Filomat 32:9 (2018), 3073–3085 https://doi.org/10.2298/FIL1809073G

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

*-DMP Elements in *-Semigroups and *-Rings

Yuefeng Gao^a, Jianlong Chen^a, Yuanyuan Ke^b

^a School of Mathematics, Southeast University, Nanjing 210096, China ^b School of Mathematics and Computer Science, Jianghan University, Wuhan 430056, China

Abstract. In this paper, we investigate *-DMP elements in *-semigroups and *-rings. The notion of *-DMP element was introduced by Patrício and Puystjens in 2004. An element *a* is *-DMP if there exists a positive integer *m* such that a^m is EP. We first characterize *-DMP elements in terms of the {1,3}-inverse, Drazin inverse and pseudo core inverse, respectively. Then, we characterize the core-EP decomposition utilizing the pseudo core inverse, which extends the core-EP decomposition introduced by Wang for complex matrices to an arbitrary *-ring; and this decomposition turns to be a useful tool to characterize *-DMP elements. Further, we extend Wang's core-EP order from complex matrices to *-rings and use it to investigate *-DMP elements. Finally, we give necessary and sufficient conditions for two elements *a*, *b* in *-rings to have $aa^{0} = bb^{0}$, which contribute to study *-DMP elements.

1. Introduction

Let *S* and *R* denote a semigroup and a ring with unit 1, respectively. An element $a \in S$ is Drazin invertible [5] if there exists the unique element $a^D \in S$ such that

 $a^m a^D a = a^m$ for some positive integer *m*, $a^D a a^D = a^D$ and $a a^D = a^D a$.

The smallest positive integer *m* satisfying above equations is called the Drazin index of *a*, denoted by ind(a). We denote by a^{D_m} the Drazin inverse of *a* with ind(a) = m. If the Drazin index of *a* equals one, then the Drazin inverse of *a* is called the group inverse of *a* and is denoted by $a^{\#}$.

S is called a *-semigroup if *S* is a semigroup with involution *. *R* is called a *-ring if *R* is a ring with involution *. In the following, unless otherwise indicated, *S* and *R* denote a *-semigroup and a *-ring, respectively.

An element $a \in S$ is Moore-Penrose invertible, if there exists $x \in S$ such that

(1) axa = a, (2) xax = x, (3) $(ax)^* = ax$ and (4) $(xa)^* = xa$.

²⁰¹⁰ Mathematics Subject Classification. 15A09; 16W10; 20M99

Keywords. *-DMP element; pseudo core inverse; core-EP inverse; core-EP decomposition; core-EP order

Received: 08 August 2017; Accepted: 18 September 2017

Communicated by Dijana Mosić

Research supported by the National Natural Science Foundation of China (No.11771076), the Scientific Innovation Research of College Graduates in Jiangsu Province (No.KYZZ16_0112)

Email addresses: yfgao91@163.com (Yuefeng Gao), jlchen@seu.edu.cn (Jianlong Chen), keyy086@126.com (Yuanyuan Ke)

If such an *x* exists, then it is unique, denoted by a^{\dagger} . *x* satisfying equations (1) and (3) is called a {1,3}-inverse of *a*, denoted by $a^{(1,3)}$. Such a {1,3}-inverse of *a* is not unique if it exists. We use a{1,3}, S^{1,3} to denote the set of all the {1,3}-inverses of *a* and the set of all the {1,3}-invertible elements in *S*, respectively.

An element $a \in S$ is symmetric if $a^* = a$. $a \in S$ is *-gMP if $a^{\#}$ and a^{\dagger} exist with $a^{\#} = a^{\dagger}$ [19]. It should be pointed out that *-gMP element is also known as EP element (see [9–11, 16]). As a matter of convenience, we denote a *-gMP element as an EP element in this paper. $a \in S$ is *-DMP with index *m* if *m* is the smallest positive integer such that $(a^m)^{\#}$ and $(a^m)^{\dagger}$ exist with $(a^m)^{\#} = (a^m)^{\dagger}$ [19]. In other words, $a \in S$ is *-DMP with index *m* if *m* is the smallest positive integer such that a^m is EP, which is equivalent to, a^{D_m} exists and a^m is EP. We call $a \in S$ a *-DMP element if there exists a positive integer *m* such that a^m is EP. The notion of *-DMP element is different from the notion of *m*-EP element [12, 26, 29], in some sense, they are parallel, are both generalizations of EP elements. Hence, it is of interest to investigate the notion of *-DMP element.

Baksalary and Trenkler [18] introduced the notion of core inverse for a complex matrix in 2010. This notion is also known as core-EP generalized inverse (see [13]). Then, Rakić, Dinčić and Djordjević [21] generalized the notion of core inverse to an arbitrary *-ring. Later, Xu, Chen and Zhang [28] characterized the core invertible elements in *-rings in terms of three equations. The core inverse of *a*, denoted by a^{\oplus} , is the unique solution to equations

$$xa^2 = a, \ ax^2 = x, \ (ax)^* = ax.$$

Recently, the notion of core inverse was extended to arbitrary index of elements in rings. The pseudo core inverse [7] of $a \in S$, denoted by $a^{\mathbb{D}}$, is the unique solution to equations

$$xa^{m+1} = a^m$$
 for some positive integer *m*, $ax^2 = x$ and $(ax)^* = ax$

Also, the pseudo core inverse extends core-EP inverse [13] from complex matrices to *-semigroups, in terms of equations. For consistency and convenience, we use the terminology pseudo core inverse throughout this paper. The smallest positive integer *m* satisfying above equations is called the pseudo core index of *a*. If *a* is pseudo core invertible, then it must be Drazin invertible, and the pseudo core index coincides with the Drazin index [7]. So here and subsequently, we denote the pseudo core index of *a* by ind(*a*). The pseudo core inverse is a kind of outer inverse. If the pseudo core index equals one, then the pseudo core inverse of *a* is the core inverse of *a*. Dually, the dual pseudo core inverse [7] of $a \in S$ is the unique element $a_{\bigcirc} \in S$ satisfying the following three equations

$$a^{m+1}a_{\mathbb{D}} = a^m$$
 for some positive integer *m*, $(a_{\mathbb{D}})^2 a = a_{\mathbb{D}}$ and $(a_{\mathbb{D}}a)^* = a_{\mathbb{D}}a$

The smallest positive integer *m* satisfying above equations is called the dual pseudo core index of *a*. We denote by a^{\otimes_m} and a_{\otimes_m} the pseudo core inverse and dual pseudo core inverse of index *m* of *a*, respectively. Note that $(a^*)^{\otimes_m}$ exists if and only if a_{\otimes_m} exists with $(a^*)^{\otimes_m} = (a_{\otimes_m})^*$.

Lots of work have been done on EP elements in *-semigroups and *-rings in recent years, (see, for example, [3, 4, 15, 19, 21, 27]). In this paper, we use the setting of *-semigroups and *-rings, and our main goal is to characterize *-DMP elements. The paper is organized as follows: In Section 2, several characterizations of *-DMP elements are given in terms of generalized inverses: the {1,3}-inverse, Drazin inverse and pseudo core inverse respectively. Then, *-DMP elements are characterized in terms of equations and annihilators. After that, we consider conditions for the sum (resp. product) of two *-DMP elements to be *-DMP. It is known that Wang [23] introduced the core-EP decomposition and core-EP order for complex matrices. Core-EP decomposition was shown to be a useful tool in characterizing generalized inverses and partial orders (see [23, 24]). In Section 3, we extend the core-EP decomposition from complex matrices to an arbitrary *-ring, applying a purely algebraic technique. As applications, we use it to characterize *-DMP elements. Core partial order could be used to characterize EP elements (see [25]). Similarly, core-EP order can be used to investigate *-DMP elements. In Section 4, we obtain a characterization of *-DMP elements, in terms of this pre-order. In the final section, we aim to give equivalent conditions for $aa^{(0)} = bb^{(0)}$ in *-rings, which contribute to investigate *-DMP elements.

2. Characterizations of *-DMP Elements

In this section, several characterizations of *-DMP elements are given by conditions involving {1,3}inverse, Drazin inverse, pseudo core inverse and dual pseudo core inverse. We begin with some auxiliary lemmas.

Lemma 2.1. [7] Let $a \in S$. Then we have the following facts:

(1) $a^{\textcircled{m}_m}$ exists if and only if a^{D_m} exists and $a^m \in S^{\{1,3\}}$. In this case $a^{\textcircled{m}_m} = a^{D_m}a^m(a^m)^{(1,3)}$. (2) $a^{\textcircled{m}_m}$ and $a_{\textcircled{m}_m}$ exist if and only if a^{D_m} and $(a^m)^{\dagger}$ exist. In this case, $a^{\textcircled{m}_m} = a^{D_m}a^m(a^m)^{\dagger}$ and $a_{\textcircled{m}_m} = (a^m)^{\dagger}a^ma^{D_m}$.

Lemma 2.2. [11],[19] Let $a \in S$. Then the following conditions are equivalent: (1) *a* is *-DMP with index *m*; (2) a^{D_m} exists and aa^{D_m} is symmetric.

Lemma 2.3. Let $a \in S$. Then the following are equivalent:

(1) a is *-DMP with index m; (2) a^{D_m} and $(a^m)^{\dagger}$ exist with $(a^{D_m})^m = (a^m)^{\dagger}$; (3) $a^{\textcircled{D}_m}$ exists with $a^{\textcircled{D}_m} = a^{D_m}$; (4) $a^{\textcircled{D}_m}$ and $(a^m)^{\dagger}$ exist with $(a^{\textcircled{D}_m})^m = (a^m)^{\dagger}$.

Proof. (1) \Rightarrow (2) is clear. (2) \Rightarrow (3). Suppose a^{D_m} and $(a^m)^{\dagger}$ exist with $(a^{D_m})^m = (a^m)^{\dagger}$. By Lemma 2.1, $a^{\textcircled{m}_m}$ exists with $a^{\textcircled{m}_m} = a^{D_m} a^m (a^m)^{\dagger} = a^{D_m} a^m (a^{D_m})^m = a^{D_m}$.

(3) \Rightarrow (4). Applying Lemma 2.1, $a^{\textcircled{D}_m}$ exists if and only if a^{D_m} exists and $a^m \in S^{\{1,3\}}$, in which case, $a^{\textcircled{D}_m} = a^{D_m} a^m (a^m)^{(1,3)}$. From $a^{\textcircled{D}_m} = a^{D_m}$, it follows that $a^{D_m} a^m (a^m)^{(1,3)} = a^{D_m}$. Then, $aa^{D_m} = a^m (a^m)^{(1,3)}$. So, $(a^m)^{\dagger}$ exists with $(a^m)^{\dagger} = (a^{D_m})^m = (a^{\textcircled{D}_m})^m$.

(4) \Rightarrow (1). Since $(a^{D_m})^m a^m (a^m)^{(1,3)} = (a^{D_m} a^m (a^m)^{(1,3)})^m = (a^{\overline{\mathbb{D}}_m})^m = (a^m)^+$, then $aa^{D_m} = (a^m)^+ a^m$. Therefore aa^{D_m} is symmetric. Hence a is *-DMP with index m by Lemma 2.2. \Box

The following result characterizes *-DMP elements in terms of {1,3}-inverses.

Theorem 2.4. Let $a \in S$. Then a is *-DMP with index m if and only if m is the smallest positive integer such that $a^m \in S^{\{1,3\}}$ and one of the following equivalent conditions holds: (1) $a(a^m)^{(1,3)} = (a^m)^{(1,3)}a$ for some $(a^m)^{(1,3)} \in a^m\{1,3\}$; (2) $a^m(a^m)^{(1,3)} = (a^m)^{(1,3)}a^m$ for some $(a^m)^{(1,3)} \in a^m\{1,3\}$.

Proof. If *a* is *-DMP with index *m*, then *m* is the smallest positive integer such that $(a^m)^{\dagger}$ and $(a^m)^{\#}$ exist with $(a^m)^{\dagger} = (a^m)^{\#}$. So we may regard $(a^m)^{\#}$ as one of the {1, 3}-inverses of a^m . Therefore (1) holds (see [5, Theorem 1]).

Conversely, we take $(a^m)^{(1,3)} \in a^m \{1, 3\}$.

 $(1) \Rightarrow (2)$ is obvious.

(2). Equality $a^m(a^m)^{(1,3)} = (a^m)^{(1,3)}a^m$ yields that $(a^m)^{\dagger} = (a^m)^{(1,3)}a^m(a^m)^{(1,3)} = (a^m)^{\#}$. So *m* is the smallest positive integer such that $(a^m)^{\dagger} = (a^m)^{\#}$. Hence *a* is *-DMP with index *m*.

Corollary 2.5. Let $a \in S$. Then *a* is EP if and only if $a \in S^{\{1,3\}}$ and $aa^{(1,3)} = a^{(1,3)}a$ for some $a^{(1,3)} \in a\{1,3\}$.

In [11, Theorem 7.3], Koliha and Patrício characterized EP elements by using the group inverse. Similarly, we characterize *-DMP elements in terms of the Drazin inverse.

Theorem 2.6. Let $a \in S$. Then a is *-DMP with index m if and only if a^{D_m} exists and one of the following equivalent conditions holds: (1) $a^{D_m} = a^{D_m} (aa^{D_m})^*$; (2) $a^{D_m} = (a^{D_m}a)^* a^{D_m}$. If S is a *-ring, then (1)-(2) are equivalent to *Proof.* If *a* is *-DMP with index *m*, then a^{D_m} exists and aa^{D_m} is symmetric by Lemma 2.2. It is not difficult to verify that conditions (1)-(3) hold.

Conversely, we assume that a^{D_m} exists. (1) \Rightarrow (3). Since $a^{D_m} = a^{D_m} (aa^{D_m})^*$, we have

 $(3) \Rightarrow (3)$. Since $u^{-m} = u^{-m}(uu^{-m})$, we have

$$a^{D_m}(1-aa^{D_m})^* = a^{D_m}(aa^{D_m})^*(1-aa^{D_m})^* = a^{D_m}((1-aa^{D_m})aa^{D_m})^* = 0.$$

Therefore $a^{D_m}(1 - aa^{D_m})^* = 0 = (1 - aa^{D_m})(a^{D_m})^*$. (2) \Rightarrow (3) is analogous to (1) \Rightarrow (3).

Finally, we will prove *a* is *-DMP with index *m* under the assumption that a^{D_m} exists with $a^{D_m}(1-aa^{D_m})^* = (1-aa^{D_m})(a^{D_m})^*$. From $a^{D_m}(1-a^*(a^{D_m})^*) = (1-a^{D_m}a)(a^{D_m})^*$, we get $(a^{D_m})^* = a^{D_m}(1-a^*(a^{D_m})^* + a(a^{D_m})^*)$. Postmultiply this equality by $(a^{D_m})^*(a^2)^*$, then we have $aa^{D_m} = aa^{D_m}(aa^{D_m})^*$. So aa^{D_m} is symmetric. Applying Lemma 2.2, *a* is *-DMP with index *m*. \Box

Let us recall that $a \in S$ is normal if $aa^* = a^*a$. It is known that an element $a \in S$ is EP may not imply it is normal (such as, take $S = \mathbb{R}^{2\times 2}$ with transpose as involution, $a = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Then a is EP since $aa^{\dagger} = a^{\dagger}a = 1$, but $aa^* = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \neq \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = a^*a$); a is normal may not imply it is EP (such as, take $S = \mathbb{C}^{2\times 2}$ with transpose as involution, $a = \begin{pmatrix} i & 1 \\ -1 & i \end{pmatrix}$. Then $aa^* = a^*a = 0$, i.e., a is normal. But a is not Moore-Penrose invertible and hence a is not EP). So we may be of interest to know when a is both EP and normal. Here we give a more extensive case.

Theorem 2.7. Let $a \in S$. Then the following are equivalent: (1) a is *-DMP with index m and $a(a^*)^m = (a^*)^m a$;

(2) *m* is the smallest positive integer such that $(a^m)^{\dagger}$ exists and $a(a^*)^m = (a^*)^m a$; (3) a^{D_m} exists and $(a^m)^* = ua = au$ for some group invertible element $u \in S$.

Proof. (1) \Rightarrow (2) is clear.

(2) \Rightarrow (1). The equality $a^m(a^m)^* = (a^m)^*a^m$ ensures that $a^m(a^m)^\dagger = (a^m)^\dagger a^m$ (see [8, Theorem 5]). So *a* is *-DMP with index *m* by Theorem 2.4.

(1) \Rightarrow (3). Since *a* is *-DMP with index *m*, then a^{D_m} exists and aa^{D_m} is symmetric by Lemma 2.2. So,

$$(a^m)^* = (a^m a^{D_m} a)^* = a a^{D_m} (a^m)^*$$
, and
 $(a^m)^* = (a a^{D_m} a^m)^* = (a^m)^* a a^{D_m}$.

Since a^{D_m} exists and $(a^m)^* a = a(a^m)^*$, then we obtain $a^{D_m}(a^m)^* = (a^m)^* a^{D_m}$ (see [5, Theorem 1]). Take $u = a^{D_m}(a^m)^*$, then $au = ua = (a^m)^*$. In what follows, we show $u^{\#} = a((a^{D_m})^m)^*$. In fact,

(i)
$$ua((a^{D_m})^m)^*u = a^{D_m}(a^m)^*a((a^{D_m})^m)^*a^{D_m}(a^m)^* = (a^m)^*aa^{D_m}((a^{D_m})^m)^*a^{D_m}(a^m)^*$$

 $= (a^m)^*((a^{D_m})^m)^*a^{D_m}(a^m)^* = (aa^{D_m})^*a^{D_m}(a^m)^* = a^{D_m}(a^m)^* = u;$
(ii) $a((a^{D_m})^m)^*ua((a^{D_m})^m)^* = a((a^{D_m})^m)^*a^{D_m}(a^m)^*a^{(a^{D_m})^m}a^{(a^{D_m})^m})^*$
 $= a((a^{D_m})^m)^*(a^m)^*a^{D_m}a((a^{D_m})^m)^*$
 $= a(aa^{D_m})^*a^{D_m}a((a^{D_m})^m)^* = a(aa^{D_m})^*((a^{D_m})^m)^*$

(iii) $a((a^{D_m})^m)^* u = a((a^{D_m})^m)^* a^{D_m} (a^m)^* = a((a^{D_m})^m)^* (a^m)^* a^{D_m} = a(aa^{D_m})^* a^{D_m}$ $= aa^{D_m} \text{ and}$ $ua((a^{D_m})^m)^* = a^{D_m} (a^m)^* a((a^{D_m})^m)^* = a^{D_m} a(a^m)^* ((a^{D_m})^m)^* = aa^{D_m},$ so, $a((a^{D_m})^m)^* u = ua((a^{D_m})^m)^*.$

 $= a((a^{D_m})^m)^*$:

Hence $u^{\#} = a((a^{D_m})^m)^*$.

(3) \Rightarrow (1). Since $u^{\#}$ and a^{D_m} exist with au = ua, then $au^{\#} = u^{\#}a$ and $(ua)^D = u^{\#}a^{D_m}$.

So, $(aa^{D_m})^* = (a^m(a^{D_m})^m)^* = ((a^m)^D a^m)^* = (a^m)^*((a^m)^*)^D = ua(ua)^D = uau^{\#}a^{D_m}$ $= uu^{\#}aa^{D_m}.$

Therefore $(aa^{D_m})^*aa^{D_m} = uu^{\#}aa^{D_m} = (aa^{D_m})^*$. That is, aa^{D_m} is symmetric. We thus have *a* is *-DMP with index *m*. \Box

Corollary 2.8. *Let* $a \in S$ *. Then the following are equivalent:* (1) *a is EP and normal;* (2) a^{\dagger} exists and a is normal; (3) $a^{\#}$ exists and $a^{*} = ua = au$ for some group invertible element $u \in S$.

In what follows, *-DMP elements are characterized in terms of the pseudo core inverse and dual pseudo core inverse.

Theorem 2.9. Let $a \in S$. Then the following are equivalent: (1) *a is* *-*DMP with index m;* (2) $a^{\mathbb{D}_m}$ and $a_{\mathbb{D}_m}$ exist with $a^{\mathbb{D}_m} = a_{\mathbb{D}_m}$; (3) $a^{\mathbb{D}_m}$ and $a_{\mathbb{D}_m}$ exist with $aa^{\mathbb{D}_m} = a_{\mathbb{D}_m}a$.

Proof. (1) \Rightarrow (2), (3). If *a* is *-DMP with index *m*, then by Lemma 2.3, a^{D_m} and $(a^m)^{\dagger}$ exist with $(a^m)^{\dagger} = (a^{D_m})^m$.

Hence $a^{\textcircled{D}_m}$ and $a_{\textcircled{D}_m}$ exist by Lemma 2.1 (2). It is not difficult to verify that $a_{\textcircled{D}_m} = a^{\textcircled{D}_m}$ and $aa^{\textcircled{D}_m} = a_{\textcircled{D}_m}a^m$. (2) \Rightarrow (1). If $a^{\textcircled{D}_m}$ and $a_{\textcircled{D}_m}$ exist, then a^{D_m} and $(a^m)^{\dagger}$ exist with $a^{\textcircled{D}_m} = a^{D_m}a^m(a^m)^{\dagger}$, $a_{\textcircled{D}_m} = (a^m)^{\dagger}a^m a^{D_m}$. Equality $a_{\textcircled{D}_m} = a^{\textcircled{D}_m}$ would imply that $a^{D_m}a^m(a^m)^{\dagger} = (a^m)^{\dagger}a^m a^{D_m}$. Post-multiply this equality by $a^{m+1}(a^{D_m})^m$, then we obtain $aa^{D_m} = (a^m)^{\dagger}a^m$. So aa^{D_m} is symmetric. According to Lemma 2.2, *a* is *-DMP with index *m*.

(3) \Rightarrow (1). By the hypothesis, we have $aa^{D_m}a^m(a^m)^{\dagger} = (a^m)^{\dagger}a^m a^{D_m}a$. That is, $a^m(a^m)^{\dagger} = (a^m)^{\dagger}a^m$. So $aa^{D_m} = a^m(a^{D_m})^m = a^m(a^m)^{\dagger}a^m(a^{D_m})^m = (a^m)^{\dagger}a^m a^m(a^{D_m})^m = (a^m)^{\dagger}a^m$. Therefore aa^{D_m} is symmetric. Hence a is *-DMP with index m.

The following result characterizes *-DMP elements merely in terms of the pseudo core inverse.

Theorem 2.10. Let $a \in S$. Then a is *-DMP with index m if and only if a^{\otimes_m} exists and one of the following equivalent conditions holds:

(1) $aa^{\mathbb{D}_m} = a^{\mathbb{D}_m}a;$ (2) $a^{D_m}a^{\mathbb{D}_m} = a^{\mathbb{D}_m}a^{D_m}$: (3) $a^{\mathbb{D}_m} = (a^m)^{(1,3)} a^m a^{D_m}$ for some $(a^m)^{(1,3)} \in a^m \{1,3\}$; $(4) a^{m+1} a^{\textcircled{D}_m} = a^m;$ (5) $(a^{\mathbb{D}_m})^2 a = a^{\mathbb{D}_m};$ (6) $a^{\mathbb{D}_m}a$ is symmetric; (7) $aa^{\mathbb{D}_m}$ commutes with $a^{\mathbb{D}_m}a$.

Proof. If *a* is *-DMP with index *m*, then $(a^{D_m})^m = (a^m)^{\dagger}$, $a^{\textcircled{m}_m} = a^{D_m}$ by Lemma 2.3 and aa^{D_m} is symmetric by Lemma 2.2. So (1)-(7) hold.

Conversely, we assume that $a^{\mathbb{D}_m}$ exists.

(1). By the definition of the pseudo core inverse, we have $a^{\mathbb{D}_m}a^{m+1} = a^m$, and we also have $a^{\mathbb{D}_m}aa^{\mathbb{D}_m} = a^{\mathbb{D}_m}$ by calculation. The equalities $aa^{\mathbb{D}_m} = a^{\mathbb{D}_m}a$, $a^{\mathbb{D}_m}aa^{\mathbb{D}_m} = a^{\mathbb{D}_m}$ and $a^{\mathbb{D}_m}a^{m+1} = a^m$ yield that $a^{D_m} = a^{\mathbb{D}_m}$. Therefore ais *-DMP with index *m* by Lemma 2.3.

(2). Since $a^{D_m}a^{\overline{\mathbb{D}}_m} = a^{\overline{\mathbb{D}}_m}a^{\overline{D}_m}$, then $(a^{D_m})^{\#}a^{\overline{\mathbb{D}}_m} = a^{\overline{\mathbb{D}}_m}(a^{D_m})^{\#}$ (see [5, Theorem 1]). Namely,

$$a^2 a^{D_m} a^{\widehat{\mathbb{D}}_m} = a^{\widehat{\mathbb{D}}_m} a^2 a^{D_m}.$$

So $aa^{\mathbb{D}_m} = a^m (a^{\mathbb{D}_m})^m = aa^{D_m} a^m (a^{\mathbb{D}_m})^m = aa^{D_m} aa^{\mathbb{D}_m} = a^2 a^{D_m} a^{\mathbb{D}_m} = a^{\mathbb{D}_m} a^2 a^{D_m}$ $=a^{\textcircled{D}_{m}}a^{m+1}(a^{D_{m}})^{m}=a^{m}(a^{D_{m}})^{m}=aa^{D_{m}}.$

Therefore aa^{D_m} is symmetric. Hence *a* is *-DMP with index *m* by Lemma 2.2. (3). Since a^{\oplus_m} exists, then by Lemma 2.1 (1), a^{D_m} and $(a^m)^{(1,3)}$ exist. From equality (3) and $a^{\oplus_m} = a^{D_m} a^m (a^m)^{(1,3)}$, it follows that $a^{D_m}a^m(a^m)^{(1,3)} = (a^m)^{(1,3)}a^ma^{D_m}$. Pre-multiply this equality by $(a^{D_m})^{m-1}a^m$, then we get

$$a^m(a^m)^{(1,3)} = aa^{D_m}$$

So aa^{D_m} is symmetric. Hence *a* is *-DMP with index *m* by Lemma 2.2.

(4). The equalities $a^{m+1}a^{\mathbb{D}_m} = a^m$ and $a^{\mathbb{D}_m}a^{m+1} = a^m$ yield that a is strongly π -regular and $a^{D_m} = a^m(a^{\mathbb{D}_m})^{m+1} = a^{\mathbb{D}_m}$ (see [5, Theorem 4]). So a is *-DMP with index m by Lemma 2.3.

(5) \Rightarrow (1). Pre-multiply (5) by *a*, then we get $a(a^{\mathbb{D}_m})^2 a = aa^{\mathbb{D}_m}$. That is, $a^{\mathbb{D}_m}a = aa^{\mathbb{D}_m}$.

(6) \Rightarrow (1). Pre-multiply $(a^{\textcircled{D}_m}a)^* = a^{\textcircled{D}_m}a$ by $aa^{\textcircled{D}_m}$, then we obtain

$$aa^{\mathbb{D}_m}(a^{\mathbb{D}_m}a)^* = aa^{\mathbb{D}_m}a^{\mathbb{D}_m}a = a^{\mathbb{D}_m}a$$

So,

$$aa^{\mathbb{D}_m} = a^m (a^{\mathbb{D}_m})^m = (a^m (a^{\mathbb{D}_m})^m)^* = (a^{\mathbb{D}_m} a^{m+1} (a^{\mathbb{D}_m})^m)^* = (a^{\mathbb{D}_m} aaa^{\mathbb{D}_m})^* = (aa^{\mathbb{D}_m})^* (a^{\mathbb{D}_m} a)^* = aa^{\mathbb{D}_m} (a^{\mathbb{D}_m} a)^* = a^{\mathbb{D}_m} a.$$

(7) \Rightarrow (1). From $aa^{\textcircled{m}}(a^{\textcircled{m}}a) = (a^{\textcircled{m}}a)aa^{\textcircled{m}}$, $aa^{\textcircled{m}}(a^{\textcircled{m}}a) = a^{\textcircled{m}}a$ and $(a^{\textcircled{m}}a)aa^{\textcircled{m}} = a^{\textcircled{m}}a^{m+1}(a^{\textcircled{m}})^m = aa^{\textcircled{m}}a$, it follows that $aa^{\textcircled{m}}a = a^{\textcircled{m}}a$. \Box

In [27], Xu and Chen characterized EP elements in terms of equations. Similarly, we utilize equations to characterize *-DMP elements.

Theorem 2.11. *Let* $a \in S$ *. Then the following are equivalent:*

(1) *a is* *-*DMP* with index m;

(2) *m* is the smallest positive integer such that $xa^{m+1} = a^m$, $ax^2 = x$ and $(x^ma^m)^* = x^ma^m$ for some $x \in S$;

(3) *m* is the smallest positive integer such that $xa^{m+1} = a^m$, ax = xa and $(x^ma^m)^* = x^ma^m$ for some $x \in S$.

Proof. (1) \Rightarrow (2), (3). Suppose *a* is *-DMP with index *m*, then a^{D_m} exists and $a^{D_m}a$ is symmetric by Lemma 2.2. Take $x = a^{D_m}$, then (2) and (3) hold.

(2) \Rightarrow (1). From $xa^{m+1} = a^m$ and $a^m = xa^{m+1} = (ax^2)a^{m+1} = (a^{m+1}x^{m+2})a^{m+1} = a^{m+1}(x^{m+2}a^{m+1}) = a^{m+1}(x^{m+1}a^m) = a^{m+1}x^{m+1}a^m$, it follows that *a* is strongly π -regular and $a^{D_m} = x^{m+1}a^m$. So $aa^{D_m} = ax^{m+1}a^m = x^ma^m$. Therefore a^{D_m} exists and aa^{D_m} is symmetric. Hence *a* is *-DMP with index *m* by Lemma 2.2.

(3) \Rightarrow (1). Equalities $xa^{m+1} = a^m$ and $a^m = a^{m+1}x$ yield that $a^{D_m} = x^{m+1}a^m$. So $a^{D_m}a = x^{m+1}a^{m+1} = x^ma^m$. Therefore a^{D_m} exists and aa^{D_m} is symmetric. Hence a is *-DMP with index m. \Box

Let S^0 denote a *-semigroup with zero element 0. The left annihilator of $a \in S^0$ is denoted by $\circ a$ and is defined by $\circ a = \{x \in S^0 : xa = 0\}$. The following result characterizes *-DMP elements in S^0 in terms of left annihilators. We begin with an auxiliary lemma.

Lemma 2.12. [7] Let $a, x \in S^0$. Then $a^{\textcircled{m}_m} = x$ if and only if m is the smallest positive integer such that one of the following equivalent conditions holds: (1) xax = x and $xS^0 = x^*S^0 = a^mS^0$; (2) $xax = x, °x = °(a^m)$ and $°(x^*) \subseteq °(a^m)$.

Theorem 2.13. Let $a \in S^0$. Then a is *-DMP with index m if and only if m is the smallest positive integer such that one of the following equivalent conditions holds:

(1) xax = x, $xS^0 = x^*S^0 = a^mS^0$ and $x^mS^0 = (a^m)^*S^0$ for some $x \in S^0$; (2) xax = x, $^\circ x = ^\circ(a^m)$, $^\circ(x^*) \subseteq ^\circ(a^m)$ and $^\circ(a^m)^* \subseteq ^\circ(x^m)$ for some $x \in S^0$.

Proof. Suppose *a* is *-DMP with index *m*. Then a^{\bigoplus_m} , $(a^m)^{\dagger}$ exist with $(a^{\bigoplus_m})^m = (a^m)^{\dagger}$ by Lemma 2.3. Take $x = a^{\bigoplus_m}$, then xax = x, $xS^0 = x^*S^0 = a^mS^0$ by Lemma 2.12. Further, from $x^m = (a^m)^{\dagger}$, it follows that $x^m = (x^m a^m)^* x^m = (a^m)^* (x^m)^* x^m \in (a^m)^*S^0$ and $(a^m)^* = (a^m x^m a^m)^* = x^m a^m (a^m)^* \in x^mS^0$. Hence (1) holds. (1) \Rightarrow (2) is clear.

(2). From xax = x, $^{\circ}x = ^{\circ}(a^m)$ and $^{\circ}(x^*) \subseteq ^{\circ}(a^m)$, it follows that $a^{\bigoplus_m} = x$ by Lemma 2.12. Then $1 - (x^m a^m)^* \in ^{\circ}(a^m)^* \subseteq ^{\circ}(x^m)$ implies $x^m = (x^m a^m)^* x^m$. So $x^m a^m = (x^m a^m)^* x^m a^m$. Therefore $(x^m a^m)^* = x^m a^m$, together with $xa^{m+1} = a^m$, $ax^2 = x$, implies *a* is *-DMP with index *m* by Theorem 2.11. \Box

It is known that a^D exists if and only if $(a^k)^D$ exists for any positive integer k if and only if $(a^k)^D$ exists for some positive integer k [5]. We find this property is inherited by *-DMP.

Theorem 2.14. Let $a \in S$ and k a positive integer, then a is *-DMP if and only if a^k is *-DMP.

Proof. Observe that a^D exists and aa^D is symmetric if and only if $(a^k)^D$ exists and $a^k(a^k)^D$ is symmetric. So *a* is *-DMP if and only if a^k is *-DMP by Lemma 2.2. \Box

Given two *-DMP elements *a* and *b*, we may be of interest to consider conditions for the product *ab* (resp. sum a + b) to be *-DMP.

Theorem 2.15. Let $a, b \in S$ with ab = ba, $ab^* = b^*a$. If both a and b are *-DMP, then ab is *-DMP.

Proof. Suppose that both *a* and *b* are *-DMP, then $a^{\textcircled{D}}$, a^{D} and $b^{\textcircled{D}}$, b^{D} exist with $a^{\textcircled{D}} = a^{D}$, $b^{\textcircled{D}} = b^{D}$ by Lemma 2.3. Since $a^{\textcircled{D}}$ and $b^{\textcircled{D}}$ exist with ab = ba, $ab^{*} = b^{*}a$, then $(ab)^{\textcircled{D}}$ exists with $(ab)^{\textcircled{D}} = a^{\textcircled{D}}b^{\textcircled{D}}$ (see [7, Theorem 4.3]). Also, $(ab)^{D}$ exists with $(ab)^{D} = a^{D}b^{D}$. So,

$$(ab)^{\textcircled{D}} = a^{\textcircled{D}}b^{\textcircled{D}} = a^{D}b^{D} = (ab)^{D}.$$

Hence *ab* is *-DMP by Lemma 2.3. \Box

Theorem 2.16. Let $a, b \in R$ with ab = ba = 0, $a^*b = 0$. If both a and b are *-DMP, then a + b is *-DMP.

Proof. If both *a* and *b* are *-DMP, then $a^{\textcircled{D}}$, a^{D} and $b^{\textcircled{D}}$, b^{D} exist with $a^{\textcircled{D}} = a^{D}$, $b^{\textcircled{D}} = b^{D}$ by Lemma 2.3. Since $a^{\textcircled{D}}$ and $b^{\textcircled{D}}$ exist with ab = ba = 0, $a^{*}b = 0$, then $(a + b)^{\textcircled{D}}$ exists with $(a + b)^{\textcircled{D}} = a^{\textcircled{D}} + b^{\textcircled{D}}$ (see [7, Theorem 4.4]). Also, $(a + b)^{D}$ exists with $(a + b)^{D} = a^{D} + b^{D}$ (see [5, Corollary 1]). So we have

$$(a+b)^{\bigcirc} = a^{\bigcirc} + b^{\bigcirc} = a^D + b^D = (a+b)^D.$$

Hence a + b is *-DMP by Lemma 2.3.

Example 2.17. The condition ab = 0, $a^*b = 0$ (without ba = 0) is not sufficient to show that a + b is *-DMP, although both a and b are *-DMP.

Let $R = \mathbb{C}^{2\times 2}$ with transpose as involution, $a = \begin{pmatrix} i & 0 \\ 0 & 0 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$, then $ab = a^*b = 0$, but $ba \neq 0$. Since $a^{\textcircled{D}} = a^{\textcircled{B}} = a^{\textcircled{B}} aa^{(1,3)} = \begin{pmatrix} -i & 0 \\ 0 & 0 \end{pmatrix} = a^{\ddagger} = a^D$, a is *-DMP. It is clear that b is *-DMP. Observe that $a + b = \begin{pmatrix} i & 0 \\ -1 & 0 \end{pmatrix}$, by $\begin{pmatrix} (-1)^{\frac{m-1}{2}}(a+b) & m \text{ is odd} \end{pmatrix}$

calculation, we find that neither a + b nor $(a + b)^2$ has any $\{1,3\}$ -inverse. Since $(a + b)^m = \begin{cases} (-1)^{\frac{m}{2}}(a + b) & m \text{ is odd} \\ (-1)^{\frac{m}{2}+1}(a + b)^2 & m \text{ is even'} \end{cases}$ we conclude that $(a + b)^m$ has no $\{1,3\}$ -inverse for arbitrary positive integer m. Hence a + b is not *-DMP.

3. Core-EP Decomposition

Core-nilpotent decomposition was introduced in [2] for complex matrices. Later, Patrício and Puystjens [19] generalized this decomposition from complex matrices to rings. Let $a \in R$ with a^{D_m} exists. The sum $a = c_a + n_a$ is called the core-nilpotent decomposition of a, where $c_a = aa^{D_m}a$ is the core part of a, $n_a = (1-aa^{D_m})a$ is the nilpotent part of a. This decomposition is unique and it brings $n_a^m = 0$, $c_a n_a = n_a c_a = 0$, $c_a^{\#}$ exists with $c_a^{\#} = a^{D_m}$.

Wang [23] introduced the core-EP decomposition for a complex matrix, and proved its uniqueness by using the rank of a matrix and matrix decomposition. Let *A* be a square complex matrix with index *m*, then $A = A_1 + A_2$, where $A_1^{\#}$ exists, $A_2^{m} = 0$ and $A_1^{*}A_2 = A_2A_1 = 0$. In the following, we show that neither the rank nor the matrix decomposition are necessary for the characterization of core-EP decomposition in rings.

Theorem 3.1. Let $a \in R$ with a^{\bigoplus_m} exists. Then $a = a_1 + a_2$, where (1) $a_1^{\#}$ exists; (2) $a_2^{m} = 0$; (3) $a_1^{*}a_2 = a_2a_1 = 0$.

Proof. Since a^{\oplus_m} exists. Take $a_1 = aa^{\oplus_m}a$ and $a_2 = a - aa^{\oplus_m}a$, then $a_2^m = 0$ and $a_1^*a_2 = a_2a_1 = 0$. Next, we will prove that $a_1^{\#}$ exists. In fact,

$$a_1 = aa^{\mathbb{D}_m}a = (aa^{\mathbb{D}_m}a)^2(a^{\mathbb{D}_m})^2a \in a_1^2R \text{ and } a_1 = aa^{\mathbb{D}_m}a = a^{\mathbb{D}_m}(aa^{\mathbb{D}_m}a)^2 \in Ra_1^2$$

Hence $a_1^{\#}$ exists with $a_1^{\#} = (a^{\bigcirc_m})^2 a$ (see [9, Proposition 7]). \Box

Theorem 3.2. *The core-EP decomposition of an element in R is unique.*

Proof. The proof is similar to [23, Theorem 2.4], the matrices case. We give the proof for completeness.

Let $a = a_1 + a_2$ be the core-EP decomposition of $a \in R$, where $a_1 = aa^{\bigoplus_m}a$, $a_2 = a - aa^{\bigoplus_m}a$. Let $a = b_1 + b_2$ be another core-EP decomposition of a. Then $a^m = \sum_{i=0}^m b_1^i b_2^{m-i}$. Since $b_1^* b_2 = 0$ and $b_2^m = 0$, then $(a^m)^* b_2 = 0$. Since $b_2b_1 = 0$, then $a^m b_1(b_1^m)^\# = b_1$. Therefore,

$$b_1 - a_1 = b_1 - aa^{\mathbb{D}_m}a = b_1 - aa^{\mathbb{D}_m}b_1 - aa^{\mathbb{D}_m}b_2 = b_1 - a^m(a^{\mathbb{D}_m})^m b_1 - [a^m(a^{\mathbb{D}_m})^m]^* b_2$$

= $b_1 - a^m(a^{\mathbb{D}_m})^m a^m b_1(b_1^m)^\# = b_1 - a^m b_1(b_1^m)^\# = 0.$

Thus, $b_1 = a_1$. Hence the core-EP decomposition of *a* is unique.

Next, we exhibit two applications of the core-EP decomposition. On one hand, we give a characterization of the pseudo core inverse by using the core-EP decomposition.

Theorem 3.3. Let $a \in R$ with $a^{\textcircled{D}_m}$ exists and let the core-EP decomposition of a be as in Theorem 3.1. Then $a_1^{\textcircled{D}} = a^{\textcircled{D}_m}$.

Proof. Suppose $a^{\textcircled{D}_m}$ exists, then a^{D_m} and $(a^m)^{(1,3)}$ exist by Lemma 2.1, as well as $a^{\textcircled{D}_m}(a_1)^2 = a^{\textcircled{D}_m}(aa^{\textcircled{D}_m}a)^2 = aa^{\textcircled{D}_m}a = a_1; a_1(a^{\textcircled{D}_m})^2 = aa^{\textcircled{D}_m}a(a^{\textcircled{D}_m})^2 = a^{\textcircled{D}_m}; a_1a^{\textcircled{D}_m} = aa^{\textcircled{D}_m}aa^{\textcircled{D}_m} = aa^{\textcircled{D}_m}$, which implies $(a_1a^{\textcircled{D}_m})^* = a_1a^{\textcircled{D}_m}$. We thus get $a_1^{\textcircled{D}} = a^{\textcircled{D}_m}$.

On the other hand, we use core-EP decomposition to characterize *-DMP elements.

Theorem 3.4. Let $a \in R$ with a^{\bigotimes_m} exists and let the core-EP decomposition of a be as in Theorem 3.1. Then the following are equivalent: (1) a is *-DMP with index m; (2) a_1 is EP.

Proof. (1) \Leftrightarrow (2). *a* is *-DMP with index *m* if and only if $a^{\mathbb{D}_m}$ exists with $aa^{\mathbb{D}_m} = a^{\mathbb{D}_m}a$ by Theorem 2.10 (1). According to Theorem 3.3, $a_1^{\oplus} = a^{\mathbb{D}_m}$. By a simple calculation, $a_1a_1^{\oplus} = aa_1^{\oplus} = aa^{\mathbb{D}_m}a$, and $a_1^{\oplus}a_1 = a_1^{\oplus}a = a^{\mathbb{D}_m}a$. So $aa^{\mathbb{D}_m} = a^{\mathbb{D}_m}a$ is equivalent to $a_1a_1^{\oplus} = a_1^{\oplus}a_1$, which is equivalent to, a_1 is EP (see [21, Theorem 3.1]). \Box

Remark 3.5. If a is *-DMP with index m. Then the core-EP decomposition of a coincides with its core-nilpotent decomposition. In fact, if a is *-DMP with index m, then $a^{\textcircled{m}_m} = a^{D_m}$ by Lemma 2.3. Hence the core-EP decomposition and core-nilpotent decomposition coincide.

4. Core-EP Order

In the following, R^{\oplus} and R^{\odot} denote the sets of all core invertible and pseudo core invertible elements in R, respectively. R^{\odot_m} and R_{\odot_m} denote the sets of all pseudo core invertible and dual pseudo core invertible elements of index m, respectively.

Baksalary and Trenkler [1] introduced the core partial order for complex matrices of index one. Then, Rakić and Djordjević [22] generalized the core partial order from complex matrices to *-rings. Let $a, b \in R^{\oplus}$, the core partial order $a \stackrel{{}_{\sim}}{\leq} b$ was defined as

$$a \stackrel{\tiny{\tiny{\oplus}}}{\leq} b : a^{\oplus}a = a^{\oplus}b \text{ and } aa^{\oplus} = ba^{\oplus}.$$

In [23], Wang introduced the core-EP order for complex matrices. Let $A, B \in \mathbb{C}^{n \times n}$, the core-EP order $A \stackrel{!}{\leq} B$ was defined as

$$A \stackrel{{}_{\frown}}{\leq} B : A^{\textcircled{}_{\bullet}}A = A^{\textcircled{}_{\bullet}}B \text{ and } AA^{\textcircled{}_{\bullet}} = BA^{\textcircled{}_{\bullet}}$$

where A^{\oplus} denotes the core-EP inverse [13] of *A*.

One can see [6], [14] for a deep study of the partial order.

In what follows, we generalize the core-EP order from complex matrices to *-rings and give some properties.

Definition 4.1. Let $a, b \in \mathbb{R}^{\textcircled{D}}$. The core-EP order $a \stackrel{\textcircled{D}}{\leq} b$ is defined as

$$a \stackrel{\tiny (D)}{\leq} b: a^{\tiny (D)}a = a^{\tiny (D)}b \text{ and } aa^{\tiny (D)} = ba^{\tiny (D)}.$$

$$\tag{4.1}$$

We extend some results of the core-EP order [23] from matrices to an arbitrary *-ring, using a different method. First, we have the following result.

Theorem 4.2. *The core-EP order is not a partial order but merely a pre-order.*

Proof. It is clear that the core-EP order (4.1) is reflexive. Let $a, b, c \in \mathbb{R}^{\textcircled{0}}, a \stackrel{\textcircled{0}}{\leq} b$ and $b \stackrel{\textcircled{0}}{\leq} c$. Next, we prove $a \stackrel{\textcircled{0}}{\leq} c$.

Suppose $k = max\{ind(a), ind(b)\}$. From $aa^{\bigcirc} = ba^{\bigcirc}$ and $bb^{\bigcirc} = cb^{\bigcirc}$, it follows that

$$aa^{\textcircled{D}} = ba^{\textcircled{D}} = ba(a^{\textcircled{D}})^2 = b^2(a^{\textcircled{D}})^2 = b^{k+1}(a^{\textcircled{D}})^{k+1} = bb^{\textcircled{D}}b^{k+1}(a^{\textcircled{D}})^{k+1} = cb^{\textcircled{D}}b^{k+1}(a^{\textcircled{D}})^{k+1} = cb^{(a^{\textcircled{D}})^{k+1}} = cb^{(a^{\textcircled{D})^{k+1}}} = cb^{(a^{\textcircled{D})^{k+$$

Since $aa^{\textcircled{D}} = ba^{\textcircled{D}}$, then $a^{\textcircled{D}} = a^{\textcircled{D}}(aa^{\textcircled{D}})^* = a^{\textcircled{D}}(ba^{\textcircled{D}})^* = a^{\textcircled{D}}[b^k(a^{\textcircled{D}})^k]^* = a^{\textcircled{D}}[b^k(a^{\textcircled{D}})^k]^* = a^{\textcircled{D}}[b^k(a^{\textcircled{D}})^k]^* bb^{\textcircled{D}}$. Equalities $a^{\textcircled{D}}a = a^{\textcircled{D}}b, \ b^{\textcircled{D}}b = b^{\textcircled{D}}c$ and $a^{\textcircled{D}} = a^{\textcircled{D}}[b^k(a^{\textcircled{D}})^k]^* bb^{\textcircled{D}}$ yield that $a^{\textcircled{D}}a = a^{\textcircled{D}}b = a^{\textcircled{D}}[b^k(a^{\textcircled{D}})^k]^* bb^{\textcircled{D}}b = a^{\textcircled{D}}[b^k(a^{\textcircled{D}})^k]^* bb^{\textcircled{D}}c_{_} = a^{\textcircled{D}}c$.

We thus have $a \leq c$.

However, the core-EP order is not anti-symmetric (see [23, Example 4.1]). \Box

The following result give some characterizations of the core-EP order, generalizing [23, Theorem 4.2] from matrices to an arbitrary *-ring without using matrix decomposition.

Theorem 4.3. Let $a, b \in \mathbb{R}^{\oplus}$ with $k = max\{ind(a), ind(b)\}$ and let $a = a_1 + a_2$ and $b = b_1 + b_2$ be the core-EP decompositions. Then the following are equivalent:

(1)
$$a \stackrel{\smile}{\leq} b$$
;
(2) $a^{k+1} = ba^k$ and $a^*a^k = b^*a^k$;
(3) $a_1 \stackrel{\textcircled{w}}{\leq} b_1$.

Proof. (1) \Rightarrow (2). Post-multiply $aa^{\textcircled{D}} = ba^{\textcircled{D}}$ by a^{k+1} , then we derive $a^{k+1} = ba^k$. From $a^{\textcircled{D}}a = a^{\textcircled{D}}b$, it follows that $a^*(a^{\textcircled{D}})^* = b^*(a^{\textcircled{D}})^*$. Post-multiply this equality by a^*a^k , then $a^*a^k = b^*a^k$. (2) \Rightarrow (1). Equality $a^*a^k = b^*a^k$ yields that $(a^k)^*a = (a^k)^*b$. Pre-multiply this equality by $a^{\textcircled{D}}((a^{\textcircled{D}})^k)^*$, then $a^{\textcircled{D}}a = a^{\textcircled{D}}b$. Post-multiply $a^{k+1} = ba^k$ by $(a^{\textcircled{D}})^{k+1}$, then $aa^{\textcircled{D}} = ba^{\textcircled{D}}$. (1) \Rightarrow (3). From Theorem 3.3 and $aa^{\textcircled{D}} = ba^{\textcircled{D}}$, it follows that

$$a_1a_1^{\oplus} = aa_1^{\oplus} = aa^{\oplus} = ba^{\oplus} = ba(a^{\oplus})^2 = b^2(a^{\oplus})^2 = \dots = b^k(a^{\oplus})^k = bb^{\oplus}b^k(a^{\oplus})^k$$
$$= bb^{\oplus}ba^{\oplus} = b_1a_1^{\oplus}.$$

Meanwhile, we have $aa^{\textcircled{0}} = aa^{\textcircled{0}}bb^{\textcircled{0}}$ by taking an involution on $aa^{\textcircled{0}} = bb^{\textcircled{0}}ba^{\textcircled{0}} = bb^{\textcircled{0}}aa^{\textcircled{0}}$. So $a^{\textcircled{0}} = a^{\textcircled{0}}bb^{\textcircled{0}}$. Therefore $a_1^{\textcircled{0}}a_1 = a_1^{\textcircled{0}}a = a^{\textcircled{0}}a = a^{\textcircled{0}}b = a^{\textcircled{0}}bb^{\textcircled{0}}b = a_1^{\textcircled{0}}b_1$. (3) \Rightarrow (1). Since $aa^{\textcircled{0}} = a_1a_1^{\textcircled{0}} = b_1a_1^{\textcircled{0}} = bb^{\textcircled{0}}ba^{\textcircled{0}}$, then

$$aa^{\textcircled{D}} = bb^{\textcircled{D}}baa^{\textcircled{D}}a^{\textcircled{D}} = (bb^{\textcircled{D}}b)^{2}(a^{\textcircled{D}})^{2} = bb^{\textcircled{D}}bb^{k}(b^{\textcircled{D}})^{k}b(a^{\textcircled{D}})^{2} = b(bb^{\textcircled{D}}ba^{\textcircled{D}})a^{\textcircled{D}} = ba(a^{\textcircled{D}})^{2} = ba^{\textcircled{D}}.$$

Equalities $aa^{\textcircled{D}} = bb^{\textcircled{D}}ba^{\textcircled{D}}$ and $aa^{\textcircled{D}} = ba^{\textcircled{D}}$ yield that $aa^{\textcircled{D}} = aa^{\textcircled{D}}bb^{\textcircled{D}}$. Therefore $a^{\textcircled{D}} = a^{\textcircled{D}}bb^{\textcircled{D}}$. Hence $a^{\textcircled{D}}b = a^{\textcircled{D}}bb^{\textcircled{D}}b = a^{\textcircled{D}}_{1}b_{1} = a^{\textcircled{D}}_{1}a_{1} = a^{\textcircled{D}}a$. \Box

Wang and Chen [25] gave some equivalences to $a \stackrel{w}{\leq} b$ under the assumption that a is EP. Similarly, we give a characterization of $a \stackrel{w}{\leq} b$ whenever a is *-DMP. In the following result, c_a and c_b are the core parts of the core-nilpotent decompositions of a, b respectively.

Theorem 4.4. Let $a, b \in \mathbb{R}^{\mathbb{D}}$. If a is *-DMP, then the following are equivalent:

(1) $a \stackrel{\textcircled{0}}{\leq} b;$ (2) $c_a \stackrel{\textcircled{0}}{\leq} c_b;$ (3) $a^{\textcircled{0}} b^{\textcircled{0}} = b^{\textcircled{0}} a^{\textcircled{0}} and a^{\textcircled{0}} b = a^{\textcircled{0}} a;$ (4) $a^{\textcircled{0}} \stackrel{\textcircled{0}}{\leq} b^{\textcircled{0}} and a^{\textcircled{0}} b = a^{\textcircled{0}} a.$

Proof. Let $k = \max\{\operatorname{ind}(a), \operatorname{ind}(b)\}$. If a is *-DMP, then $a^{\textcircled{o}} = a^{D}$ by Lemma 2.3 and $aa^{\textcircled{o}} = a^{\textcircled{o}}a$ by Theorem 2.10. (1) \Rightarrow (2). $a^{\textcircled{o}} = c_{a}^{\textcircled{o}}$ (see [7, Theorem 2.9]) and $a^{\textcircled{o}}a = a^{\textcircled{o}}b$ imply $c_{a}^{\textcircled{o}}a = c_{a}^{\textcircled{o}}b$. From $a^{\textcircled{o}}b = a^{\textcircled{o}}a = aa^{\textcircled{o}} = ba^{\textcircled{o}}$, we have $a^{\textcircled{o}}b^{D} = b^{D}a^{\textcircled{o}}$. So, $a^{\textcircled{o}}bb^{D}b = bb^{D}ba^{\textcircled{o}} = bb^{D}b^{k}(a^{\textcircled{o}})^{k} = b^{k}(a^{\textcircled{o}})^{k} = aa^{\textcircled{o}}$. Therefore $c_{a}^{\textcircled{o}}c_{b} = c_{b}c_{a}^{\textcircled{o}} = c_{a}c_{a}^{\textcircled{o}} = c_{a}^{\textcircled{o}}c_{a} = a^{\textcircled{o}}c_{a} = a^{\textcircled{o}}c_{a}$. (2) \Rightarrow (1). $aa^{\textcircled{o}} = c_{a}c_{a}^{\textcircled{o}} = c_{b}c_{a}^{\textcircled{o}} = bb^{D}ba^{\textcircled{o}} = (bb^{D}b)^{2}(a^{\textcircled{o}})^{2} = b^{2}b^{D}b(a^{\textcircled{o}})^{2} = b(bb^{D}ba^{\textcircled{o}})a^{\textcircled{o}} = baa^{\textcircled{o}}a^{\textcircled{o}} = ba^{\textcircled{o}}$, and $a^{\textcircled{o}}a = c_{a}^{\textcircled{o}}c_{a} = c_{a}^{\textcircled{o}}c_{b} = a^{\textcircled{o}}a^{\textcircled{$

$$aa^{\mathbb{D}}b = aa^{\mathbb{D}}a = ba^{\mathbb{D}}a = baa^{\mathbb{D}}$$

which forces, by [7, Proposition 4.2], $aa^{\textcircled{0}}b^{\textcircled{0}} = b^{\textcircled{0}}aa^{\textcircled{0}} = b^{\textcircled{0}}b^{k+1}(a^{\textcircled{0}})^{k+1} = b^k(a^{\textcircled{0}})^{k+1} = a^{\textcircled{0}}$. So $a^{\textcircled{0}}b^{\textcircled{0}} = (a^{\textcircled{0}})^2 = b^{\textcircled{0}}a^{\textcircled{0}}$.

 $(3) \Rightarrow (1). \ ba^{\textcircled{D}} = b(a^{\textcircled{D}})^{2}a = b(a^{\textcircled{D}})^{2}b = b(a^{\textcircled{D}})^{k+1}b^{k} = b(a^{\textcircled{D}})^{k+1}b^{\textcircled{D}}b^{k+1} = bb^{\textcircled{D}}(a^{\textcircled{D}})^{k+1}b^{k+1} = bb^{\textcircled{D}}aa^{\textcircled{D}}, \text{ together with } aa^{\textcircled{D}} = a^{\textcircled{D}}a = a^{\textcircled{D}}b = (a^{\textcircled{D}})^{k}b^{k} = (a^{\textcircled{D}})^{k}b^{\textcircled{D}}b^{k+1} = b^{\textcircled{D}}(a^{\textcircled{D}})^{k}b^{k+1} = bb^{\textcircled{D}}aa^{\textcircled{D}}, \text{ implies } aa^{\textcircled{D}} = ba^{\textcircled{D}}.$ $(3) \Rightarrow (4). \text{ From } a^{\textcircled{D}}b^{\textcircled{D}} = b^{\textcircled{D}}a^{\textcircled{D}}, \text{ it follows that (1) holds and }$

$$\begin{aligned} (a^{\textcircled{D}})^{\textcircled{D}}a^{\textcircled{D}} &= a^{2}(a^{\textcircled{D}})^{2} = a^{2}b^{k}(a^{\textcircled{D}})^{k+2} = a^{2}b^{\textcircled{D}}b^{k+1}(a^{\textcircled{D}})^{k+2} = a^{2}b^{\textcircled{D}}a(a^{\textcircled{D}})^{2} \\ &= a^{2}b^{\textcircled{D}}a^{\textcircled{D}} = a^{2}a^{\textcircled{D}}b^{\textcircled{D}} = (a^{\textcircled{D}})^{\textcircled{D}}b^{\textcircled{D}}, \\ a^{\textcircled{D}}(a^{\textcircled{D}})^{\textcircled{D}} &= a^{\textcircled{D}}a^{2}a^{\textcircled{D}} = aa^{\textcircled{D}} = b^{\textcircled{D}}a^{2}a^{\textcircled{D}} = b^{\textcircled{D}}(a^{\textcircled{D}})^{\textcircled{D}}. \end{aligned}$$

(4) \Rightarrow (3). Since $(a^{\textcircled{D}})^{\textcircled{D}}a^{\textcircled{D}} = (a^{\textcircled{D}})^{\textcircled{D}}b^{\textcircled{D}}$ and $a^{\textcircled{D}}(a^{\textcircled{D}})^{\textcircled{D}} = b^{\textcircled{D}}(a^{\textcircled{D}})^{\textcircled{D}}$, then we obtain $aa^{\textcircled{D}} = a^2a^{\textcircled{D}}b^{\textcircled{D}}$ and $aa^{\textcircled{D}} = b^{\textcircled{D}}a^2a^{\textcircled{D}}$. So $b^{\textcircled{D}}a^{\textcircled{D}} = (a^{\textcircled{D}})^2 = a^{\textcircled{D}}b^{\textcircled{D}}$. \Box

Wang and Chen [25] proved that if $a \leq b$, a^{\dagger} exists, then b^{\dagger} exists if and only if $[b(1-aa^{\dagger})]^{\dagger}$ exists. Similarly, we have the following result.

Theorem 4.5. Let $a, b \in \mathbb{R}^{\mathbb{D}}$ with $a \stackrel{\mathbb{W}}{\leq} b$. Suppose that a is *-DMP. Then b is *-DMP if and only if $b(1 - aa^{\mathbb{D}})$ is *-DMP.

Proof. From $a^{\textcircled{D}}a = a^{\textcircled{D}}b$ and $aa^{\textcircled{D}} = ba^{\textcircled{D}}$, it follows that

$$aa^{\mathbb{D}}b = aa^{\mathbb{D}}a = ba^{\mathbb{D}}a = baa^{\mathbb{D}}.$$

Suppose that *b* is *-DMP, then $bb^{\textcircled{m}} = b^{\textcircled{m}}b$. Next, we prove $[b(1-aa^{\textcircled{m}})]^{\textcircled{m}} = b^{\textcircled{m}}-a^{\textcircled{m}}$. In fact, suppose ind(b) = k, then

$$\begin{aligned} (b^{\textcircled{D}} - a^{\textcircled{D}})[b(1 - aa^{\textcircled{D}})]^{k+1} &= (b^{\textcircled{D}} - a^{\textcircled{D}})b^{k+1}(1 - aa^{\textcircled{D}}) = b^{k}(1 - aa^{\textcircled{D}}) - a^{\textcircled{D}}b^{k+1}(1 - aa^{\textcircled{D}}) \\ &= b^{k}(1 - aa^{\textcircled{D}}) = [b(1 - aa^{\textcircled{D}})]^{k}; \end{aligned}$$

 $b(1 - aa^{\textcircled{D}})(b^{\textcircled{D}} - a^{\textcircled{D}}) = bb^{\textcircled{D}} - aa^{\textcircled{D}};$

 $b(1 - aa^{\textcircled{D}})(b^{\textcircled{D}} - a^{\textcircled{D}})^{2} = (bb^{\textcircled{D}} - aa^{\textcircled{D}})(b^{\textcircled{D}} - a^{\textcircled{D}}) = b^{\textcircled{D}} - b^{\textcircled{D}}aa^{\textcircled{D}} = b^{\textcircled{D}} - a^{\textcircled{D}}.$

We thus have $[b(1 - aa^{\textcircled{D}})]^{\textcircled{O}} = b^{\textcircled{O}} - a^{\textcircled{O}}$. So, $b(1 - aa^{\textcircled{O}})[b(1 - aa^{\textcircled{O}})]^{\textcircled{O}} = bb^{\textcircled{O}} - aa^{\textcircled{O}}$ and $[b(1 - aa^{\textcircled{O}})]^{\textcircled{O}}b(1 - aa^{\textcircled{O}}) = b^{\textcircled{O}}b - b^{\textcircled{O}}baa^{\textcircled{O}} = bb^{\textcircled{O}} - aa^{\textcircled{O}}$.

Therefore, $b(1 - aa^{\textcircled{D}})[b(1 - aa^{\textcircled{D}})]^{\textcircled{D}} = [b(1 - aa^{\textcircled{D}})]^{\textcircled{D}}b(1 - aa^{\textcircled{D}})$. Hence $b(1 - aa^{\textcircled{D}})$ is *-DMP. Conversely, suppose that $b(1 - aa^{\textcircled{D}})$ is *-DMP. Then, $[b(1 - aa^{\textcircled{D}})]^{\textcircled{D}} = [b(1 - aa^{\textcircled{D}})]^{D}$. We can easily check

that $(1 - uu^2)$ is -Divir. Then, $[v(1 - uu^2)]^2 = [v(1 - uu^2)]^2$. We can easily check

$$(baa^{\mathbb{D}})^{\mathbb{D}} = (baa^{\mathbb{D}})^{\oplus} = (baa^{\mathbb{D}})^{\#} = a^{\mathbb{D}}.$$

Since $b = b(1 - aa^{\textcircled{0}}) + baa^{\textcircled{0}}$, $[b(1 - aa^{\textcircled{0}})]baa^{\textcircled{0}} = b(1 - aa^{\textcircled{0}})aa^{\textcircled{0}}b = 0$, $baa^{\textcircled{0}}[b(1 - aa^{\textcircled{0}})] = baa^{\textcircled{0}}(1 - aa^{\textcircled{0}})b = 0$, and $(baa^{\textcircled{0}})^*b(1 - aa^{\textcircled{0}}) = b^*aa^{\textcircled{0}}(1 - aa^{\textcircled{0}})b = 0$, then $b^{\textcircled{0}} = [b(1 - aa^{\textcircled{0}})]^{\textcircled{0}} + a^{\textcircled{0}}$ (see [7, Theorem 4.4]) and $b^{D} = [b(1 - aa^{\textcircled{0}})]^{D} + (baa^{\textcircled{0}})^{\#} = [b(1 - aa^{\textcircled{0}})]^{D} + a^{\textcircled{0}}$. Thus, *b* is *-DMP. \Box

5. Characterizations for $aa^{\textcircled{D}} = bb^{\textcircled{D}}$

Let $a, b \in R$. If a° and b° are some kind of generalized inverses of a and b. It is very interesting to discuss when $aa^{\circ} = bb^{\circ}$. Koliha et al. [11, Theorem 6.1], Mosić et al. [17, Theorem 3.7] and Patrício et al. [18, Theorem 2.3] gave some equivalences for generalized Drazin inverses, image-kernel (p, q)-inverses and Moore-Penrose inverses, respectively. Here we give a characterization for $aa^{\odot} = bb^{\odot}$.

Proposition 5.1. Let $a, b \in \mathbb{R}^{\mathbb{D}}$. Then the following are equivalent: (1) $aa^{\mathbb{D}} = bb^{\mathbb{D}}aa^{\mathbb{D}}$; (2) $aa^{\mathbb{D}} = aa^{\mathbb{D}}bb^{\mathbb{D}}$;

(2) $a^{\mathbb{D}} = a^{\mathbb{D}}bb^{\mathbb{D}};$ (4) $Ra^{\mathbb{D}} \subseteq Ra^{\mathbb{D}}bb^{\mathbb{D}}.$

Proof. (1) \Leftrightarrow (2) by taking an involution. (2) \Rightarrow (3). Pre-multiply $aa^{\textcircled{D}} = aa^{\textcircled{D}}bb^{\textcircled{D}}$ by $a^{\textcircled{D}}$, then we get $a^{\textcircled{D}} = a^{\textcircled{D}}bb^{\textcircled{D}}$. (3) \Rightarrow (4) is clear. (4) \Rightarrow (2). From $Ra^{\textcircled{D}} \subseteq Ra^{\textcircled{D}}bb^{\textcircled{D}}$, it follows that $a^{\textcircled{D}} = xa^{\textcircled{D}}bb^{\textcircled{D}}$ for some $x \in R$. Then, $aa^{\textcircled{D}} = axa^{\textcircled{D}}bb^{\textcircled{D}} = (axa^{\textcircled{D}}bb^{\textcircled{D}})bb^{\textcircled{D}} = aa^{\textcircled{D}}bb^{\textcircled{D}}$.

The above proposition gives some equivalences to $aa^{\mathbb{D}} = bb^{\mathbb{D}}aa^{\mathbb{D}}$, which enrich the following result. R^{-1} denotes the set of all invertible elements in R.

Theorem 5.2. Let $a, b \in \mathbb{R}^{(D)}$ with ind(a) = m. Then the following are equivalent: (1) $aa^{\mathbb{D}} = bb^{\mathbb{D}}$; (2) $aa^{\mathbb{D}} = aa^{\mathbb{D}}bb^{\mathbb{D}}$ and $u = aa^{\mathbb{D}} + 1 - bb^{\mathbb{D}} \in \mathbb{R}^{-1}$; (3) $aa^{\mathbb{D}} = aa^{\mathbb{D}}bb^{\mathbb{D}}$ and $v = a^{m} + 1 - bb^{\mathbb{D}} \in \mathbb{R}^{-1}$; (4) $aa^{\mathbb{D}}$ commutes with $bb^{\mathbb{D}}$, $u = aa^{\mathbb{D}} + 1 - bb^{\mathbb{D}} \in \mathbb{R}^{-1}$ and $s = bb^{\mathbb{D}} + 1 - aa^{\mathbb{D}} \in \mathbb{R}^{-1}$; (5) $aa^{\mathbb{D}}$ commutes with $bb^{\mathbb{D}}$ and $w = 1 - (aa^{\mathbb{D}} - bb^{\mathbb{D}})^2 \in \mathbb{R}^{-1}$; (6) $aa^{\mathbb{D}}$ commutes with $bb^{\mathbb{D}}$ and $b^{\mathbb{D}}aa^{\mathbb{D}} - a^{\mathbb{D}}bb^{\mathbb{D}} = b^{\mathbb{D}} - a^{\mathbb{D}}$.

Proof. (1) \Rightarrow (2)-(6) is clear.

(2) \Leftrightarrow (3). Since $a^{\textcircled{m}_m}$ exists, then a^{D_m} exists by Lemma 2.1. So $(a^m)^{\#}$ exists. Therefore $a^m + 1 - aa^{\textcircled{m}_m} \in R^{-1}$ (see [20, Theorem 1]). From $aa^{\textcircled{m}} = aa^{\textcircled{m}}bb^{\textcircled{m}}$, it follows that $aa^{\textcircled{m}}bb^{\textcircled{m}} = bb^{\textcircled{m}}aa^{\textcircled{m}} = aa^{\textcircled{m}}by$ Proposition 5.1. Observe that $(aa^{\textcircled{0}} + 1 - bb^{\textcircled{0}})(a^m + 1 - aa^{\textcircled{0}}) = a^m + 1 - bb^{\textcircled{0}}$, and hence $u \in R^{-1}$ if and only if $v \in R^{-1}$.

(3) \Rightarrow (1). Notice that $aa^{\textcircled{D}}v = a^m + aa^{\textcircled{D}} - aa^{\textcircled{D}}bb^{\textcircled{D}} = a^m$ and $bb^{\textcircled{D}}v = bb^{\textcircled{D}}a^m = bb^{\textcircled{D}}aa^{\textcircled{D}}a^m = aa^{\textcircled{D}}a^m = a^m$. Therefore $aa^{\mathbb{D}} = bb^{\mathbb{D}}.$

 $\begin{array}{l} (4) \Rightarrow (1). \text{ Since } ubb^{\textcircled{D}} = aa^{\textcircled{D}}bb^{\textcircled{D}} = uaa^{\textcircled{D}}bb^{\textcircled{D}}, saa^{\textcircled{D}} = aa^{\textcircled{D}}bb^{\textcircled{D}} = saa^{\textcircled{D}}bb^{\textcircled{D}}. \text{ Hence } aa^{\textcircled{D}} = aa^{\textcircled{D}}bb^{\textcircled{D}} = bb^{\textcircled{D}}. \\ (5) \Rightarrow (4). \text{ Note that } 1 - (aa^{\textcircled{D}} - bb^{\textcircled{D}})^2 = (bb^{\textcircled{D}} + 1 - aa^{\textcircled{D}})(aa^{\textcircled{D}} + 1 - bb^{\textcircled{D}}) = (aa^{\textcircled{D}} + 1 - bb^{\textcircled{D}})(bb^{\textcircled{D}} + 1 - aa^{\textcircled{D}}). \text{ Hence } aa^{\textcircled{D}}bb^{\textcircled{D}} = bb^{\textcircled{D}}. \end{array}$ $w \in R^{-1}$ implies $u, s \in R^{-1}$.

(6) \Rightarrow (1). Post-multiply $b^{\textcircled{o}}aa^{\textcircled{o}} - a^{\textcircled{o}}bb^{\textcircled{o}} = b^{\textcircled{o}} - a^{\textcircled{o}}$ by $aa^{\textcircled{o}}$, then $b^{\textcircled{o}}aa^{\textcircled{o}} - a^{\textcircled{o}}bb^{\textcircled{o}}aa^{\textcircled{o}} = b^{\textcircled{o}}aa^{\textcircled{o}} - a^{\textcircled{o}}$. So, $a^{\textcircled{o}} = a^{\textcircled{o}}bb^{\textcircled{o}}aa^{\textcircled{o}} = a^{\textcircled{o}}bb^{\textcircled{o}}$. Therefore, $b^{\textcircled{o}} = b^{\textcircled{o}}aa^{\textcircled{o}}$. Hence $aa^{\textcircled{o}} = aa^{\textcircled{o}}bb^{\textcircled{o}} = bb^{\textcircled{o}}aa^{\textcircled{o}} = bb^{\textcircled{o}}$. \Box

Take $b = a^*$ in Theorem 5.2, then we obtain a characterization of *-DMP elements by applying Theorem 2.9.

Corollary 5.3. Let $a \in \mathbb{R}^{\mathbb{D}_m} \cap \mathbb{R}_{\mathbb{D}_m}$. Then the following are equivalent: (1) a is *-DMP with index m;

(2) $aa^{\mathbb{D}_m} = a_{\mathbb{D}_m}a;$ (3) $aa^{\mathbb{D}_m} = aa^{\mathbb{D}_m}a_{\mathbb{D}_m}a \text{ and } u = aa^{\mathbb{D}_m} + 1 - a_{\mathbb{D}_m}a \in R^{-1};$

(4) $aa^{\mathbb{D}_m} = aa^{\mathbb{D}_m}a_{\mathbb{D}_m}^m a \text{ and } v = a^m + 1 - a_{\mathbb{D}_m}^m a \in \mathbb{R}^{-1};$

(5) $aa^{\mathbb{D}_m}$ commutes with $a_{\mathbb{D}_m}a$, $u = aa^{\mathbb{D}_m} + 1 - a_{\mathbb{D}_m}a \in \mathbb{R}^{-1}$ and $s = a_{\mathbb{D}_m}a + 1 - aa^{\mathbb{D}_m} \in \mathbb{R}^{-1}$;

(6) $aa^{\mathbb{D}_m}$ commutes with $a_{\mathbb{D}_m}^*a$ and $w = 1 - (aa^{\mathbb{D}_m} - a_{\mathbb{D}_m}a)^2 \in \mathbb{R}^{-1}$; (7) $aa^{\mathbb{D}_m}$ commutes with $a_{\mathbb{D}_m}^*a$ and $a^*_{\mathbb{D}_m}aa^{\mathbb{D}_m} - a^{\mathbb{D}_m}a_{\mathbb{D}_m}a = a^*_{\mathbb{D}_m} - a^{\mathbb{D}_m}$.

References

- [1] O.M. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra 58 (2010) 681-697.
- [2] A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, Wiley-Interscience, New York, 1974; 2nd ed., Springer, New York, 2002.
- [3] N. Castro-González, J.Y. Vélez-Cerrada, Elements of rings and Banach algebras with related spectral idempotents, J. Aust. Math. Soc. 80 (2006) 383-396.
- [4] W. Chen, On EP elements, normal elements and partial isometries in rings with involution, Electron. J. Linear Algebra 23 (2012) 553-561
- [5] M.P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958) 506–514.
- [6] M.P. Drazin, Natural structures on semigroups with involution, Bull. Amer. Math. Soc. 84 (1978) 139-141.
- [7] Y.F. Gao, J.L. Chen, Pseudo core inverses in rings with involution, Comm. Algebra 46 (2018) 38-50.
- [8] R.E. Harte, M. Mbekhta, On generalized inverses in C*-algebras, Studia Math. 103 (1992) 71–77.
- [9] R.E. Hartwig, Block generalized inverses, Arch. Ration. Mech. Anal. 61 (1976) 197-251.
- [10] R.E. Hartwig, I.J. Katz, Products of EP elements in reflexive semi-groups, Linear Algebra Appl. 14 (1976) 11–19.
- [11] J.J. Koliha, P. Patrício, Elements of rings with equal spectral idempotents, J. Austral. Math. Soc. 72 (2002) 137–152.
- [12] S.B. Malik, L. Rueda, N. Thome, The class of *m*-EP and *m*-normal matrices, Linear Multilinear Algebra 64 (2016) 2119–2132.
- [13] K. Manjunatha Prasad, K.S. Mohana, Core-EP inverse, Linear Multilinear Algebra 62 (2014) 792-802.
- [14] S.K. Mitra, P. Bhimasankaram, S.B. Malik, Matrix Partial Orders, Shorted Operators and Applications, World Scientific Publishing Co. Pte. Ltd., Hackensack, N.J., 2010.
- [15] D. Mosić, D.S. Djordjević, Partial isometries and EP elements in rings with involution, Electron. J. Linear Algebra 18 (2009) 761-772
- [16] D. Mosić, D.S. Djordjević, J.J. Koliha, EP elements in rings, Linear Algebra Appl. 431 (2009) 527–535.
- [17] D. Mosić, D.S. Djordjević, G. Kantún-Montiel, Image-Kernel (P, Q)-inverses in rings, Electron. J. Linear Algebra 27 (2014) 272–283. [18] P. Patrício, C.M. Araújo, Moore-Penrose invertibility in involutory rings: the case $aa^{\dagger} = bb^{\dagger}$, Linear Multilinear Algebra 58 (2010)

- [19] P. Patrício, R. Puystjens, Drazin-Moore-Penrose invertibility in rings, Linear Algebra Appl. 389 (2004) 159–173.
 [20] R. Puystjens, R.E. Hartwig, The group invers of a companion matrix, Linear Multilinear Algebra 43 (1997) 137–150.
- [21] D.S. Rakić, N.Č. Dinčić, D.S. Djordjević, Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra Appl. 463 (2014) 115-133.
- [22] D.S. Rakić, D.S. Djordjević, Star, sharp, core and dual core partial order in rings with involution, Appl. Math. Comput. 259 (2015) 800-818.
- [23] H.X. Wang, Core-EP decomposition and its applications, Linear Algebra Appl. 508 (2016) 289-300.
- [24] H.X. Wang, J.L. Chen, Weak group inverse, Open Math., doi:10.1515/math-2018-0100.
 [25] L. Wang, J.L. Chen, Further results on partial ordering and the generalized inverses, Linear Multilinear Algebra 63 (2015) 2419-2429.
- [26] X.N. Wang, C.Y. Deng, Properties of *m*-EP operators, Linear Multilinear Algebra 65 (2017) 1349–1361.
- [27] S.Z. Xu, J.L. Chen, EP elements in rings with involution, arXiv: 1602.08184v1 [math.RA], 2016.
- [28] S.Z. Xu, J.L. Chen, X.X. Zhang, New characterizations for core inverses in rings with involution, Front. Math. China 12 (2017) 231-246.
- [29] H.L. Zou, J.L. Chen, P. Patrício, Characterizations of m-EP elements in rings, Linear Multilinear Algebra 66 (2018) 1244–1256.