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A New Note on Generalized Absolute Cesàro Summability Factors
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Abstract. Quite recently, in [10], we have proved a theorem dealing with the generalized absolute Cesàro
summability factors of infinite series by using quasi monotone sequences and quasi power increasing
sequences. In this paper, we generalize this theorem for the more general summability method. This new
theorem also includes some new and known results.

1. Introduction

A positive sequence (bn) is said to be an almost increasing sequence if there exists a positive increasing
sequence (cn) and two positive constants M and N such that Mcn ≤ bn ≤ Ncn (see [3]). A sequence (dn) is
said to be δ-quasi monotone, if dn → 0, dn > 0 ultimately, and ∆dn ≥ −δn, where ∆dn = dn − dn+1 and δ=
(δn) is a sequence of positive numbers (see [4]). A positive sequence X = (Xn) is said to be a quasi-f-power
increasing sequence, if there exists a constant K = K(X, f ) ≥ 1 such that K fnXn ≥ fmXm for all n ≥ m ≥ 1,
where f = { fn(σ, γ)} = {nσ(log n)γ, γ ≥ 0, 0 < σ < 1}(see [16]). If we take γ=0, then we get a quasi-σ-power
increasing sequence (see [15]). Let

∑
an be a given infinite series. We denote by tα,βn the nth Cesàro mean of

order (α, β), with α + β > −1, of the sequence (nan), that is (see [11])

tα,βn =
1

Aα+β
n

n∑
v=1

Aα−1
n−vAβ

vvav, (1)

where

Aα+β
n = O(nα+β), Aα+β

0 = 1 and Aα+β
−n = 0 for n > 0. (2)

Let (θα,βn ) be a sequence defined by (see [5])

θ
α,β
n =


∣∣∣∣tα,βn

∣∣∣∣ , α = 1, β > −1,

max1≤v≤n

∣∣∣∣tα,βv

∣∣∣∣ , 0 < α < 1, β > −1.
(3)
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Let (ϕn) be a sequence of complex numbers. The series
∑

an is said to be summable ϕ − | C, α, β |k, k ≥ 1,
if ( see [6])

∞∑
n=1

n−k
| ϕntα,βn |

k< ∞. (4)

In the special case when ϕn = n1− 1
k , ϕ − | C, α, β |k summability is the same as | C, α, β |k summability (see

[12]). Also, if we take ϕn = nσ+1− 1
k ), then ϕ− | C, α, β |k summability reduces to | C, α, β; σ |k summability (see

[7]). If we take β = 0, then we have ϕ − | C, α |k summability (see [2]). If we take ϕn = n1− 1
k and β = 0, then

we get | C, α |k summability (see [13]). Finally, if we take ϕn = nσ+1− 1
k and β = 0, then we obtain | C, α; σ |k

summability (see [14]).
2. Known result
The following theorems is known dealing with the | C, α, β |k summability method involving δ-quasi mono-
tone sequence and power increasing sequence.
Theorem 2.1 ([10]). Let (θα,βn ) be a sequence defined as in (3). Let (Xn) be a quasi-f-power increasing
sequence and λn → 0 as n → ∞. Suppose that there exists a sequence of numbers (Bn) such that it is
δ-quasi-monotone with ∆Bn ≤ δn,

∑
nδnXn < ∞,

∑
BnXn is convergent, and | ∆λn |≤ | Bn | for all n. If the

condition
m∑

n=1

(θα,βn )k

nXn
k−1

= O(Xm) as m→∞ (5)

holds, then the series
∑

anλn is summable | C, α, β |k, 0 < α ≤ 1, (α + β − 1) > 0, and k ≥ 1.
3. Main result
The aim of this paper is to generalize Theorem 2.1 for the more general summability method. We shall
prove the following theorem.
Theorem 3. 1 Let (θα,βn ) be a sequence defined as in (3). Let (Xn) be a quasi-f-power increasing sequence and
λn → 0 as n → ∞. Suppose that there exists a sequence of numbers (Bn) such that it is δ-quasi-monotone
with ∆Bn ≤ δn,

∑
nδnXn < ∞,

∑
BnXn is convergent, and | ∆λn |≤ | Bn | for all n. If there exists an ε > 0 such

that the sequence (nε−k
| ϕn |

k) is non-increasing and if the condition

m∑
n=1

(| ϕn | θ
α,β
n )k

nkXn
k−1

= O(Xm) as m→∞ (6)

holds, then the series
∑

anλn is summable ϕ− | C, α, β |k, k ≥ 1, 0 < α ≤ 1, β > −1, and (α + β − 1)k + ε > 1.
We need the following lemmas for the proof of our theorem.
Lemma 3. 2 (Abel transformation) ([1]). Let (ak), (bk) be complex sequences, and write
sn = a1 + a2 + ... + an. Then

n∑
k=1

akbk =

n−1∑
k=1

sk∆bk + snbn. (7)

Lemma 3. 3 ([5]). If 0 < α ≤ 1, β > −1, and 1 ≤ v ≤ n, then

|

v∑
p=0

Aα−1
n−pAβ

pap |≤ max
1≤m≤v

|

m∑
p=0

Aα−1
m−pAβ

pap | . (8)

Lemma 3. 4 ([8]). Let (Xn) be a quasi-f-power increasing sequence. If (Bn) is a δ-quasi-monotone sequence
with ∆Bn ≤ δn and

∑
nδnXn < ∞, then we have the following

∞∑
n=1

nXn | ∆Bn |< ∞, (9)
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nBnXn = O(1) as n→∞. (10)

Lemma 3. 5 ([8]). Under the conditions regarding (λn) and (Xn) of the theorem, we have

| λn | Xn = O(1) as n→∞. (11)

4. Proof of Theorem 3. 1 Let (Tα,βn ) be the nth (C, α, β) mean of the sequence (nanλn). Then, by (1), we have

Tα,βn =
1

Aα+β
n

n∑
v=1

Aα−1
n−vAβ

vvavλv.

Applying Abel’s transformation first and then using Lemma 3. 3, we have that

Tα,βn =
1

Aα+β
n

n−1∑
v=1

∆λv

v∑
p=1

Aα−1
n−pAβ

ppap +
λn

Aα+β
n

n∑
v=1

Aα−1
n−vAβ

vvav,

| Tα,βn | ≤
1

Aα+β
n

n−1∑
v=1

| ∆λv ||

v∑
p=1

Aα−1
n−pAβ

ppap | +
| λn |

Aα+β
n

|

n∑
v=1

Aα−1
n−vAβ

vvav |

≤
1

Aα+β
n

n−1∑
v=1

A(α+β)
v θ

α,β
v | ∆λv | + | λn | θ

α,β
n = Tα,βn,1 + Tα,βn,2 .

To complete the proof of Theorem 3. 1, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

n−k
| ϕnTα,βn,r |

k< ∞, for r = 1, 2.

Now, when k > 1, applying Hölder’s inequality with indices k and k′, where 1
k + 1

k′ = 1, we get that

m+2∑
n=2

n−k
| ϕnTα,βn,1 |

k
≤

m+1∑
n=2

n−k(Aα+β
n )

−k
| ϕn |

k
{

n−1∑
v=1

Aα+β
v θ

α,β
v | ∆λv |}

k

≤

m+1∑
n=2

n−kn−(α+β)k
| ϕn |

k
n−1∑
v=1

(Aα+β
v )k(θα,βv )k

| Bv |
k
×

n−1∑
v=1

1


k−1

= O(1)
m∑

v=1

v(α+β)k(θα,βv )k
| Bv |

k
m+1∑

n=v+1

nε−k
| ϕn |

k

n1+(α+β−1)k+ε

= O(1)
m∑

v=1

v(α+β)k(θα,βv )k
| Bv |

kvε−k
| ϕv |

k
m+1∑

n=v+1

1
n1+(α+β−1)k+ε

= O(1)
m∑

v=1

v(α+β)k(θα,βv )kvε−k
| ϕv |

k
| Bv |

k
∫
∞

v

dx
x1+(α+β−1)k+ε

= O(1)
m∑

v=1

| Bv || Bv |
k−1(θα,βv | ϕv |)k = O(1)

m∑
v=1

| Bv |
(θα,βv | ϕv |))k

vk−1Xk−1
v

= O(1)
m−1∑
v=1

∆(v| Bv |)
v∑

r=1

(θα,βr | ϕr |))k

rkXk−1
r

+ O(1)m| Bm |

m∑
v=1

(θα,βv | ϕv |))k

vkXk−1
v

= O(1)
m−1∑
v=1

| ∆(v| Bv |) | Xv + O(1)m| Bm |Xm
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= O(1)
m−1∑
v=1

| (v + 1)∆ | Bv | − | Bv || Xv + O(1)m| Bm |Xm

= O(1)
m−1∑
v=1

v | ∆Bv | Xv + O(1)
m−1∑
v=1

| Bv |Xv

+O(1)m| Bm |Xm = O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3. 4. Finally, we have

m∑
n=1

n−k
| ϕnTα,βn,2 |

k =

m∑
n=1

| λn | | λn |
k−1 (θα,βn | ϕn |)k

nk
=

m∑
n=1

| λn |
(θα,βn | ϕn |)k

nkXk−1
n

=

m−1∑
n=1

∆ | λn |

n∑
v=1

(θα,βv | ϕv |))k

vkXk−1
v

+O(1)|λm|

m∑
n=1

(θα,βn | ϕn |)k

nkXk−1
n

= O(1)
m−1∑
n=1

| ∆λn | Xm + O(1) | λm | Xm

= O(1)
m−1∑
n=1

| Bn |Xn + O(1) | λm | Xm = O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.1 and Lemma 3. 5. This completes the proof of Theorem 3. 1.

5. Conclusions. If we take ε = 1 and ϕn = n1− 1
k , then we obtain Theorem 2.1. If we set ε = 1, β = 0

and ϕn = nσ+1− 1
k , then we have a new result dealing with the | C, α; σ |k summability factors of infinite series.

Also, if we take β = 0, then we obtain another new result dealing with ϕ− | C, α |k summability factors of
infinite series. If we take β = 0, ε = 1, and ϕn = n1− 1

k , then we obtain a new result concerning the | C, α |k
summability factors of infinite series. Furthermore, if we take β = 0, ε = 1, ϕn = n1− 1

k , and α = 1, then we
obtain a result dealing with | C, 1 |k summability factors. If we take (Xn) as an almost increasing sequence
such that | ∆Xn |= O( Xn

n ) and ϕn = n1− 1
k , then we obtain a known result dealing with | C, α, β |k summability

factors of infinite series, in this case the condition ’∆Bn ≤ δn’ is not needed (see [9]). Finally, if we take γ=0,
then we get another new result dealing with quasi-σ-power increasing sequences.
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