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Abstract. We discuss a concavity like property for functions u satisfying Dα
0+ u ∈ C[0, b] with u(0) = 0 and

−Dα
0+ u(t) ≥ 0 for all t ∈ [0, b]. We develop the property for α ∈ (1, 2], where Dα

0+ is the standard Riemann-
Liouville fractional derivative. We observe the property is also valid in the case α = 1. Finally, we show
that under certain conditions, −Dα

0+ u(t) ≥ 0 implies u is concave in the classical sense.

1. Introduction

In this paper, we show that Green’s functions for fractional boundary value problems with order
α ∈ (1, 2] satisfy a concavity like property. Using this property, it is shown that if Dα

0+ u ∈ C[0, b], u(0) = 0,
and −Dα

0+ u(t) ≥ 0 for all t ∈ [0, b], then u also satisfies this concavity like property. This property gives a
geometric meaning to sign properties of fractional derivatives of order α ∈ (1, 2], similar to the geometric
meaning of sign properties of the first and second derivative. Interestingly, this property provides a
geometric link between monotonicity and concavity. Finally, we show that if −Dα

0+ u(t) ≥ 0 and if u satisfies
other conditions, u is concave in the classical sense.

There has been limited work done on concavity properties of Caputo and Riemann Liouville fractional
derivatives. In [1], Al-Refai shows that if f ∈ C(2)[0, 1] attains its minimum at t0 ∈ (0, 1) and f ′(0) ≤ 0,
Dδ

C f (t0) ≥ 0 for all δ ∈ (1, 2). Here Dδ
C is the Caputo fractional derivative. This is similar to a classical

result related to concavity. However, the sign of the Riemann-Liouville fractional derivative depends on
the sign of f (t) on [0, 1]. There has also been work done on monotonicity, convexity, and concavity related
to fractional differences. For a few examples, see [3, 8, 9].

2. A Geometric Property of Concave Functions

A function u ∈ C(2)[a, b] is concave on [a, b] if the graphs of secant lines connecting (c,u(c)) and (d,u(d))
lie below the graph of the function u for all c, d ∈ [a, b]; i.e., if

u(λc + (1 − λ)d) ≥ λu(c) + (1 − λ)u(d) for λ ∈ [0, 1] and for all c, d ∈ [a, b].

Concavity is equivalent to slopes of secant lines from (a,u(a)) to (t,u(t)) being decreasing as a function of t.
This gives the following lemma.
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Lemma 2.1. Let u ∈ C(2)[a, b]. Then −u′′(t) ≥ 0 for all t ∈ [a, b] if and only if

(y − a)u(w) ≤ (w − a)u(y) (1)

for all w, y ∈ [a, b] with y ≤ w.

Proof. Suppose −u′′(t) ≥ 0 for all t ∈ [a, b]. We approach this portion of the proof by utilizing the Green’s
function for −u′′(t) = 0, u(a) = 0, u(b) = 0, which is given by

G(t, s) =
1

b − a

{
(t − a)(b − s), a ≤ t ≤ s ≤ b,
(s − a)(b − t), a ≤ s ≤ t ≤ b.

We show (y− a)G(w, s) ≤ (w− a)G(y, s) for all w, y ∈ [a, b] with y ≤ w. If y = a or w = b, the proof is trivial.
Notice if a < y ≤ w ≤ s < b,

G(w, s)
G(y, s)

=
(w − a)(b − s)
(y − a)(b − s)

=
w − a
y − a

,

if a < y ≤ s ≤ w < b,

G(w, s)
G(y, s)

=
(s − a)(b − w)
(y − a)(b − s)

≤
(w − a)(b − w)
(y − a)(b − w)

=
w − a
y − a

,

and if a < s ≤ y ≤ w < b,

G(w, s)
G(y, s)

=
(s − a)(b − w)
(s − a)(b − y)

≤ 1 ≤
w − a
y − a

.

So (y − a)G(w, s) ≤ (w − a)G(y, s) for all w, y ∈ [a, b] with y ≤ w.
By the properties of the Green’s function, since u ∈ C(2)[a, b],

u(t) = z(t) +

∫ b

a
G(t, s)(−u′′(s))ds,

where z(t) = u(a) +
t − a
b − a

(u(b) − u(a)). Notice

(y − a)z(w) = (y − a)u(a) +
(y − a)(w − a)

b − a
(u(b) − u(a))

≤ (w − a)u(a) +
(w − a)(y − a)

b − a
(u(b) − u(a))

= (w − a)z(y).

So

(y − a)u(w) = (y − a)z(w) +

∫ b

a
(y − a)G(w, s)(−u′′(s))ds

≤ (w − a)z(y) +

∫ b

a
(w − a)G(y, s)(−u′′(s))ds

= (w − a)u(y).

That completes the proof of −u′′(t) ≥ 0 for all t ∈ [a, b] implies (1).
Now, assume (1). Let

s(t) =
u(w) − u(y)

w − y
(t − w) + u(w)
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be the secant line connecting the points (y,u(y)) and (w,u(w)). If t = y or t = w, then s(t) = u(t). If t ∈ (y,w),

then
y − a
t − a

u(t) ≤ u(y) and u(w) ≤
w − a
t − a

u(t). So

s(t) =
u(w) − u(y)

w − y
(t − w) + u(w)

≤
(w − a)u(t) − (y − a)u(t)

(t − a)(w − y)
(t − w) +

w − a
t − a

u(t)

≤
u(t)
t − a

(t − w) +
w − a
t − a

u(t)

= u(t).

So by definition, u is concave. Since u ∈ C(2)[a, b], −u′′(t) ≥ 0 for all t ∈ [a, b].

The inequality (1) and related inequalities are useful when applying Avery type fixed point theorems
to prove the existence of positive solutions of second order boundary value problems satisfying Dirichlet,
right focal, periodic, and other boundary conditions. For some examples, see [2, 4, 5, 10].

In this paper, we show if Dα
0+ u ∈ C[0, b] with −Dα

0+ u ≥ 0, then u satisfies a concavity like property similar
to (1).

3. Concavity in the Fractional Case

Definition 3.1. Let ν > 0. The Riemann-Liouville fractional integral of a function u of order ν, denoted Iν0+ u, is
defined as

Iν0+ u(t) =
1

Γ(ν)

∫ t

0
(t − s)ν−1u(s)ds,

provided the right-hand side exists.

Definition 3.2. Let n denote a positive integer and assume n − 1 < α ≤ n. The Riemann-Liouville fractional
derivative of order α of the function u : [0, 1]→ R, denoted Dα

0+ u, is defined as

Dα
0+ u(t) =

1
Γ(n − α)

dn

dtn

∫ t

0
(t − s)n−α−1u(s)ds = DnIn−α

0+ u(t),

provided the right-hand side exists.

Let α ∈ (1, 2]. The Green’s function for the the differential equation −Dα
0+ u = 0 satisfying the boundary

conditions

u(0) = 0, Dβ
0+ u(b) = 0, (2)

where β ∈ [0, 1], is given by

G(β; t, s) =


tα−1(b−s)α−1−β

bα−1−βΓ(α) −
(t−s)α−1

Γ(α) , 0 ≤ s < t ≤ b,

tα−1(b−s)α−1−β

bα−1−βΓ(α) , 0 ≤ t ≤ s ≤ b.
(3)

The Green’s function, (3), has been constructed by many authors, and we refer the reader to [6]. Therefore,
if Dα

0+ u ∈ C[0, b] and u satisfies the boundary conditions (2), then

u(t) =

∫ b

0
G(β; t, s)(−Dα

0+ u(s))ds, t ∈ [0, b].
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In [11], it was shown that for b = 1, if 0 ≤ s < 1, G(1; t, s) has the property that

yα−1G(1; w, s) ≤ wα−1G(1; y, s)

for all y,w ∈ [0, 1] with y ≤ w. Later, in [7] it was shown that for b = 1, if 0 ≤ s ≤ 1, G(0; t, s) also has the
property that

yα−1G(0; w, s) ≤ wα−1G(0; y, s)

for all y,w ∈ [0, 1] with y ≤ w.
Here, we generalize this inequality for G(β; t, s), 0 ≤ β ≤ 1.

Lemma 3.3. Assume 1 < α ≤ 2, 0 ≤ β ≤ 1. For 0 ≤ s < b, G(β; t, s) has the property that

yα−1G(β; w, s) ≤ wα−1G(β; y, s) (4)

for all y,w ∈ [0, b] with y ≤ w.

Proof. If y = 0, the property holds trivially, and so we assume y > 0. We have three cases to consider,
when 0 < y ≤ w ≤ s < b, when 0 < y ≤ s < w ≤ b, and when 0 ≤ s < y ≤ w ≤ b. First, consider the case
0 < y ≤ w ≤ s < b. So

G(β; w, s)
G(β; y, s)

=
wα−1(b − s)α−β−1

yα−1(b − s)α−β−1 =
wα−1

yα−1 .

Next, suppose 0 < y ≤ s < w ≤ b. Then

G(β; w, s)
G(β; y, s)

=
wα−1(b − s)α−β−1

− bα−1−β(w − s)α−1

yα−1(b − s)α−β−1

≤
wα−1(b − s)α−β−1

yα−1(b − s)α−β−1 =
wα−1

yα−1 .

Finally, let 0 ≤ s < y ≤ w ≤ b. Thus

G(β; w, s)
G(β; y, s)

=
wα−1(b − s)α−β−1

− bα−1−β(w − s)α−1

yα−1(b − s)α−β−1 − bα−1−β(y − s)α−1

=
wα−1

(
(b − s)α−β−1

− bα−1−β(1 − s
w )α−1

)
yα−1

(
(b − s)α−β−1 − bα−1−β(1 − s

y )α−1
)

≤

wα−1
(
(b − s)α−β−1

− bα−1−β(1 − s
y )α−1

)
yα−1

(
(b − s)α−β−1 − bα−1−β(1 − s

y )α−1
)

=
wα−1

yα−1 .

Lemma 3.3 gives the following result.

Theorem 3.4. Assume 1 < α ≤ 2. Let Dα
0+ u ∈ C[0, b] with u(0) = 0. If −Dα

0+ u(t) ≥ 0 for all t ∈ [0, b], u satisfies the
concavity like property

yα−1u(w) ≤ wα−1u(y) (5)

for all y,w ∈ [0, b] with y ≤ w.
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Proof. By the properties of the Green’s function,

u(t) =
( t

b

)α−1
u(b) +

∫ b

0
G(0; t, s)(−Dα

0+ u(s))ds.

Thus, if y,w ∈ [0, 1] with y ≤ w,

yα−1u(w) = yα−1
(w

b

)α−1
u(b) +

∫ b

0
yα−1G(0; w, s)(−Dα

0+ u(s))ds

≤ wα−1
( y

b

)α−1
u(b) +

∫ b

0
wα−1G(0; y, s)(−Dα

0+ u(s))ds

= wα−1u(y).

Note that at α = 1, (5) implies that u is monotone decreasing and note that Theorem 3.4 is valid at α = 1.
Thus, we obtain a stronger version of Theorem 3.4 that contains both concavity and monotonicity.

Theorem 3.5. Assume 1 ≤ α ≤ 2. Let Dα
0+ u ∈ C[0, b] with u(0) = 0. If −Dα

0+ u(t) ≥ 0 for all t ∈ [0, b], u satisfies the
concavity like property

yα−1u(w) ≤ wα−1u(y)

for all y,w ∈ [0, b] with y ≤ w.

The following corollary gives a similar result for functions with Dα
0+ u(t) ≥ 0.

Corollary 3.6. Assume 1 ≤ α ≤ 2. Let Dα
0+ u ∈ C[0, b] with u(0) = 0. If Dα

0+ u(t) ≥ 0 for all t ∈ [0, b], then u satisfies
the convexity like property

yα−1u(w) ≥ wα−1u(y) (6)

y,w ∈ [0, b] with y ≤ w.

We close with two results showing that under certain conditions, −Dα
0+ u(t) ≥ 0 implies concavity in the

classical sense.

Theorem 3.7. Assume 1 < α < 2. Let Dα
0+ u ∈ C[0, b] with u(0) = 0 and u(b) ≥ 0. Assume −Dα

0+ u(t) ≥ 0 for all
t ∈ [0, b], and assume u ∈ C(2)(0, b]. Then −u′′(t) ≥ 0 for all t ∈ (0, b] .

Proof. Define

v(t) = u(t) −
( t

b

)α−1
u(b) =

∫ 1

0
G(0; t, s)(−Dα

0+ u(s))ds.

Note that v ∈ C(2)(0, b], −Dα
0+ v(t) = −Dα

0+ u(t) ≥ 0, and v(0) = 0. So Theorem 3.4 applies to v and

yα−1v(w) ≤ wα−1v(y)

for all y,w ∈ [0, b] with y ≤ w. Also note that the sign properties of G(0; t, s) and −Dα
0+ u, imply v(t) ≥ 0 on

[0, b]. Thus,
y [v(w)]

1
α−1 ≤ w

[
v(y)

] 1
α−1 ,

for all y,w ∈ [0, b] with y ≤ w. By Theorem 2.1, v
1
α−1 is concave.
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Since v
1
α−1 is concave, −

(
v

1
α−1

)′′
≥ 0 on (0, b]. But

(
v

1
α−1

)′′
=

2 − α
(α − 1)2 v

3−2α
α−1 (v′)2 +

1
α − 1

v
2−α
α−1 v′′,

implying
2 − α
α − 1

v
3−2α
α−1 (v′)2

≤ −v
2−α
α−1 v′′,

which, since v ≥ 0 on (0, b], implies −v′′ ≥ 0 on (0, b].
By the definition of v,

v′′(t) = u′′(t) −
1
b2 (α − 1)(α − 2)

( t
b

)α−3
u(b).

Since α − 2 < 0, 1
b2 (α − 1)(α − 2)

(
t
b

)α−3
u(b) ≤ 0 for t ∈ (0, b]. So −u′′(t) ≥ 0 for all t ∈ (0, b].

Corollary 3.8. Assume 1 < α < 2. Let Dα
0+ u ∈ C[0, b] with u(0) = 0 and assume u satisfies a boundary condition

Dβ
0+ u(b) = 0 for some β ∈ [0, 1]. Assume −Dα

0+ u(t) ≥ 0 for all t ∈ [0, b], and assume u ∈ C(2)(0, b]. Then −u′′(t) ≥ 0
for all t ∈ (0, b] .

Proof. Since u satisfies boundary conditions (2), u has the representation

u(t) =

∫ b

0
G(β; t, s)(−Dα

0+ u(s))ds.

Then, u(b) ≥ 0 and Theorem 3.7 applies.
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