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Abstract. This study is aimed to determine various stabilities of a generalized reciprocal-quadratic func-
tional equation of the form
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connected with Ulam, Hyers, T. M. Rassias, J. M. Rassias and Gavruta in non-Archimedean fields, where
β j , 0; j = 1, 2, . . . , p are arbitrary real numbers and 0 < β1+β2+· · ·+βp =

∑p
j=1 β j = β , 1 in non-Archimedean

fields by direct and fixed point methods.

1. Introduction

The issue created by Ulam [43] in 1940 is the source for the speculation of stability of functional equations.
The question devised by Ulam was responded by Hyers [9] which made a cornerstone in the conjecture of
stability of functional equation. The result proved by Hyers is called as Hyers–Ulam stability or ε-stability
of functional equation. Then, Hyers’ result was simplified by Aoki [1]. Also, Hyers’ result was modified
by T. M. Rassias [34] considering the upper bound as sum of powers of norms. The result obtained by
T. M. Rassias is called as Hyers–Ulam–Rassias stability of functional equation. Later, J. M. Rassias [32]
established Hyers’ result by taking the upper bound as product of powers of norms. This theorem is called
as Ulam–Gavruta–Rassias stability of functional equation. In 1994, to promote the stability result into
simple form, Gavruta [7] reinstated the upper bound by a general control function. This type of stability
result accomplished by Gavruta is known as generalized Hyers–Ulam stability of functional equation.

The p-adic numbers were discovered by Hensel [8] in 1897 as a number theoretical analogue of power
series in complex analysis. In fact, he introduced a field with a valuation normed which does not have
the Archimedean property. Even though there are many classical results in the normed space theory with
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non-Archimedean property, but their proofs are different and require a relatively new kind of perception.
It may be noted that |n| ≤ 1 in every valuation field, every triangle is isosceles and there may be no unit
vector in a non-Archimedean normed space [29]. These facts formulate the non-Archimedean structure is
of exceptional attention.

The stability of functional equations in non-Archimedean was firstly obtained by Arriola and Beyer [2].
They investigated the stability of Cauchy functional equations over p-adic fields. The stability of some other
functional equations in non-Archimedean normed spaces have been investigated by many mathematicians
[12], [19], [20], [22], [24], [25].

Isac and Rassias [10] were the foremost mathematicians to present the applications of stability problem
of functional equations via fixed point theorems. Generally, the investigation of stability of functional
equations is carried out through direct method in which the precise solution of the functional equation is
unambiguously derived as a limit of a (Hyers) sequence, starting from the given approximate solution. The
stability of Cauchy additive functional equation was proved by applying fixed point method by Radu [35]
in 2003. There are many results available on the stability of various functional equations using fixed point
method [6], [11], [23], [33].

For the first time, Ravi and Senthil Kumar [39] obtained the generaliized Hyers–Ulam stability for a
rational functional equation

h(u + v) =
h(u)h(v)

h(u) + h(v)
. (1)

It is easy to verify that the rational function h(u) = k
u is a solution of the functional equation (1).

Bodaghi and Kim [5] investigated Ulam stability for the quadratic reciprocal functional equation

Qr(2p + q) + Qr(2p − q) =
2Qr(p)Qr(q)[4Qr(q) + Qr(p)]

(4Qr(q) −Qr(p))2 . (2)

The quadratic reciprocal function Qr(p) = k
p2 is a solution of the functional equation (2).

Bodaghi and Ebrahimdoost [4] generalized equation (2) as

Qr((a + 1)u + av) + Qr((a + 1)u − av) =
2Qr(u)Qr(v)

[
(a + 1)2Qr(v) + a2Qr(u)

]
((a + 1)2Qr(v) − a2Qr(u))2 (3)

where a ∈ Zwith a , 0 and attained its generalized Hyers–Ulam–Rassias stability.
Further results associated with the stability of different rational functional equations are available in

([36], [37], [38], [41]).
Recently the theory of Ulam–Hyers stability has developed enormously in investigating various equa-

tions such as polynomial equations, different type of functional equations, ordinary differential equations
and partial differential equations with interesting and motivating results (see [3], [13], [14], [15], [16], [17],
[18], [26], [27], [28], [30], [31], [42], [44], [45], [46]).

In recent times, Ravi and Suresh [40] have investigated the generalized Hyers–Ulam stability of
reciprocal-quadratic functional equation in two variables of the form

Rq(u + v) =
Rq(u)Rq(v)

Rq(u) + Rq(v) + 2
√

Rq(u)Rq(v)
(4)

in the setting of real numbers. It is easy to verify that the reciprocal-quadratic function Rq(u) = k
u2 is a

solution of equation (4).
In this paper, we extend the equation (4) to several variables in the following form
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and acquire various stabilities of this equation associated with Ulam, Hyers, T. M. Rassias, J. M. Rassias
and Gavruta in non-Archimedean fields, where β j , 0; j = 1, 2, . . . , p are arbitrary real numbers and
0 < β1 + β2 + · · · + βp =

∑p
j=1 β j = β , 1 in non-Archimedean fields by direct and fixed point methods.

Note that for j = 2, we have

r
(
β1u1 + β2u2

)
=

r(u1)r(u2)[
β1

√
r(u2 + β2

√
r(u1)

]2

with β1 + β2 , 1 and for j = 3, we find

r
(
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r(u1)r(u2)r(u3)[
β1

√
r(u2)r(u3) + β2

√
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√
r(u1)r(u2)

]2

with β1 + β2 + β3 , 1.

2. Preliminaries

In this segment, we summon up the fundamental notions of non-Archimedean field, non-Archimedean
norm, non-Archimedean space and non-Archimedean alternative contraction principle which will be useful
to establish our main results.

Definition 2.1. A field K is said to be a non-Archimedean field if it is equipped with a function (valuation) | · | from
K into [0,∞) such that |u| = 0 if and only if u = 0, |uv| = |u||v| and |u + v| ≤ max{|u|, |v|} for all u, v ∈ K.

Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈N.
Let X be a vector space over a scalar fieldKwith a non-Archimedean non-trivial valuation |.|. A function

|| · || : X −→ R is a non-Archimedean norm (valuation) if it satisfies the following conditions:

(i) ||u|| = 0 if and only if u = 0;
(ii) ||ρu|| = |ρ|||u|| (ρ ∈ K,u ∈ X);

(iii) the strong triangle inequality (ultrametric); namely,

||u + v|| ≤ max{||u||, ||v||} (u, v ∈ X).

Then (X, || · ||) is called a non-Archimedean space. Due to the fact that

‖un − um‖ ≤ max
{∥∥∥u j+1 − u j

∥∥∥ : m ≤ j ≤ n − 1
}

(n > m),

a sequence {un} is Cauchy if and only if {un+1 − un} converges to zero in a non-Archimedean space. By a
complete non-Archimedean space, we mean that every Cauchy sequence is convergent in the space.

An example of a non-Archimedean valuation is the mapping | · | taking everything but 0 into 1 and
|0| = 0. This valuation is called trivial. Another example of a non-Archimedean valuation on a field A is
the mapping

|λ| =


0 if λ = 0
1
λ if λ > 0
−

1
λ if λ < 0

for any λ ∈ A.

Example 2.2. Let p be a prime number. For any non-zero rational number x = pr m
n in which m and n are coprime to

the prime number p. Consider the p-adic absolute value |x|p = p−r onQ. It is easy to check that |·| is a non-Archimedean
norm onQ. The completion ofQ with respect to | · | which is denoted byQp is said to be the p-adic number field. Note
that if p > 2, then |2n

| = 1 for all integers n.
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Definition 2.3. Let A be a nonempty set and d : A × A −→ [0,∞] fulfilling the ensuing properties:

(i) d(u, v) = 0 if and only if u = v,
(ii) d(u, v) = d(v,u) (symmetry),

(iii) d(u,w) ≤ max{d(u, v), d(v,w)} (strong triangle inequality),

for all u, v,w ∈ A. Then (A, d) is called a generalized non-Archimedean metric space. (A, d) is called complete if every
d-Cauchy sequence in A is d-convergent.

Example 2.4. For each nonempty set A, define

d(u,u?) =

0 if u = u?

∞ if u , u?.

Then d is a generalized non-Archimedean metric on A.

Example 2.5. Let A and B be two non-Archimedean spaces over a non-Archimedean field K. If B has a
complete non-Archimedean norm overK and φ : A −→ [0,∞), for each s, t : A −→ B, define

d(s, t) = inf{δ > 0 : |s(u) − t(u)| ≤ δφ(u), ∀u ∈ A}.

Using Theorem 2.5 [6], Mirmostafaee [21] introduced non-Archimedean version of the alternative fixed
point theorem as follows:

Theorem 2.6. [21] (Non-Archimedean Alternative Contraction Principle) If (A, d) is a non-Archimedean gen-
eralized complete metric space and σ : A→ A a strictly contractive mapping (that is d(σ(u), σ(v)) ≤ Ld(v,u)), for all
u, v ∈ A and a Lipsctiz constant L < 1), then either

(i) d
(
Jn(u), Jn+1(u)

)
= ∞, for all n ≥ 0, or

(ii) there exists some n0 ≥ 0 such that d
(
Jn(u), Jn+1(u)

)
< ∞ for all n ≥ n0;

the sequence {Jn(u)} is convergent to a fixed point u? of J; u? is the unique fixed point of J in the set

V = {v ∈ A : d (Jn0 (u), v) < ∞}

and d(v,u?) ≤ d(v, J(v)) for all v in this set.

Throughout this paper, we consider that E and F is a non-Archimedean field and a complete non-
Archimedean field, respectively. In the sequel, we denote E∗ − {0} as a non-Archimedean field. In order to
simplify manipulations, let us symbolize the difference operator Dr : E∗ × E∗ × · · · × E∗︸                ︷︷                ︸

p times

→ F by

Dr(u1,u2, . . . ,up) = r

 p∑
j=1

β ju j

 −
∏p

j=1 r
(
u j

)
[∑p

j=1 β j
∏p

k=1,k, j

√
r (uk)

]2

for all ui ∈ E∗, i = 1, 2, . . . , p.

Definition 2.7. A mapping r : E? × E? × · · · × E?︸                  ︷︷                  ︸
p times

−→ F is said to be as generalized reciprocal-quadratic mapping

if r satisfies the equation (5).

Assumptions on the above definition and equation (5): By assuming r(ui) , 0, for all ui ∈ A∗, i = 1, 2, . . . , p, the
singular cases are eliminated.
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3. Non-Archimedean Stability of Equation (5) by Direct Method

In this section, we accompolish various stabilities of the equation (5) in non-Archimedean fields related
with Ulam, Hyers, T. M. Rassias, J. M. Rassias and Gavruta by direct method.

Theorem 3.1. Let ` ∈ {−1, 1}. Let ψ : E? × E? × · · · × E?︸                  ︷︷                  ︸
p times

→ [0,∞) be a function such that

lim
m→∞

|β|2`(m+1)ψ
(
β`(i+1)u1, β

`(i+1)u2, . . . , β
`(i+1)up

)
= 0 (6)

for all ui,∈ E?, i = 1, 2, . . . , p. Suppose that r : E? × E? × · · · × E?︸                  ︷︷                  ︸
p times

→ F is a mapping satisfying the inequality

∣∣∣Dr(u1,u2, . . . ,up)
∣∣∣ ≤ ψ(u1,u2, . . . ,up) (7)

for all ui ∈ E?, i = 1, 2, . . . , p. Then there exists a unique generalized reciprocal-quadratic mapping Rq :
E? × E? × . . .E?︸               ︷︷               ︸

p times

→ F such that

∣∣∣r(u) − Rq(u)
∣∣∣ ≤ max

{
|β|2`iψ

(
β`(i+1)u, β`(i+1)u, . . . , β`(i+1)u

)
: i ∈N ∪ {0}

}
(8)

for all u ∈ E?.

Proof. Let ` = −1. Substituting ui = u for i = 1, 2, . . . , p in (7), we acquire∣∣∣∣∣∣r(βu) −
1
β2 r(u)

∣∣∣∣∣∣ ≤ ψ(u,u, . . . ,u) (9)

for all u ∈ E?. Now, replacing u by u
β in (9), we attain∣∣∣∣∣∣r(u) −

1
β2 r

(
u
β

)∣∣∣∣∣∣ ≤ ψ
(

u
β
,

u
β
, . . . ,

u
β

)
(10)

for all u ∈ E?. Plugging u into u
βm in (10) and multiplying by

∣∣∣∣ 1
β

∣∣∣∣2m
, we find∣∣∣∣∣∣ 1

β2m r
(

u
βm

)
−

1
β2(m+1)

r
(

u
βm+1

)∣∣∣∣∣∣ ≤
∣∣∣∣∣1β

∣∣∣∣∣2m

ψ

(
u
βm+1 ,

u
βm+1 , . . . ,

u
βm+1

)
(11)

for all u ∈ E∼≈ar. Therefore it is easy to see that the sequence
{

1
β2m r

(
u
βm

)}
is a Cauchy sequence by (6) and

(11). Since F is complete, we can define a mapping Rq given by

Rq(u) = lim
m→∞

1
β2m r

(
u
βm

)
. (12)

For each u ∈ E? and non-negative integers m, we obtain∣∣∣∣∣∣ 1
β2m r

(
u
βm

)
− r(u)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
m−1∑
j=0

{
1

β2( j+1)
r
(

u
β j+1

)
−

1
β2 j r

(
u
β j

)}∣∣∣∣∣∣∣∣
≤ max

{∣∣∣∣∣∣ 1
β2( j+1)

r
(

u
β j+1

)
−

1
β2 j r

(
u
β j

)∣∣∣∣∣∣ : 0 ≤ i < m
}

≤ max
{∣∣∣∣∣1β

∣∣∣∣∣2( j+1)

ψ

(
u
β j+1

,
u
β j+1

, . . . ,
u
β j+1

)
: 0 ≤ j < m

}
. (13)
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Using (12) and allowing m→∞ in the above inequality (13), we find that the inequality (8) is valid . Using
(6), (7) and (12), we have for all u1,u2, . . . ,up ∈ E∗

∣∣∣DRq (u1,u2, . . . ,up)
∣∣∣ = lim

m→∞

∣∣∣∣∣1β
∣∣∣∣∣2m

∣∣∣∣∣∣Dr

(
u1

βm ,
u2

βm , . . . ,
up

βm

)∣∣∣∣∣∣
≤ lim

m→∞

∣∣∣∣∣1β
∣∣∣∣∣2m

ψ

(
u1

βm ,
u2

βm , . . . ,
up

βm

)
= 0.

Therefore the mapping Rq satisfies (5), which implies that it is reciprocal-quadratic mapping. In order
to demonstrate the distinctivity of Rq, let us presume RQ : E? × E? × . . .E?︸               ︷︷               ︸

p times

→ F be another reciprocal-

quadratic mapping satisfying (8). Then we have

∣∣∣Rq(u) − RQ(u)
∣∣∣ = lim

n→∞

∣∣∣∣∣1β
∣∣∣∣∣2n

∣∣∣∣∣∣Rq

(
u
βn

)
− RQ

(
u
βn

)∣∣∣∣∣∣
≤ lim

n→∞

∣∣∣∣∣1β
∣∣∣∣∣2n

max
{∣∣∣∣∣∣Rq

(
u
βn

)
− r

(
u
βn

)∣∣∣∣∣∣ ,
∣∣∣∣∣∣r
(

u
βn

)
− RQ

(
u
βn

)∣∣∣∣∣∣
}

≤ lim
n→∞

lim
m→∞

max
{
max

{ ∣∣∣∣∣1β
∣∣∣∣∣2( j+n)

ψ

(
u

β j+n+1
,

u
β j+n+1

, . . . ,
u

β j+n+1

)
: n ≤ j ≤ m + n

}}
= 0

for all u ∈ E?. Similar proof follows for the case ` = 1. This implies that Rq is unique which finishes the
proof.

In the following corollaries, we assume that |2| < 1 for a non-Archimdean fieldE. We obtain the stability
results of equation (5) associated with Hyers, T. M. Rassias and J. M. Rassias by Theorem 3.1.

Corollary 3.2. Let r : E? × E? × · · · × E?︸                  ︷︷                  ︸
p times

→ F be a mapping satisfying the following inequality

∣∣∣Dr(u1,u2, . . . ,up)
∣∣∣ ≤ ε

for all ui ∈ E?, i = 1, 2, . . . , p, where ε > 0 is a constant. Then there exists a unique generalized reciprocal-quadratic
mapping Rq : E? × E? × · · · × E?︸                  ︷︷                  ︸

p times

→ F satisfying (5) and

∣∣∣r(u) − Rq(u)
∣∣∣ ≤ ε

for every u ∈ E?.

Proof. The proof is achieved by assuming ψ(u1,u2, . . . ,up) = ε in Theorem 3.1 when ` = −1.

Corollary 3.3. Assume k1 ≥ 0 and α , −2, as fixed constants. Suppose r : E? × E? × · · · × E?︸                  ︷︷                  ︸
p times

→ F satisfies

∣∣∣Dr(u1,u2, . . . ,up)
∣∣∣ ≤ k1

 p∑
i=1

|ui|
α
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for all ui ∈ E?, i = 1, 2, . . . , p. Then there exists a unique generalized reciprocal-quadratic mapping Rq :
E? × E? × · · · × E?︸                  ︷︷                  ︸

p times

→ F satisfying (5) and

∣∣∣r(u) − Rq(u)
∣∣∣ ≤  |p|k1

|β|α |u|
α , for α > −2

k1|p||β|2 |u|α , for α < −2

for every u ∈ E∗.

Proof. The proof is established by considering ψ(u1,u2, . . . ,up) = k1

(∑p
i=1 |ui|

α
)

in Theorem 3.1 with α > −2
and ` = −1 and in Theorem 3.1 with α < −2 and ` = 1.

Corollary 3.4. Let k2 ≥ 0 be fixed constant. Suppose r : E? × E? × · · · × E?︸                  ︷︷                  ︸
p times

→ F is a mapping satisfies

∣∣∣Dr(u1,u2, . . . ,up)
∣∣∣ ≤ k2

p∏
i=1

|ui|
α

for all ui ∈ E?, i = 1, 2, . . . , p. Then there exists a unique generalized reciprocal-quadratic mapping Rq :
E? × E? × · · · × E?︸                  ︷︷                  ︸

p times

→ F satisfying (5) and

∣∣∣r(u) − Rq(u)
∣∣∣ ≤  k2

|β|α |u|
α , for α > −2

k2|β|2 |u|α , for α < −2

for every u ∈ E?.

Proof. The proof is complete by opting ψ(x, y) = k2
∏p

i=1 |ui|
α in Theorem 3.1 with α > −2 and ` = −1 and in

Theorem 3.1 with α < −2 and ` = 1.

4. Non-Archimedean Stability of Equation (5) by Fixed Point Method

Using fixed point alternative, we investigate various stabilities of the equation (5) in non-Archimedean
fields by fixed point method.

Theorem 4.1. Suppose that the mapping r : E? × E? × · · · × E?︸                  ︷︷                  ︸
p times

→ F satisfies the inequality

∣∣∣Dr(u1,u2, . . . ,up)
∣∣∣ ≤ φ(u1,u2, . . . ,up) (14)

for all ui ∈ E?, i = 1, 2, . . . , p, where φ : E? × E? × · · · × E?︸                  ︷︷                  ︸
p times

→ [0,∞) is a given function. If 0 < L < 1,

|β|−2φ
(
β−1u1, β

−1u2, . . . , β
−1up

)
≤ Lφ(u1,u2, . . . ,up) (15)

for all ui ∈ E?, i = 1, 2, . . . , p, then there exists a unique generalized reciprocal-quadratic mapping

Rq : E? × E? × · · · × E?︸                  ︷︷                  ︸
p times

→ F

such that

|r(u) − Rq(u)| ≤ L|β|2φ(u,u, . . . ,u) (16)

for all u ∈ E?.
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Proof. Plugging ui by u
β for i = 1, 2, . . . , p in (14), we obtain∣∣∣∣r(u) − β−2r

(
β−1u

)∣∣∣∣ ≤ φ (
β−1u, β−1u, . . . , β−1u

)
(17)

for all u ∈ E?.
For every 1, h ∈ E? → F define

d(1, h) = in f {δ > 0 : |1(u) − h(u)| ≤ δφ(u,u, . . . ,u)}, for all u ∈ E?.

By Example 2.5, d defines a complete generalized non-Archimedean metric on S = {1|1 : E? → R}.
Let σ : S→ S be defined by σ(1)(u) : β−21(β−1u) for all u ∈ E? and 1 ∈ S. If for some 1, h ∈ S and δ > 0,

|1(u) − h(u)| ≤ δφ(u,u, . . . ,u) (u ∈ E?),

then

|σ(1)(u) − σ(h)(u)| = |β|−2
∣∣∣1(β−1u) − h(β−1u)

∣∣∣
≤ δ|β|−2φ(β−1u, β−1u, . . . , β−1u)
≤ δLφ(u,u, . . . ,u) (u ∈ E?).

Therefore, d(σ(1), σ(h)) ≤ Ld(1, h). Hence d is a strictly contractive mapping on S with Lipschitz
constant L.

Let X = {1 ∈ S : d(r, 1) < ∞}, since

|σ(r)(u) − σ0r(u)| =
∣∣∣β−2r(β−1u) − r(u)

∣∣∣
≤ φ(β−1u, β−1u, . . . , β−1u)

≤ L|β|2φ(u,u, . . . ,u) (u ∈ E?).

This means that d(σ(r), r) ≤ L|β|2. By Theorem 2.6 (ii), σ has a unique fixed point Rq : E? → F which is
defined by

Rq(u) = lim
n→∞

σn(r)(u) = lim
n→∞

β−2nr(β−nu) (u ∈ E?).

The inequality∣∣∣DRq (u1,u2, . . . ,up)
∣∣∣ = lim

m→∞
|β|−2m

∣∣∣Dr(β−mu1, )β−mu2, . . . , β
−mup

∣∣∣
≤ lim

m→∞
|β|−2mφ(β−mu1, β

−mu2, . . . , β
−mup)

≤ lim
m→∞

Lmφ(u1,u2, . . . ,up) = 0

for all ui ∈ E?,i = 1, 2, . . . , p, implies that Rq is generalized reciprocal-quadratic. By Theorem 2.6 (ii),
d(r,Rq) ≤ d(σ(r), r), that is,

|r(u) − Rq(u)| ≤ L|β|2φ(u,u, . . . ,u) (u ∈ E?).

If RQ : E? → F is another generalized reciprocal-quadratic mapping which satisfies (16), then RQ is a fixed
point of σ in X. The uniqueness of the fixed point of σ in X implies that Rq = RQ.

The following theorem is dual of Theorem 4.1 and its proof follows directly from Theorem 4.1. Hence we
omit the proof.

Theorem 4.2. Suppose that the mapping r : E? × E? × · · · × E?︸                  ︷︷                  ︸
p times

→ F satisfies (14). If 0 < L < 1,

|β|2φ
(
βu1, βu2, . . . , βup

)
≤ Lφ(u1,u2, . . . ,up) (18)
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for all ui ∈ E?, i = 1, 2, . . . , p, then there exists a unique generalized reciprocal-quadratic mapping

Rq : E? × E? × · · · × E?︸                  ︷︷                  ︸
p times

→ F

such that

|r(u) − Rq(u)| ≤ Lφ(β−1u, β−1u, . . . , β−1u) (19)

for all u ∈ E?.

In the following corollaries, we investigate the stability results of equation (5) pertinent to Hyers, T. M.
Rassias and J. M. Rassias using Theorems 4.1 and 4.2.

Corollary 4.3. Let r : E? × E? × · · · × E?︸                  ︷︷                  ︸
p times

→ F be a mapping for which there exists a constant ε (independent of

u1,u2, . . . ,up)≥ 0 such that the functional inequality∣∣∣Dr(u1,u2, . . . ,up)
∣∣∣ ≤ ε

holds for all ui ∈ E?, i = 1, 2, . . . , p. Then there exists a unique generalized reciprocal-quadratic mapping rq :
E? × E? × · · · × E?︸                  ︷︷                  ︸

p times

→ F satisfying the functional equation (5) and

|r(u) − Rq(u)| ≤ ε

for all u ∈ E?.

Proof. Taking φ(u1,u2, . . . ,up) = ε and choosing L = |β|−2 in Theorem 4.1, the proof follows immediately.

Corollary 4.4. Let r : E? × E? × · · · × E?︸                  ︷︷                  ︸
p times

→ F be a mapping and let there exist real numbers α , −2 and c1 ≥ 0

such that∣∣∣Dr(u1,u2, . . . ,up)
∣∣∣ ≤ c1

 p∑
i=1

|ui|
α


for all ui ∈ E?, i = 1, 2, . . . , p. Then there exists a unique generalized reciprocal-quadratic mapping Rq :
E? × E? × · · · × E?︸                  ︷︷                  ︸

p times

→ F satisfying the functional equation (5) and

|r(u) − Rq(u)| ≤

 |p|c1

|β|α |u|
α, for α > −2

|p|c1|β|2|u|α, for α < −2

for all u ∈ E?.

Proof. Assume φ(u1.u2., . . . ,up) = c1

(∑p
i=1 |ui|

α
)

and then select L = |β|−α−2, α > −2 and L = |β|α+2, α < −2,
respectively in Theorem 4.1 and Theorem 4.2 to get the desired result.

Corollary 4.5. Let c2 ≥ 0 and α , −2 be real numbers, and r : E? × E? × · · · × E?︸                  ︷︷                  ︸
p times

→ F be a mapping satisfying

the functional inequality

∣∣∣Dr(u1,u2, . . . ,up)
∣∣∣ ≤ c3

 p∏
i=1

|ui|
α/p
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for all ui ∈ E?, i = 1, 2, . . . , p. Then there exists a unique generalized reciprocal-quadratic mapping Rq :
E? × E? × · · · × E?︸                  ︷︷                  ︸

p times

→ F satisfying the functional equation (5) and

|r(u) − Rq(u)| ≤

 c2
|β|α |u|

α, for α > −2

c2|β|2|u|α, for α < −2

for all u ∈ E?.

Proof. The proof goes through the same way as in Theorem 4.1 and Theorem 4.2 by considering

φ(u1,u2, . . . ,up) = c3

 p∏
i=1

|ui|
α/p


and then choosing β = L−α−2, α > −2 and L = βα+2, α < −2, respectively.
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