n}(t)=U_{n}(t)-U_{n-2}(t)
$$

Definition 2.3. For $\lambda \geq 1, \mu \geq 0$ and $t \in(1 / 2,1)$, a function $f \in \Sigma$ given by (3) is said to be in the class $\mathscr{B}_{\Sigma}(\lambda, \mu, t)$ if the following subordinations hold for all $z, w \in \mathbb{U}$:

$$
\begin{equation*}
(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)+\mu z f^{\prime \prime}(z)<H(z, t):=\frac{1}{1-2 t z+z^{2}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)+\mu w g^{\prime \prime}(w)<H(w, t):=\frac{1}{1-2 t w+w^{2}} \tag{8}
\end{equation*}
$$

where the function $g(w)=f^{-1}(w)$ is defined by (4).
Remark 2.4. 1. For $\lambda=1$ and $\mu=0$, we have the class $\mathscr{B}_{\Sigma}(1,0, t):=\mathscr{B}_{\Sigma}(t)$ of functions $f \in \Sigma$ given by (3) and satisfying the following subordination conditions for all $z, w \in \mathbb{U}$:

$$
f^{\prime}(z)<H(z, t)=\frac{1}{1-2 t z+z^{2}}
$$

and

$$
g^{\prime}(w)<H(w, t)=\frac{1}{1-2 t w+w^{2}}
$$

This class of functions have been introduced and studied by Altinkaya and Yalçin [5].
2. For $\mu=0$, we have the class $\mathscr{B}_{\Sigma}(\lambda, 0, t):=\mathscr{B}_{\Sigma}(\lambda, t)$ of functions $f \in \Sigma$ given by (3) and satisfying the following subordination conditions for all $z, w \in \mathbb{U}$:

$$
(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)<H(z, t)=\frac{1}{1-2 t z+z^{2}}
$$

and

$$
(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)<H(w, t)=\frac{1}{1-2 t w+w^{2}}
$$

This class of functions have been introduced and studied by Bulut et al. [7].

3. Coefficient Bounds for the Function Class $\mathscr{B}_{\Sigma}(\lambda, \mu, t)$

We begin with the following result involving initial coefficient bounds for the function class $\mathscr{B}_{\Sigma}(\lambda, \mu, t)$.
Theorem 3.1. Let the function $f(z)$ given by (3) be in the class $\mathscr{B}_{\Sigma}(\lambda, \mu, t)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 t \sqrt{2 t}}{\sqrt{\left|(1+\lambda+2 \mu)^{2}-4 t^{2}\left[(\lambda+2 \mu)^{2}-2 \mu\right]\right|}} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{4 t^{2}}{(1+\lambda+2 \mu)^{2}}+\frac{2 t}{1+2 \lambda+6 \mu} . \tag{10}
\end{equation*}
$$

Proof. Let $f \in \mathscr{B}_{\Sigma}(\lambda, \mu, t)$. From (7) and (8), we have

$$
\begin{equation*}
(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)+\mu z f^{\prime \prime}(z)=1+U_{1}(t) w(z)+U_{2}(t) w^{2}(z)+\cdots \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)+\mu w g^{\prime \prime}(w)=1+U_{1}(t) v(w)+U_{2}(t) v^{2}(w)+\cdots \tag{12}
\end{equation*}
$$

for some analytic functions

$$
w(z)=c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots \quad(z \in \mathbb{U})
$$

and

$$
v(w)=d_{1} w+d_{2} w^{2}+d_{3} w^{3}+\cdots \quad(w \in \mathbb{U})
$$

such that $w(0)=v(0)=0,|w(z)|<1(z \in \mathbb{U})$ and $|v(w)|<1(w \in \mathbb{U})$.
It follows from (11) and (12) that

$$
(1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)+\mu z f^{\prime \prime}(z)=1+U_{1}(t) c_{1} z+\left[U_{1}(t) c_{2}+U_{2}(t) c_{1}^{2}\right] z^{2}+\cdots
$$

and

$$
\left.(1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)+\mu w g^{\prime \prime}(w)=1+U_{1}(t) d_{1} w+\left[U_{1}(t) d_{2}+U_{2}(t) d_{1}^{2}\right]\right) w^{2}+\cdots
$$

A short calculation shows that

$$
\begin{align*}
& (1+\lambda+2 \mu) a_{2}=U_{1}(t) c_{1} \tag{13}\\
& (1+2 \lambda+6 \mu) a_{3}=U_{1}(t) c_{2}+U_{2}(t) c_{1}^{2} \tag{14}
\end{align*}
$$

and

$$
\begin{align*}
& -(1+\lambda+2 \mu) a_{2}=U_{1}(t) d_{1} \tag{15}\\
& (1+2 \lambda+6 \mu)\left(2 a_{2}^{2}-a_{3}\right)=U_{1}(t) d_{2}+U_{2}(t) d_{1}^{2} \tag{16}
\end{align*}
$$

From (13) and (15), we have

$$
\begin{equation*}
c_{1}=-d_{1}, \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
2(1+\lambda+2 \mu)^{2} a_{2}^{2}=U_{1}^{2}(t)\left(c_{1}^{2}+d_{1}^{2}\right) \tag{18}
\end{equation*}
$$

By adding (14) to (16), we get

$$
\begin{equation*}
2(1+2 \lambda+6 \mu) a_{2}^{2}=U_{1}(t)\left(c_{2}+d_{2}\right)+U_{2}(t)\left(c_{1}^{2}+d_{1}^{2}\right) \tag{19}
\end{equation*}
$$

By using (18) in (19), we obtain

$$
\begin{equation*}
\left[2(1+2 \lambda+6 \mu)-\frac{2 U_{2}(t)}{U_{1}^{2}(t)}(1+\lambda+2 \mu)^{2}\right] a_{2}^{2}=U_{1}(t)\left(c_{2}+d_{2}\right) . \tag{20}
\end{equation*}
$$

It is fairly well known [9] that if $|w(z)|<1$ and $|v(w)|<1$, then

$$
\begin{equation*}
\left|c_{j}\right| \leq 1 \text { and }\left|d_{j}\right| \leq 1 \text { for all } j \in \mathbb{N} \tag{21}
\end{equation*}
$$

By considering (6) and (21), we get from (20) the desired inequality (9).
Next, by subtracting (16) from (14), we have

$$
\begin{equation*}
2(1+2 \lambda+6 \mu) a_{3}-2(1+2 \lambda+6 \mu) a_{2}^{2}=U_{1}(t)\left(c_{2}-d_{2}\right)+U_{2}(t)\left(c_{1}^{2}-d_{1}^{2}\right) . \tag{22}
\end{equation*}
$$

Further, in view of (17), it follows from (22) that

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{U_{1}(t)}{2(1+2 \lambda+6 \mu)}\left(c_{2}-d_{2}\right) . \tag{23}
\end{equation*}
$$

By considering (18) and (21), we get from (23) the desired inequality (10). This completes the proof of Theorem 3.1.

Taking $\lambda=1$ and $\mu=0$ in Theorem 3.1, we get the following corollary.
Corollary 3.2. [7] Let the function $f(z)$ given by (3) be in the class $\mathscr{B}_{\Sigma}(t)$. Then

$$
\left|a_{2}\right| \leq \frac{t \sqrt{2 t}}{\sqrt{1-t^{2}}}
$$

and

$$
\left|a_{3}\right| \leq t^{2}+\frac{2}{3} t
$$

For Corollary 3.2, it's worthy to mention that Altinkaya and Yalçin [5] have obtained a remarkable result for the coefficient $\left|a_{2}\right|$, as shown in the following corollary.
Corollary 3.3. Let the function $f(z)$ given by (3) be in the class $\mathscr{B}_{\Sigma}(t)$. Then

$$
\left|a_{2}\right| \leq \frac{t \sqrt{2 t}}{\sqrt{1+2 t-t^{2}}}
$$

Taking $\mu=0$ in Theorem 3.1, we get the following corollary.
Corollary 3.4. [7] Let the function $f(z)$ given by (3) be in the class $\mathscr{B}_{\Sigma}(\lambda, t)$. Then

$$
\left|a_{2}\right| \leq \frac{2 t \sqrt{2 t}}{\sqrt{\left|(1+\lambda)^{2}-4 t^{2} \lambda^{2}\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{4 t^{2}}{(1+\lambda)^{2}}+\frac{2 t}{1+2 \lambda}
$$

4. Fekete-Szegö Inequality for the Function Class $\mathscr{B}_{\Sigma}(\lambda, \mu, t)$

Now, we are ready to find the sharp bounds of Fekete-Szegö functional $a_{3}-\eta a_{2}^{2}$ defined for $f \in \mathscr{B}_{\Sigma}(\lambda, \mu, t)$ given by (3).

Theorem 4.1. Let the function $f(z)$ given by (3) be in the class $\mathscr{B}_{\Sigma}(\lambda, \mu, t)$. Then for some $\eta \in \mathbb{R}$,

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq\left\{\begin{array}{cl}
\frac{2 t}{1+2 \lambda+6 \mu}, & |\eta-1| \leq M \tag{24}\\
\frac{\left.8|\eta-1|\right|^{3}}{\left|(1+\lambda+2 \mu)^{2}-4 t^{2}\left[(\lambda+2 \mu)^{2}-2 \mu\right]\right|}, & |\eta-1| \geq M
\end{array}\right.
$$

where

$$
M:=\frac{\left|(1+\lambda+2 \mu)^{2}-4 t^{2}\left[(\lambda+2 \mu)^{2}-2 \mu\right]\right|}{4(1+2 \lambda+6 \mu) t^{2}} .
$$

Proof. Let $f \in \mathscr{B}_{\Sigma}(\lambda, \mu, t)$. By using (20) and (23) for some $\eta \in \mathbb{R}$, we get

$$
\begin{aligned}
a_{3}-\eta a_{2}^{2} & =(1-\eta)\left[\frac{U_{1}^{3}(t)\left(c_{2}+d_{2}\right)}{2(1+2 \lambda+6 \mu) U_{1}^{2}(t)-2(1+\lambda+2 \mu)^{2} U_{2}(t)}\right]+\frac{U_{1}(t)\left(c_{2}-d_{2}\right)}{2(1+2 \lambda+6 \mu)} \\
& =U_{1}(t)\left[\left(h(\eta)+\frac{1}{2(1+2 \lambda+6 \mu)}\right) c_{2}+\left(h(\eta)-\frac{1}{2(1+2 \lambda+6 \mu)}\right) d_{2}\right]
\end{aligned}
$$

where

$$
h(\eta)=\frac{U_{1}^{2}(t)(1-\eta)}{2\left[(1+2 \lambda+6 \mu) U_{1}^{2}(t)-(1+\lambda+2 \mu)^{2} U_{2}(t)\right]}
$$

Then, in view of (6), we easily conclude that

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{2 t}{1+2 \lambda+6 \mu},
\end{array}|h(\eta)| \leq \frac{1}{2(1+2 \lambda+6 \mu)}, ~ \begin{array}{l}
4|h(\eta)| t, \quad|h(\eta)| \geq \frac{1}{2(1+2 \lambda+6 \mu)}
\end{array}\right.
$$

This proves Theorem 4.1.

We end this section with some corollaries concerning the sharp bounds of Fekete-Szegö functional $a_{3}-\eta a_{2}^{2}$ defined for $f \in \mathscr{B}_{\Sigma}(\lambda, \mu, t)$ given by (3).

Taking $\eta=1$ in Theorem 4.1, we get the following corollary.
Corollary 4.2. Let the function $f(z)$ given by (3) be in the class $\mathscr{B}_{\Sigma}(\lambda, \mu, t)$. Then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{2 t}{1+2 \lambda+6 \mu}
$$

Taking $\lambda=1$ and $\mu=0$ in Theorem 4.1, we get the following corollary.
Corollary 4.3. Let the function $f(z)$ given by (3) be in the class $\mathscr{B}_{\Sigma}(t)$. Then for some $\eta \in \mathbb{R}$,

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}\frac{2}{3} t, & |\eta-1| \leq \frac{1-t^{2}}{3 t^{2}} \\ \frac{\left.2|\eta-1|\right|^{3}}{1-t^{2}}, & |\eta-1| \geq \frac{1-t^{2}}{3 t^{2}}\end{cases}
$$

Taking $\eta=1$ in Corollary 4.3, we get the following corollary.
Corollary 4.4. Let the function $f(z)$ given be (3) be in the class $\mathscr{B}_{\Sigma}(t)$. Then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{2}{3} t
$$

Taking $\mu=0$ in Theorem 4.1, we get the following corollary.
Corollary 4.5. Let the function $f(z)$ given by (3) be in the class $\mathscr{B}_{\Sigma}(\lambda, t)$. Then for some $\eta \in \mathbb{R}$,

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}\frac{2 t}{1+2 \lambda}, & |\eta-1| \leq \frac{\left|(1+\lambda)^{2}-4 t^{2} \lambda^{2}\right|}{4(1+2 \lambda) t^{2}} \tag{25}\\ \frac{8|\eta-1| t^{3}}{\left|(1+\lambda)^{2}-4 t^{2} \lambda^{2}\right|}, & |\eta-1| \geq \frac{\left|(1+\lambda)^{2}-4 t^{2} \lambda^{2}\right|}{4(1+2 \lambda) t^{2}}\end{cases}
$$

Taking $\eta=1$ in Corollary 4.5, we get the following corollary.
Corollary 4.6. Let the function $f(z)$ given by (3) be in the class $\mathscr{B}_{\Sigma}(\lambda, t)$. Then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{2 t}{1+2 \lambda}
$$

Acknowledgement. The authors would like to thank the referee for careful reading of the manuscript and for valuable comments and thoughtful suggestions.

References

[1] T. Al-Hawary, B. A. Frasin, M. Darus, Fekete-Szegö problem for certain classes of analytic functions of complex order defined by the Dziok-Srivastava operator, Acta Mathematica Vietnamica 39.2 (2014) 185-192.
[2] Ş. Altinkaya, S. Yalçin, Initial coefficient bounds for a general class of bi-univalent functions, International Journal of Analysis, Article ID 867871 (2014), 4 pages.
[3] Ş. Altinkaya, S. Yalçin, Coefficient bounds for a subclass of bi-univalent functions, TWMS J. P. and App. Math. 6.2 (2015).
[4] Ş. Altinkaya, S. Yalçin, Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, Journal of function spaces, Article ID 145242 (2015), 5 pages.
[5] Ş. Altinkaya, S. Yalçin, Estimates on coefficients of a general subclass of bi-univalent functions associated with symmetric q-derivative operator by means of the Chebyshev polynomials, Asia Pacific Journal of Mathematics, 4.2 (2017) 90-99.
[6] Ş. Altinkaya, S. Yalçin, On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions, Gulf Journal of Mathematics (2017) 1464-1473.
[7] S. Bulut, N. Magesh, V. K. Balaji, Initial bounds for analytic and biunivalent functions by means of chebyshev polynomials, Analysis 11.1 (2017) 83-89.
[8] E. H. Doha, The first and second kind Chebyshev coefficients of the moments of the general-order derivative of an infinitely differentiable function, Int. J. of Comput. Math. 51 (1994) 21-35.
[9] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlag, New York, 1983.
[10] J. Dziok, R. K. Raina, J. Sokol, Application of Chebyshev polynomials to classes of analytic functions, Comptes Rendus Mathematique 353.5 (2015) 433-438.
[11] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24.9 (2011) 1569-1573.
[12] B. A. Frasin, Tariq Al-Hawary, Initial Maclaurin coefficients bounds for new subclasses of bi-univalent functions, Theory and App. of Math. \& Computer Science 5.2 (2015) 186-193.
[13] M. Fekete, G. Szegö, Eine Bermerkung über ungerade schlichte Funktionen, Journal of the London Math. Soc. 1.2 (1933) 85-89.
[14] H. Ö. Güney, G. Murugusundaramoorthy, K. Vijaya, Coefficient bounds for subclasses of biunivalent functions associated with the Chebyshev polynomials, Journal of Complex Analysis (2017) 11 pages.
[15] N. Magesh, J. Yamini, Coefficient bounds for a certain subclass of bi-univalent functions, Int. Math. Forum 8.27 (2013) 1337-1344.
[16] J. C. Mason, Chebyshev polynomial approximations for the L-membrane eigenvalue problem, SIAM J. Appl. Math. 15 (1967) 172-186.
[17] S. S. Miller, P. T. Mocanu, Differential Subordination: theory and applications, CRC Press, New York, 2000.
[18] S. Porwal, M. Darus, On a new subclass of bi-univalent functions, J. Egypt. Math. Soc. 21.3 (2013) 190-193.
[19] B. Simon, Orthogonal polynomials on the unit circle, American Mathematical Society, 2009.
[20] H. M. Srivastava, A. K. Mishra, M. K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Variables and Elliptic Equations 44.2 (2001) 145-163.
[21] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010) 1188-1192.
[22] G. Szegö, Orthogonal polynomials, American Mathematical Society, New York, 1939.
[23] F. Yousef, A. A. Amourah, M. Darus, Differential sandwich theorems for p-valent functions associated with a certain generalized differential operator and integral operator, Italian Journal of Pure and Applied Mathematics 36 (2016) 543-556.

[^0]: 2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C50
 Keywords. Analytic and bi-univalent functions, Chebyshev polynomials, Fekete-Szegö problem, coefficient bounds, subordination.
 Received: 20 August 2017; Accepted: 10 April 2018
 Communicated by Miodrag Mateljević
 Email addresses: fyousef@ju.edu. jo (Feras Yousef), bafrasin@yahoo.com (B. A. Frasin), tariq_amh@bau. edu. jo (Tariq
 Al-Hawary)

