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Abstract. Rough set theory is one of important models of granular computing. Lower and upper approxi-
mation operators are two important basic concepts in rough set theory. The classical Pawlak approximation
operators are based on partition and have been extended to covering approximation operators. Covering is
one of the fundamental concepts in the topological theory, then topological methods are useful for studying
the properties of covering approximation operators. This paper presents topological properties of a type of
granular based covering approximation operators, which contains seven pairs of approximation operators.
Then, topologies are induced naturally by the seven pairs of covering approximation operators, and the
topologies are just the families of all definable subsets about the covering approximation operators. Binary
relations are defined from the covering to present topological properties of the topological spaces, which
are proved to be equivalence relations. Moreover, connectedness, countability, separation property and
Lindelöf property of the topological spaces are discussed. The results are not only beneficial to obtain
more properties of the pairs of covering approximation operators, but also have theoretical and actual
significance to general topology.

1. Introduction

Rough set theory, proposed by Pawlak, has been successfully applied in many fields such as granular
computing, pattern recognition, data mining, and knowledge discovery. The lower and upper approxima-
tion operators are two important basic concepts in the rough set theory. In the Pawlak’s rough set model
[20], the lower and upper approximation operators are induced by equivalence relations or partitions.
However, the requirement of an equivalence relation or partition in the Pawlak’s rough set model may
limit the applications of the rough set model. Then, many authors have generalized the Pawlak’s rough set
model by using more general binary relations [4, 30, 31, 37, 38], by employing coverings [1, 3, 41, 46], by
utilizing adjoint operators [19], or by considering the fuzzy environment [10, 18, 35]. The covering rough
set model is one of the most important extensions of the classical Pawlak rough set model.
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Topology is a theory with many applications not only in almost all branches of mathematics, but also
in many real life applications. There exist near connections between topology and rough set theory. Many
authors explored topological structures of rough sets [13, 15, 16, 21–24, 26, 27, 29, 33, 34, 38, 42, 46]. Wiweger
extended the Pawlak rough sets to topological rough sets [33]. Skowron investigated the topic of topology in
information systems [29]. Lin and Liu explored axioms for approximation operations within the framework
of topological spaces [16]. Yao discussed topological properties of the Pawlak approximation operations
[38]. Wu and Mi examined topological structure of generalized rough sets in infinite universes of discourse
[34]. Polkowski defined the hit-or-miss topology on rough sets and proposed a scheme to approximate
mathematical morphology within the general paradigm of soft computing [22, 23]. Kondo [13], Qin et al.
[27], Zhang et al. [42], Li et al. [15], Yang and Xu [36], Zhang et al. [44] studied topological properties of
relation-based rough sets.

There also exists much result on relationships between topology and covering rough sets. Pomykala
discussed topological properties of two pairs of covering approximations [24]. Zhu explored a type of
covering rough sets by topological approach [46]. Zhao constructed a topology in a covering approximation
space and explored topological properties of the topological space [45]. Chen and Li defined open sets,
closed sets, rough inclusion, rough equality on covering rough sets and studied some of their properties
[7–9]. Ge, Bai, Yun, Bian and Wang gave topological characterizations of the covering C for covering upper
approximation operators to be closure operators [2, 12]. Restrepo and Gómez investigated properties of
covering approximation operators being closure and topological closure in a framework of sixteen pairs of
dual approximation operators [28]. Thuan discussed covering rough sets from a topological view [32]. Liu
et al. discussed the topological structures induced by covering lower approximations and established the
relationship among these topologies [17].

The purpose of this paper is to discuss topological properties of a type of granular based covering
approximation operators, which contains seven pairs of covering approximation operators. In Section 2,
we present definitions and properties of the covering approximation operators and some basic concepts in
the topological theory. In Section 3, we investigate topological properties of the covering approximation
operators, and obtain that the topologies induced from the covering approximation operators are just
the families of all definable sets about the covering approximation operators. Then equivalence relations
are constructed from the covering to present connectedness, countability, separate property and Lindelöf
property of the topological spaces. In Section 4, we explore relationships among the topologies induced
by the covering approximation operators and the topology induced by the covering in [45]. Section 5
concludes the paper.

2. Concepts and Properties

In this section, we introduce some basic definitions and properties of covering rough sets and some
basic concepts of topological spaces.

2.1. Definitions and Properties of Covering Approximation Operators
Suppose that U is a non-empty set called the universe, and P(U) is the power set of U. For X ⊆ U, −X

is the complement of X in U. We do not restrict the universe to be finite.
We now review the first pair of granular based covering approximation operators in which the upper

approximation operator was first defined by Zakowski [41]. The approximation operators were also studied
by Pomykala [24], Yao [38, 39], Li [14], Zhu and Wang [47], and Zhang et al. [43].

Definition 2.1. Let C be a covering of the universe U. The pair of dual covering approximation operators
apr′′
C

: P(U)→ P(U) and apr′′
C

: P(U)→ P(U) is defined as follows: for any X ⊆ U,
apr′′
C

(X) = {x|∀K ∈ C, x ∈ K⇒ K ⊆ X},

apr′′
C

(X) = ∪{K|K ∈ C, K ∩ X , ∅}.

There are also six pairs of this type of granular based covering approximation operators defined in [40].
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Definition 2.2. ([40]) Let C be a covering of U. Define
Md(C, x) = {K ∈ C|x ∈ K ∧ (∀S ∈ C ∧ x ∈ S ∧ S ⊆ K⇒ S = K)},
MD(C, x) = {K ∈ C|x ∈ K ∧ (∀S ∈ C ∧ x ∈ S ∧ K ⊆ S⇒ K = S)},
(x)C = ∩{K ∈ C|x ∈ K},
st(x,C) = ∪{K ∈ C|x ∈ K},
∩ − reduct(C) = C − {K|K ∈ C,∃C1 ⊆ (C − {K})[K = ∩C1]},
∪ − reduct(C) = C − {K|K ∈ C,∃C1 ⊆ (C − {K})[K = ∪C1]}.

In [40], six coverings induced by C are defined as follows:
C1 = ∪{Md(C, x)|x ∈ U},
C2 = ∪{MD(C, x)|x ∈ U},
C3 = {(x)C|x ∈ U},
C4 = {st(x,C)|x ∈ U},
C∩ = ∩ − reduct(C),
C∪ = ∪ − reduct(C).

From Definitions 2.1 and 2.2, six pairs of covering approximation operators are obtained in [40]:
(apr′′

C1
, apr′′

C1
), (apr′′

C2
, apr′′

C2
), (apr′′

C3
, apr′′

C3
), (apr′′

C4
, apr′′

C4
), (apr′′

C∩

, apr′′
C∩

), (apr′′
C∪

, apr′′
C∪

). The pair of covering

approximation operators (apr′′
C3
, apr′′

C3
) was also discussed in [25]. The upper approximation operator apr′′

C3

was also introduced in [6].
Some basic properties of the pairs of covering approximation operators (apr′′

C
, apr′′

C
), (apr′′

C1
, apr′′

C1
),

(apr′′
C2
, apr′′

C2
), (apr′′

C3
, apr′′

C3
), (apr′′

C4
, apr′′

C4
), (apr′′

C∩

, apr′′
C∩

), (apr′′
C∪

, apr′′
C∪

) are enumerated in the following propo-
sitions.

Proposition 2.3. ([24, 41, 43]) Let C be a covering of U. Then, for any X,Y ⊆ U, x, y ∈ U,
(1) apr′′

C
(U) = U, apr′′

C
(∅) = ∅,

(2) apr′′
C

(X) ⊆ X ⊆ apr′′
C

(X),

(3) apr′′
C

(X ∩ Y) = apr′′
C

(X) ∩ apr′′
C

(Y), apr′′
C

(X ∪ Y) = apr′′
C

(X) ∪ apr′′
C

(Y),

(4) x ∈ apr′′
C

({y})⇐⇒ y ∈ apr′′
C

({x}),
(5) X ⊆ Y ⊆ U =⇒ apr′′

C
(X) ⊆ apr′′

C
(Y) and apr′′

C
(X) ⊆ apr′′

C
(Y),

(6) apr′′
C

(X) = ∪x∈Xapr′′
C

({x}),
(7) apr′′

C
(X) = X⇔ apr′′

C
(X) = X.

Proof. We only prove (7). “⇒”. For any x ∈ apr′′
C

(X), there exists a K ∈ C such that x ∈ K and K ∩ X , ∅.
Let y ∈ K ∩ X. Since apr′′

C
(X) = X, we get y ∈ apr′′

C
(X). Then K ⊆ X, which follows that x ∈ X. Hence,

apr′′
C

(X) ⊆ X. By (2), X ⊆ apr′′
C

(X). Therefore, X = apr′′
C

(X).
“⇐”. For any x ∈ X and any K ∈ C with x ∈ K, we have {x} ⊆ K ∩ X , ∅. Then K ⊆ apr′′

C
(X). Since

apr′′
C

(X) = X, we obtain K ⊆ X. It follows that x ∈ apr′′
C

(X). Thus X ⊆ apr′′
C

(X). Therefore, X = apr′′
C

(X).

Corollary 2.4. Let C be a covering of U. Then, for any X,Y ⊆ U, x, y ∈ U, i ∈ {1, 2, 3, 4,∩,∪},
(1) apr′′

Ci
(U) = U, apr′′

Ci
(∅) = ∅,

(2) apr′′
Ci

(X) ⊆ X ⊆ apr′′
Ci

(X),

(3) apr′′
Ci

(X ∩ Y) = apr′′
Ci

(X) ∩ apr′′
Ci

(Y), apr′′
Ci

(X ∪ Y) = apr′′
Ci

(X) ∪ apr′′
Ci

(Y),

(4) x ∈ apr′′
Ci

({y})⇐⇒ y ∈ apr′′
Ci

({x}),
(5) X ⊆ Y ⊆ U =⇒ apr′′

Ci
(X) ⊆ apr′′

Ci
(Y) and apr′′

Ci
(X) ⊆ apr′′

Ci
(Y),

(6) apr′′
Ci

(X) = ∪x∈Xapr′′
Ci

({x}),
(7) apr′′

Ci
(X) = X⇔ apr′′

Ci
(X) = X.
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Proof. For any i ∈ {1, 2, 3, 4,∩,∪}, Ci is a covering of U. Then, by Proposition 2.3, we can obtain the
proposition directly.

Proposition 2.5. ([43]) Let C be a covering of U. Then the following statements are equivalent:
(1) apr′′

C
(apr′′

C
(X)) = apr′′

C
(X) for all X ⊆ U,

(2) apr′′
C

(−apr′′
C

(X)) = −apr′′
C

(X) for all X ⊆ U,
(3) ∀x ∈ U and K ∈ C, either K ⊆ st(x,C) or K ∩ st(x,C) , ∅,
(4) {st(x,C)|x ∈ U} is a partition of U.

Let the covering C in Proposition 2.5 be Ci(i ∈ {1, 2, 3, 4,∩,∪}), then we obtain

Corollary 2.6. Let C be a covering of U. Then, for any i ∈ {1, 2, 3, 4,∩,∪}, the following statements are equivalent:
(1) apr′′

Ci
(apr′′

Ci
(X)) = apr′′

Ci
(X) for all X ⊆ U,

(2) apr′′
Ci

(−apr′′
Ci

(X)) = −apr′′
Ci

(X) for all X ⊆ U,
(3) ∀x ∈ U and K ∈ Ci, either K ⊆ st(x,Ci) or K ∩ st(x,Ci) , ∅,
(4) {st(x,Ci)|x ∈ U} is a partition of U.

2.2. Basic Concepts in Topology
In this subsection, we introduce some basic concepts of topological spaces. For the other basic topological

concepts, we refer to [11].

Definition 2.7. ([11]) Let U be a non-empty set. A topology on U is a collection τ of subsets of U having
the following properties:

(1) ∅ and U are in τ,
(2) the union of the elements of any subcollection of τ is in τ,
(3) the intersection of the elements of any finite subcollection of τ is in τ.

Then (U, τ) is called a topological space, each element in τ is called an open set, and the complement of an
open set is called a closed set. A family β ⊆ τ is called a base for (U, τ), if every open set of (U, τ) can be
represented as a union of subfamily of β. A family γ ⊆ τ is called a subbase for (U, τ) if the family of all
finite intersections is a base for (U, τ).

Definition 2.8. ([11]) Let (U, τ) be a topological space and X ∈ P(U). Then the topological interior and
closure of X are, respectively, defined by

intτ(X) = ∪{G|G is an open set and G ⊆ X},
clτ(X) = ∩{K|K is a closed set and X ⊆ K}.

intτ and clτ are, respectively, called the topological interior operator and the topological closure operator of
τ.

It can be shown that clτ(X) is a closed set and intτ(X) is an open set in (U, τ). X is an open set in (U, τ) if
and only if intτ(X) = X, and X is a closed set in (U, τ) if and only if clτ(X) = X.

The topological closure operator can be also defined by Kuratowski closure axioms.

Definition 2.9. ([5, 11]) Let U be a non-empty set and cl : P(U)→ P(U). For any X,Y ⊆ U,
(1) cl(Ø) = Ø,
(2) X ⊆ cl(X),
(3) cl(X ∪ Y) = cl(X) ∪ cl(Y),
(4) cl(cl(X)) = cl(X),
(5) cl(X) = ∪x∈Xcl({x}).

If cl satisfies (1)–(3), then cl is called a closure operator, and (U, cl) is called a closure space [5]. If cl satisfies
(1)–(4), that is, cl satisfies Kuratowski closure axiom, then cl is called a topological closure operator [11]. If
a closure operator cl satisfies (5), then cl is called a quasi-discrete closure operator [5].

In fact, in a closure space (U, cl), it is easy to prove that τ(cl) ={−X|cl(X) = X} is a topology. Similarly, the
topological interior operator can be defined by corresponding axioms.
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Definition 2.10. ([11]) Let (U, τ) be a topological space. If A ⊆ U is open in U if and only if A is closed in
U, then (U, τ) is called a pseudo-discrete space. If the intersection of arbitrarily many open sets in U is still
open, then τ is called an Alexandrov topology, and (U, τ) is said to be an Alexandrov space.

(U, τ) is said to be connected if the only subsets of U that are both open and closed are empty set and
U itself. (U, τ) is said to be locally connected at x if for every neighborhood O of x, there is a connected
neighborhood V of x contained in U. If (U, τ) is locally connected at each of its points, it is said simply to be
locally connected.

(U, τ) is said to have a countable basis at x if there is a countable collectionB of neighborhoods of x such
that each neighborhood of x contains at least one of the elements ofB. If (U, τ) has a countable basis at each
of its points, it is said to satisfy the first countability axiom, or to be first-countable. If (U, τ) has a countable
basis for its topology, it is said to satisfy the second countability axiom, or to be second-countable. A space
(U, τ) on which every open covering contains a countable subcovering is called a Lindelöf space. A space
(U, τ) having a countable dense subset is often said to be separable.

(U, τ) is said to be regular if for each pair consisting of a point x and a closed set B disjoint from x, there
exist disjoint open sets containing x and B, respectively. (U, τ) is said to be normal if for each pair A, B of
disjoint closed sets of U, there exist disjoint open sets containing A and B, respectively.

3. Topological Structures of the Type of Granular Based Covering Rough Sets

In this section, we investigate topological properties of the covering approximation operators, and
explore properties of the topologies induced by the covering approximation operators.

Proposition 3.1. Let C be a covering of U. Then
(1) apr′′

C
is a quasi-discrete closure operator,

(2) τ(apr′′
C

) = {X ⊆ U|apr′′
C

(X) = X} = {−X|apr′′
C

(X) = X} is a topology.

Proof. (1) By Proposition 2.3(1-3,6) and Definition 2.9, we get that apr′′
C

is a quasi-discrete closure operator.
(2) According to Proposition 2.3(1-3), we obtain that τ(apr′′

C
) is a topology.

Corollary 3.2. Let C be a covering of U. Then, for any i ∈ {1, 2, 3, 4,∩,∪}, we have:
(1) apr′′

Ci
is a quasi-discrete closure operator,

(2) τ(apr′′
Ci

) = {X ⊆ U|apr′′
Ci

(X) = X} = {−X|apr′′
Ci

(X) = X} is a topology.

Proof. (1) According to Corollary 2.4(1-3,6) and Definition 2.9, we can obtain that apr′′
C

is a quasi-discrete
closure operator.

(2) It follows from Corollary 2.4(1-3) that τ(apr′′
Ci

) is a topology.

Proposition 3.3. Let C be a covering of U. Then the following are equivalent:
(1) ∀x ∈ U and K ∈ C, either K ⊆ Friends(x) or K ∩ Friends(x) , ∅,
(2) apr′′

C
is a topological interior operator,

(3) apr′′
C

is a topological closure operator.

Proof. We can obtain the proposition by Propositions 2.3(1-3) and 2.5.

Corollary 3.4. Let C be a covering of U. Then, for any i ∈ {1, 2, 3, 4,∩,∪}, the following are equivalent:
(1) ∀x ∈ U and K ∈ Ci, either K ⊆ st(x,Ci) or K ∩ st(x,Ci) , ∅,
(2) apr′′

Ci
is a topological interior operator,

(3) apr′′
Ci

is a topological closure operator.

Proof. According to Corollaries 2.4(1-3) and 2.6, it is easy to get the corollary.
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Proposition 3.3 (and Corollary 3.4) presents a necessary and sufficiency conditions for apr′′
C

(apr′′
Ci
, i ∈

{1, 2, 3, 4,∩,∪} ) and apr′′
C

(apr′′
Ci

) to be, respectively, a topological closure operator and a topological interior

operator. In order to present more properties of the topological spaces (U, τ(apr′′
C

)) and (U, τ(apr′′
Ci

)), we
define binary relations.

Definition 3.5. Let C be a covering of U. Define a binary relation RC by: for any x, y ∈ U, xRCy if and only if
there exist K1,K2, · · · ,Kn ∈ C such that x ∈ K1, y ∈ Kn, and K j ∩ K j+1 , ∅ ( j = 1, 2, · · · ,n − 1). Define a binary
relation RCi (i ∈ {1, 2, 3, 4,∩,∪}) as: for any x, y ∈ U, xRCi y if and only if there exist K1,K2, · · · ,Kn ∈ Ci such
that x ∈ K1, y ∈ Kn, and K j ∩ K j+1 , ∅ ( j = 1, 2, · · · ,n − 1).

Proposition 3.6. Let C be a covering of U. Then
(1) RC is reflexive,
(2) RC is symmetric,
(3) RC is transitive.

Proof. (1) For any x ∈ U, there exists a K ∈ C such that x ∈ K. Then, by Definition 2.8, xRCx. Hence RC is
reflexive.

(2) For any x, y ∈ U, if xRCy, then there exist K1,K2, · · · ,Kn ∈ C such that x ∈ K1, y ∈ Kn, and K j ∩ K j+1 ,
∅ ( j = 1, 2, · · · ,n − 1). Then we have yRCx. Therefore, RC is symmetric.

(3) For any x, y, z ∈ U, if xRCy and yRCz, then there exist K1,K2, · · · ,Kn ∈ C such that x ∈ K1, y ∈ Kn,
and K j ∩ K j+1 , ∅ ( j = 1, 2, · · · ,n − 1), and we can find G1,G2, · · · ,Gm ∈ C such that y ∈ G1, z ∈ Gm, and
G j ∩G j+1 , ∅ ( j = 1, 2, · · · ,m − 1). Thus y ∈ Kn ∩G1 , ∅. Hence there exist K1,K2, · · · ,Kn,G1,G2, · · · ,Gm ∈ C

such that x ∈ K1, z ∈ Gm, and K j ∩K j+1 , ∅ ( j = 1, 2, · · · ,n− 1),Kn ∩G1 , ∅,G j ∩G j+1 , ∅ ( j = 1, 2, · · · ,m− 1).
Consequently, xRCz.

Corollary 3.7. Let C be a covering of U. Then, for any i ∈ {1, 2, 3, 4,∩,∪},
(1) RCi is reflexive,
(2) RCi is symmetric,
(3) RCi is transitive.

Proof. Since Ci is a covering of U, by Proposition 3.6, we get this corollary.

By Proposition 3.6, RC is an equivalence relationship, i.e., U/RC , {[x]RC |x ∈ U} is a partition of U,
where [x]RC is the equivalence class of x. From Corollary 3.4, RCi is an equivalence relationship, i.e.,
U/RCi , {[x]RCi

|x ∈ U} is a partition of U, where [x]RCi
is the equivalence class of x.

Proposition 3.8. Let C be a covering of U, then for any x ∈ U,
(1) apr′′

C
([x]RC ) = [x]RC ,

(2) [x]RC is an open and closed subset of (U, τ(apr′′
C

)).

Proof. (1) According to Proposition 2.3(2), we obtain apr′′
C

([x]RC ) ⊆ [x]RC . For any y ∈ [x]RC , we have xRCy.
Then, there exist K1,K2, · · · ,Kn ∈ C such that x ∈ K1, y ∈ Kn, and K j ∩ K j+1 , ∅ ( j = 1, 2, · · · ,n − 1). For any
K ∈ C with y ∈ K, we have K ⊆ [x]RC . In fact, since y ∈ K and y ∈ Kn, we obtain K ∩ Kn , ∅. Then, for any
z ∈ K, there exist K1,K2, · · · ,Kn,K ∈ C such that x ∈ K1, z ∈ K, and K j∩K j+1 , ∅( j = 1, 2, · · · ,n−1),Kn∩K , ∅.
It follows that z ∈ [x]RC . Hence K ⊆ [x]RC . It implies that y ∈ apr′′

C
([x]RC ). Therefore, [x]RC ⊆ apr′′

C
([x]RC ).

(2) Due to (1), [x]RC is an open set. Then, by Proposition 2.3(6), we deduce that [x]RC is a closed set.

Corollary 3.9. Let C be a covering of U. Then, for any i ∈ {1, 2, 3, 4,∩,∪}, x ∈ U,
(1) apr′′

Ci
([x]RCi

) = [x]RCi
,

(2) [x]RCi
is an open and closed subset of (U, τ(apr′′

Ci
)).

Proof. Thanks to Corollary 2.4(2), we can get the proof of the corollary referring to the proof of Proposition
3.8.



Y.-L. Zhang, C,-G. Li / Filomat 32:9 (2018), 3129–3141 3135

Proposition 3.10. Let C be a covering of U, then
(1) for any X ∈ τ(apr′′

C
) and x ∈ X, [x]RC ⊆ X,

(2) {[x]RC } is an open neighborhood base of x ∈ U.

Proof. (1) Since X ∈ τ(apr′′
C

), we have apr′′
C

(X) = X. For any y ∈ [x]RC , there exist K1,K2, · · · ,Kn ∈ C such that
x ∈ K1, y ∈ Kn, and K j ∩ K j+1 , ∅( j = 1, 2, · · · ,n − 1). Since x ∈ K1 and x ∈ X = apr′′

C
(X), by Definition 2.1,

K1 ⊆ X. Let z ∈ K1 ∩ K2, then z ∈ K1 ⊆ X = apr′′
C

(X). Hence, by Definition 2.1, K2 ⊆ X. In the same way, we
have Kn ⊆ X. Then y ∈ X. Therefore, we conclude that [x]RC ⊆ X.

(2) According to (1) and Proposition 3.8(2), it is easy to see that {[x]RC } is an open neighborhood base of
x.

Corollary 3.11. Let C be a covering of U. Then, for any i ∈ {1, 2, 3, 4,∩,∪},
(1) for any X ∈ τ(apr′′

Ci
) and x ∈ X, [x]RCi

⊆ X,
(2) {[x]RCi

} is an open neighborhood base of x ∈ U.

Proof. It is similar to the proof of Proposition 3.10.

Proposition 3.12. Let C be a covering of U, then for any x ∈ U,
(1) clτ(apr′′

C
)({x}) = [x]RC ,

(2) [x]RC is a connected component that contains x.
(3) (U, τ(apr′′

C
)) is a locally connected space.

Proof. (1) By Proposition 2.3(7), X ⊆ U is an open set of (U, τ(apr′′
C

)), if and only if X is a closed set. Then,
according to Propositions 3.8 and 3.10, we have

clτ(apr′′
C

)({x})= ∩{B|x ∈ B, and B is closed}
= ∩{B|x ∈ B, and B is open} = [x]RC .

(2) Suppose that Cx is a connected component containing x. Then Cx is closed. It implies that Cx is open.
By Proposition 3.10, we get that [x]RC ⊆ Cx. Thus [x]RC = Cx. Otherwise, [x]RC , Cx. Hence [x]RC is an open
and closed proper subset of Cx, which contradicts the fact that Cx is a connected component. Therefore,
[x]RC is a connected component that contains x.

(3) For any x ∈ U and A ∈ τ(apr′′
C

) with x ∈ A, we obtain [x]RC ⊆ A. Due to (2), [x]RC is a connected set.
Then (U, τ(apr′′

C
)) is a locally connected space.

Corollary 3.13. Let C be a covering of U, then for any x ∈ U, i ∈ {1, 2, 3, 4,∩,∪},
(1) clτ(apr′′

Ci
)({x}) = [x]RCi

,
(2) [x]RCi

is a connected component that contains x.
(3) (U, τ(apr′′

Ci
)) is a locally connected space.

Proof. By Corollaries 2.4 and 3.2, we can obtain the proof using the same method as in the proof of
Proposition 3.12.

Theorem 3.14. Let C be a covering of U, then (U, τ(apr′′
C

)) is connected if and only if xRCy for all x, y ∈ U.

Proof. “⇐”. Suppose U = X ∪ Y and X ∩ Y = ∅. Let x ∈ X and y ∈ Y. By the assumption, we have xRCy. So
there exist K1,K2, · · · ,Kn ∈ C such that x ∈ K1, y ∈ Kn, and K j ∩ K j+1 , ∅ ( j = 1, 2, · · · ,n − 1). Then there at
least exists a j0(1 ≤ j0 ≤ n) such that K j0 ∩ X , ∅ and K j0 ∩ Y , ∅. Otherwise, for any j ∈ {1, 2, · · · ,n}, K j ⊆ X
or K j ⊆ Y. Since x ∈ X ∩ K1 , ∅, we have K1 ⊆ X. By K1 ∩ K2 , ∅, we have K2 ⊆ X. In the same way, we
get Kn ⊆ X. Then y ∈ Kn ⊆ X, which contradicts y ∈ Y. Let u ∈ K j0 ∩ X and v ∈ K j0 ∩ Y. Then u ∈ apr′′

C
(Y)

and u < Y, v ∈ apr′′
C

(X) and v < X. Hence apr′′
C

(X) , X and apr′′
C

(Y) , Y, which implies that X and Y are not
closed. Thus U is not the union of two disjoint closed sets, that is, U is connected.

“⇒”. Suppose that there exist x, y ∈ U such that xRCy does not hold. Let X = {z ∈ U|xRCz}.
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Then X is closed. In fact, for any u ∈ apr′′
C

(X), there exists a K ∈ C such that u ∈ K and K ∩ X , ∅. Since
x ∈ X, we get xRCu, which implies that u ∈ X. Hence apr′′

C
(X) ⊆ X. It follows that apr′′

C
(X) = X, which

implies that X is closed.
We are going to prove that −X is closed. If not, apr′′

C
(−X) * −X. Then there exists a u ∈ U such that

u ∈ apr′′
C

(−X) and u < −X. Hence there exists a K ∈ C such that u ∈ K and K ∩ (−X) , ∅. Let w ∈ K ∩ (−X). It
follows that uRCw. Since u ∈ X, we have w ∈ X, which contradicts the fact w ∈ −X.

Since x ∈ X and y ∈ −X, U is the union of two disjoint non-empty closed sets, that is, U is not
connected.

Corollary 3.15. Let C be a covering of U. Then, for any i ∈ {1, 2, 3, 4,∩,∪}, (U, τ(apr′′
Ci

)) is connected if and only if
xRCi y for all x, y ∈ U.

Proof. It is similar to the proof of Theorem 3.14.

Proposition 3.16. Let C be a covering of U, then
(1) τ(apr′′

C
) is pseudo-discrete,

(2) τ(apr′′
C

) is an Alexandrov space.

Proof. (1) By Proposition 2.3(7), X is open if and only if X is closed. Then τ(apr′′
C

) is pseudo-discrete.
(2) Since each open set in U is closed, the intersection of arbitrarily many open sets in U is still open.

Hence (U, τ(apr′′
C

) is an Alexandrov space.

Corollary 3.17. Let C be a covering of U. Then, for any i ∈ {1, 2, 3, 4,∩,∪},
(1) τ(apr′′

Ci
) is pseudo-discrete,

(2) τ(apr′′
C

) is an Alexandrov space.

Proof. According to Corollary 2.4, it is easy to get the conclusion.

By Proposition 3.16, for any X ⊆ U,
X ⊆ U is definable about apr′′

C
and apr′′

C

⇔ apr′′
C

(X) = X = apr′′
C

(X)

⇔ X is an open and closed set of τ(apr′′
C

)
⇔ X ∈ τ(apr′′

C
).

Hence the family of all definable subsets of U is τ(apr′′
C

). On the other hand,
(U, τ(apr′′

C
)) is not connected

⇔ (U, τ(apr′′
C

)) has non-empty open and closed proper subsets
⇔ (U, τ(apr′′

C
)) has other definable sets besides Ø and U.

(U, τ(apr′′
C

)) is connected
⇔ (U, τ(apr′′

C
)) do not have any non-empty open and closed proper subset

⇔ the definable sets about apr′′
C

and apr′′
C

are no other than Ø and U.

Then we can note that (U, τ(apr′′
C

)) is connected, if and only if the definable sets about apr′′
C

and apr′′
C

are

no other than Ø and U. (U, τ(apr′′
C

)) is not connected, if and only if (U, τ(apr′′
C

)) has other definable sets
besides Ø and U. Therefore, there exist relationships between the connectedness of topological spaces and
the existence of definable sets in approximation spaces.

In the same way, τ(apr′′
Ci

) (i ∈ {1, 2, 3, 4,∩,∪}) is the family of all definable subsets about apr′′
Ci

and apr′′
Ci

.

Proposition 3.18. Let C be a covering of U. Then
(1) (U, τ(apr′′

C
)) is a first countable space,

(2) (U, τ(apr′′
C

)) is a locally separable space.
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Proof. (1) According to Proposition 3.10(2), we obtain that {[x]RC } is an open neighborhood base of x. Hence
(U, τ(apr′′

C
)) is first countable.

(2) By Proposition 3.12(1), {x} is a dense subset of [x]RC , then [x]RC is a separable subset. Hence, due to
Proposition 3.10(1), each neighborhood of x has separable subset [x]RC . It implies that (U, τ(apr′′

C
)) is locally

separable.

Corollary 3.19. Let C be a covering of U. Then, for any i ∈ {1, 2, 3, 4,∩,∪},
(1) (U, τ(apr′′

Ci
)) is a first countable space,

(2) (U, τ(apr′′
Ci

)) is a locally separable space.

Proof. According to Corollaries 3.11 and 3.13, we can obtain this corollary referring to the proof of Proposi-
tion 3.18.

Proposition 3.20. Let C be a covering of U. Then
(1) (U, τ(apr′′

C
)) is a regular space,

(2) (U, τ(apr′′
C

)) is a normal space.

Proof. (1) For any x ∈ U and closed set B with x < B, according to Proposition 3.16(1), we get that B is open.
Thus there exist two disjoint open sets X\B and B such that x ∈ X\B and B ⊆ B. Then (U, τ(apr′′

C
)) is regular.

(2) For each pair A, B of disjoint closed sets of X, by Proposition 3.16(1), we have that A and B are open
sets. Then there exist disjoint open sets A and B such that A ⊆ A and B ⊆ B. It means that (U, τ(apr′′

C
)) is

normal.

Corollary 3.21. Let C be a covering of U. Then, for any i ∈ {1, 2, 3, 4,∩,∪},
(1) (U, τ(apr′′

Ci
)) is a regular space,

(2) (U, τ(apr′′
Ci

)) is a normal space.

Proof. It is similar to the proof of Proposition 3.20.

Proposition 3.22. Let C be a covering of U. Then the following are equivalent:
(1) U/RC is countable,
(2) (U, τ(apr′′

C
)) is second-countable,

(3) (U, τ(apr′′
C

)) is separable,
(4) (U, τ(apr′′

C
)) is a Lindelöf space.

Proof. (1)⇒(2). By Proposition 3.10, {[x]RC |x ∈ U} is a base of (U, τ(apr′′
C

)). Since U/RC = {[x]RC |x ∈ U} is
countable, we obtain that (U, τ(apr′′

C
)) is second-countable.

(2)⇒(3). It is clear.
(3)⇒(4). Let C be an open covering of U, and D be a countable dense subset of U. For any x ∈ D, there

exists a Kx ∈ C such that x ∈ Kx. Let C0 = {Kx|x ∈ D}. Then C0 is countable. Now we prove that C0 is a
covering of U. For any y ∈ U, there exists a K ∈ C such that y ∈ K. Hence [y]RC ⊆ K. Since D is a dense
subset of U, we get [y]RC ∩ D , ∅. Let x ∈ [y]RC ∩ D. Then there exists a Kx ∈ C0 such that x ∈ Kx. It
follows that [x]RC ⊆ Kx. Since x ∈ [y]RC and RC is an equivalence relation, we obtain [x]RC = [y]RC . Then
y ∈ [y]RC = [x]RC ⊆ Kx. Therefore, we can conclude that (U, τ(apr′′

C
)) is a Lindelöf space.

(4)⇒(1). U/RC = {[x]RC |x ∈ U} is an open covering of U. Since RC is an equivalence relation, U/RC is the
only subcovering of U/RC. Since (U, τ(apr′′

C
)) is a Lindelöf space, we obtain that U/RC is countable.

Corollary 3.23. Let C be a covering of U. Then, for any i ∈ {1, 2, 3, 4,∩,∪}, the following are equivalent:
(1) U/RCi is countable,
(2) (U, τ(apr′′

Ci
)) is second-countable,

(3) (U, τ(apr′′
Ci

)) is separable,
(4) (U, τ(apr′′

Ci
)) is a Lindelöf space.

Proof. It is similar to the proof of Theorem 3.14.
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Example 3.24. Let U = {a, b, c, d, e, f , 1, h}, C = {{a, b}, {b}, {b, c}, {a, b, c}, {d, e}, {e, f }, {1}, {1, h}, {h}}. Then
C1 = {{a, b}, {b}, {b, c}, {d, e}, {e, f }, {1}, {h}},
C2 = {{a, b, c}, {d, e}, {e, f }, {1, h}},
C3 = {{a, b}, {b}, {b, c}, {d, e}, {e}, {e, f }, {1}, {h}},
C4 = {{a, b, c}, {d, e}, {d, e, f }, {e, f }, {1, h}},
C∩ = {{a, b}, {b, c}, {a, b, c}, {d, e}, {e, f }, {1}, {1, h}, {h}},
C∪ = {{a, b}, {b}, {b, c}, {d, e}, {e, f }, {1}, {h}}.

Hence we have
τ(apr′′

C
) = τ(apr′′

C2
) = τ(apr′′

C4
) = τ(apr′′

C∩
) = {∅, {a, b, c}, {d, e, f }, {1, h}, {a, b, c, d, e, f }, {a, b, c, 1, h}, {d, e, f , 1, h},U},

and
τ(apr′′

C3
) = τ(apr′′

C∪
) = τ(apr′′

C1
) = {∅, {a, b, c}, {d, e, f },{1}, {h}, {a, b, c, d, e, f }, {a, b, c, 1}, {a, b, c, h}, {d, e, f , 1},

{d, e, f , h}, {1, h}, {a, b, c, d, e, f , 1}, {a, b, c, d, e, f , h},U}.
We also obtain

RC = RC2 = RC4 = RC∩ = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c), (d, d), (d, e), (d, f ), (e, d), (e, e),
(e, f ), ( f , d), ( f , e), ( f , f ), (1, 1), (h, h)},
and
RC1 = RC3 = RC∪ = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c), (d, d), (d, e), (d, f ), (e, d), (e, e), (e, f ),
( f , d), ( f , e), ( f , f ), (1, 1), (h, h)}.

Then RC = RC2 = RC4 = RC∩ and RC∪ = RC1 = RC3 are equivalence relations, and
U/RC = U/RC2 = U/RC4 = U/RC∩ = {{a, b, c}, {d, e, f }, {1, h}},
U/RC1 = U/RC3 = U/RC∪ = {{a, b, c}, {d, e, f }, {1}, {h}}.

We also get that (U, τ(apr′′
C

)) and (U, τ(apr′′
Ci

))(i ∈ {1, 2, 3, 4,∩,∪}) are quasi-discrete, regular, normal and
non-connected. τ(apr′′

C
) is the family of all definable sets about apr′′

C
and apr′′

C
, and τ(apr′′

Ci
)(i ∈ {1, 2, 3, 4,∩,∪})

is the family of all definable sets about apr′′
Ci

and apr′′
Ci

.

4. Relationships Among Topologies Induced by the Covering-Based Rough Sets

In [45], Zhao discussed a topology T with the covering C as a subbase. In this section, we present the
relationships among the topologies τ(apr′′

C
), τ(apr′′

C1
), τ(apr′′

C2
), τ(apr′′

C3
), τ(apr′′

C4
), τ(apr′′

C∩
), τ(apr′′

C∪
) and T .

The universe in this section is restricted to be finite.

Proposition 4.1. Let C be a covering of U. Then
τ(apr′′

C
) = τ(apr′′

C2
) = τ(apr′′

C4
) = τ(apr′′

C∩
) ⊆ τ(apr′′

C1
) = τ(apr′′

C∪
) ⊆ τ(apr′′

C3
) ⊆ T .

Proof. (1) τ(apr′′
C

) = τ(apr′′
C2

). For any X ∈ τ(apr′′
C

), we have apr′′
C

(X) = X. For any x ∈ apr′′
C2

(X), there exists
a y ∈ U such that K ∈ MD(C, y), x ∈ K and K ∩ X , ∅. Then K ∈ C. Hence x ∈ K ⊆ apr′′

C
(X) = X. It

follows that apr′′
C2

(X) ⊆ X. By Corollary 2.4, we get X ⊆ apr′′
C2

(X). Therefore, apr′′
C2

(X) = X, which implies
X ∈ τ(apr′′

C2
). Then τ(apr′′

C
) ⊆ τ(apr′′

C2
). Conversely, for any X ∈ τ(apr′′

C2
), we have apr′′

C2
(X) = X. For any

x ∈ apr′′
C

(X), there exists a K ∈ C such that x ∈ K and K ∩ X , ∅. If K ∈ MD(C, x), then x ∈ apr′′
C2

(X) = X. If
K <MD(C, x), then there exists a G ∈MD(C, x) such that K ⊆ G. It follows that x ∈ G and G ∩ X , ∅. Hence
x ∈ apr′′

C2
(X) = X. Then we can conclude that apr′′

C
(X) ⊆ X. It follows from Proposition 2.3 that X ⊆ apr′′

C
(X).

Therefore, apr′′
C

(X) = X, which means that X ∈ τ(apr′′
C

). Then τ(apr′′
C2

) ⊆ τ(apr′′
C

).
(2) τ(apr′′

C
) = τ(apr′′

C4
). For any X ∈ τ(apr′′

C
), we have apr′′

C
(X) = X. For any x ∈ apr′′

C4
(X), there exists a

y ∈ U such that x ∈ st(y,C), and st(y,C)∩X , ∅. Then there exists K1,K2 ∈ C such that x ∈ K1, y ∈ K1, y ∈ K2,
K2 ∩ X , ∅. Hence K2 ⊆ apr′′

C
(X) = X. It follows that {y} ⊆ K1 ∩ K2 ⊆ K1 ∩ X , ∅. Then K1 ⊆ apr′′

C
(X) = X.

Therefore, x ∈ X. It implies that apr′′
C4

(X) ⊆ X. Due to Corollary 2.4, we have X ⊆ apr′′
C4

(X). Thus
apr′′
C4

(X) = X, which follows that X ∈ τ(apr′′
C4

). Hence τ(apr′′
C

) ⊆ τ(apr′′
C4

).
Conversely, for any X ∈ τ(apr′′

C4
), we have apr′′

C4
(X) = X. For any x ∈ apr′′

C
(X), there exists a K ∈ C

such that x ∈ K and K ∩ X , ∅. Then K ⊆ st(x,C). It follows that K ∩ X ⊆ st(x,C) ∩ X , ∅. Hence
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x ∈ st(x,C) ⊆ apr′′
C4

(X) = X, which implies that apr′′
C

(X) ⊆ X. By Proposition 2.3, we get X ⊆ apr′′
C

(X).
Therefore, apr′′

C
(X) = X, which implies X ∈ τ(apr′′

C
). Then τ(apr′′

C2
) ⊆ τ(apr′′

C
).

(3) τ(apr′′
C

) = τ(apr′′
C4

). For any X ∈ τ(apr′′
C

), we have apr′′
C

(X) = X. For any x ∈ apr′′
C∩

(X), there exists a
K ∈ C∩ such that x ∈ K and K ∩ X , ∅. Since C∩ ⊆ C, K ∈ C. Then x ∈ apr′′

C
(X) = X, which implies that

apr′′
C∩

(X) ⊆ X. By Corollary 2.4, we have X ⊆ apr′′
C∩

(X). Thus apr′′
C∩

(X) = X, which follows that X ∈ τ(apr′′
C∩

).
Hence τ(apr′′

C
) ⊆ τ(apr′′

C∩
).

Conversely, For any X ∈ τ(apr′′
C∩

), we get apr′′
C∩

(X) = X. For any x ∈ apr′′
C

(X), there exists a K ∈ C such
that x ∈ K and K ∩ X , ∅. If K ∈ C∩, then x ∈ apr′′

C∩
(X) = X. If K < C∩, by the definition of C∩, there at least

exists a G ∈ C∩ such that K ⊆ G. Then x ∈ G and G ∩ X , ∅, which follows that x ∈ apr′′
C∩

(X) = X. Hence we
can conclude that apr′′

C
(X) ⊆ X. According to Proposition 2.3, we get X ⊆ apr′′

C
(X). Therefore, apr′′

C
(X) = X,

which implies that X ∈ τ(apr′′
C

). Therefore, τ(apr′′
C∩

) ⊆ τ(apr′′
C

).
(4) τ(apr′′

C
) ⊆ τ(apr′′

C∪
). For any X ∈ τ(apr′′

C
), we have apr′′

C
(X) = X. For any x ∈ apr′′

C∪
(X), there exists a

K ∈ C∪ such that x ∈ K and K ∩ X , ∅. Since C∪ ⊆ C, K ∈ C. Then x ∈ apr′′
C

(X) = X, which implies that
apr′′
C∪

(X) ⊆ X. By Corollary 2.4, we obtain X ⊆ apr′′
C∩

(X). So apr′′
C∪

(X) = X, which follows that X ∈ τ(apr′′
C∪

).
Hence, τ(apr′′

C
) ⊆ τ(apr′′

C∪
).

(5) τ(apr′′
C∪

) = τ(apr′′
C1

). Firstly, we prove C∪ = C1. For any K ∈ C, if K < C1, then K < Md(C, x) for all
x ∈ U. Hence, for any x ∈ K, there exists a Kx ∈ C such that Kx ⊆ K and Kx , K. Then K = ∪x∈KKx. It follows
that K < C∪. Thus C∪ ⊆ C1. Conversely, for any K ∈ C, if K < C∪, then there exists F ⊆ C − {K} such that
K = ∪F . Then, for any x ∈ K, there exists Kx ∈ F such that x ∈ Kx ⊆ K, which follows that K < Md(C, x).
Therefore, K < C1. Hence C1 ⊆ C∪. Secondly, we have (apr′′

C∪

, apr′′
C∪

) = (apr′′
C1
, apr′′

C1
) and τ(apr′′

C∪
) = τ(apr′′

C1
).

(6) τ(apr′′
C1

) ⊆ τ(apr′′
C3

). For any X ∈ τ(apr′′
C1

), we obtain apr′′
C1

(X) = X. For any x ∈ apr′′
C3

(X), there exists a
y ∈ U such that x ∈ (y)C and (y)C ∩X , ∅. Then there exists a K ∈Md(C, y) such that y ∈ K. Hence (y)C ⊆ K,
which follows that K ∩ X , ∅. Thus y ∈ apr′′

C1
(X) = X, which implies that apr′′

C3
(X) ⊆ X. Thank to Corollary

2.4, we get X ⊆ apr′′
C3

(X). So apr′′
C3

(X) = X, which follows that X ∈ τ(apr′′
C3

). Hence τ(apr′′
C1

) ⊆ τ(apr′′
C3

).
(7) τ(apr′′

C3
) ⊆ T . For any x ∈ U, we obtain (x)C ∈ T . Then, for any X ∈ τ(apr′′

C3
), we have X = apr′′

C3
(X) =

∪{(x)C|(x)C ∩ X , ∅} ∈ T . Thus τ(apr′′
C3

) ⊆ T .

Remark 4.2. Generally, τ(apr′′
C1

) ⊆ τ(apr′′
C∩

), τ(apr′′
C3

) ⊆ τ(apr′′
C∪

) and T ⊆ τ(apr′′
C3

) do not hold.

Example 4.3. (1) Let U = {a, b, c, d}, C = {{a, b}, {b, c}, {d}, {a, b, c, d}}. Then
C∪ = {{a, b}, {b, c}, {d}}.

We obtain τ(apr′′
C∩

) = τ(apr′′
C

) = {∅,U} and τ(apr′′
C1

) = τ(apr′′
C∪

) = {∅, {a, b, c}, {d},U}. Then we have
τ(apr′′

C1
) * τ(apr′′

C∩
).

(2) Let U = {a, b, c, d}, C = {{a, b}, {b, c}, {c, d}, {d}}. Hence
C1 = {{a, b}, {b, c}, {c, d}, {d}},
C3 = {{a, b}, {b}, {c}, {d}}.

Therefore, τ(apr′′
C∪

) = τ(apr′′
C1

) = {∅,U} and τ(apr′′
C3

) = {∅, {a, b}, {c}, {d}, {a, b, c}, {a, b, d}, {c, d},U}. Thus we
have τ(apr′′

C3
) * τ(apr′′

C1
).

(3) Let U = {a, b, c}, C = {{a, b, c}, {b, c}}. Then C3 = {{a, b, c}, {b, c}}. Hence we get τ(apr′′
C3

) = {∅,U} and
T = {∅, {b, c},U}. It implies that T * τ(apr′′

C3
).

5. Conclusion

In this paper, topological structures of a type of granular based covering approximation operators which
have been discussed. Then topological properties of seven pairs of covering approximation operators. By
defining binary relations from covering, we have presented connectedness, countability, separation property
and Lindelöf property of the topological space induced by the approximation operators. We have obtained
that the topological spaces are locally connected, first countable, pseudo-discrete, Alexandrov, regular,
normal and so on. We have also described relationships between the connectedness of topological spaces
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and the existence of definable sets in rough sets to show an application of the discussion of topological
structures of the covering approximation operators.
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