*-DMP Elements in *-Semigroups and *-Rings

Yuefeng Gao ${ }^{\text {a }}$, Jianlong Chen ${ }^{\text {a }}$, Yuanyuan $\mathrm{Ke}^{\text {b }}$
${ }^{a}$ School of Mathematics, Southeast University,
Nanjing 210096, China
${ }^{b}$ School of Mathematics and Computer Science, Jianghan University,
Wuhan 430056, China

Abstract

In this paper, we investigate *-DMP elements in *-semigroups and *-rings. The notion of *DMP element was introduced by Patrício and Puystjens in 2004. An element a is *-DMP if there exists a positive integer m such that a^{m} is EP. We first characterize *-DMP elements in terms of the \{1,3\}-inverse, Drazin inverse and pseudo core inverse, respectively. Then, we characterize the core-EP decomposition utilizing the pseudo core inverse, which extends the core-EP decomposition introduced by Wang for complex matrices to an arbitrary *-ring; and this decomposition turns to be a useful tool to characterize *-DMP elements. Further, we extend Wang's core-EP order from complex matrices to *-rings and use it to investigate *-DMP elements. Finally, we give necessary and sufficient conditions for two elements a, b in *-rings to have $a a^{®}=b b^{®}$, which contribute to study ${ }^{*}$-DMP elements.

1. Introduction

Let S and R denote a semigroup and a ring with unit 1, respectively.
An element $a \in S$ is Drazin invertible [5] if there exists the unique element $a^{D} \in S$ such that

$$
a^{m} a^{D} a=a^{m} \text { for some positive integer } m, a^{D} a a^{D}=a^{D} \text { and } a a^{D}=a^{D} a .
$$

The smallest positive integer m satisfying above equations is called the Drazin index of a, denoted by ind (a). We denote by $a^{D_{m}}$ the Drazin inverse of a with ind $(a)=m$. If the Drazin index of a equals one, then the Drazin inverse of a is called the group inverse of a and is denoted by $a^{\#}$.
S is called a $*$-semigroup if S is a semigroup with involution $* . R$ is called a $*$-ring if R is a ring with involution $*$. In the following, unless otherwise indicated, S and R denote a *-semigroup and a *-ring, respectively.

An element $a \in S$ is Moore-Penrose invertible, if there exists $x \in S$ such that
(1) $a x a=a$,
(2) $x a x=x$,
(3) $(a x)^{*}=a x$ and (4) $(x a)^{*}=x a$.

[^0]If such an x exists, then it is unique, denoted by $a^{\dagger} . x$ satisfying equations (1) and (3) is called a $\{1,3\}$-inverse of a, denoted by $a^{(1,3)}$. Such a $\{1,3\}$-inverse of a is not unique if it exists. We use $a\{1,3\}, S^{\{1,3\}}$ to denote the set of all the $\{1,3\}$-inverses of a and the set of all the $\{1,3\}$-invertible elements in S, respectively.

An element $a \in S$ is symmetric if $a^{*}=a$. $a \in S$ is ${ }^{*}$-gMP if $a^{\#}$ and a^{\dagger} exist with $a^{\#}=a^{\dagger}$ [19]. It should be pointed out that ${ }^{*}$-gMP element is also known as EP element (see [9-11, 16]). As a matter of convenience, we denote a ${ }^{*}$-gMP element as an EP element in this paper. $a \in S$ is ${ }^{*}$-DMP with index m if m is the smallest positive integer such that $\left(a^{m}\right)^{\#}$ and $\left(a^{m}\right)^{\dagger}$ exist with $\left(a^{m}\right)^{\#}=\left(a^{m}\right)^{\dagger}$ [19]. In other words, $a \in S$ is ${ }^{*}$-DMP with index m if m is the smallest positive integer such that a^{m} is EP, which is equivalent to, $a^{D_{m}}$ exists and a^{m} is EP. We call $a \in S \mathrm{a}^{*}$-DMP element if there exists a positive integer m such that a^{m} is EP. The notion of ${ }^{*}$-DMP element is different from the notion of m-EP element $[12,26,29]$, in some sense, they are parallel, are both generalizations of EP elements. Hence, it is of interest to investigate the notion of *-DMP element.

Baksalary and Trenkler [18] introduced the notion of core inverse for a complex matrix in 2010. This notion is also known as core-EP generalized inverse (see [13]). Then, Rakić, Dinčić and Djordjević [21] generalized the notion of core inverse to an arbitrary *-ring. Later, Xu, Chen and Zhang [28] characterized the core invertible elements in $*$-rings in terms of three equations. The core inverse of a, denoted by a^{\oplus}, is the unique solution to equations

$$
x a^{2}=a, a x^{2}=x, \quad(a x)^{*}=a x
$$

Recently, the notion of core inverse was extended to arbitrary index of elements in rings. The pseudo core inverse [7] of $a \in S$, denoted by $a^{®}$, is the unique solution to equations

$$
x a^{m+1}=a^{m} \text { for some positive integer } m, a x^{2}=x \text { and }(a x)^{*}=a x
$$

Also, the pseudo core inverse extends core-EP inverse [13] from complex matrices to *-semigroups, in terms of equations. For consistency and convenience, we use the terminology pseudo core inverse throughout this paper. The smallest positive integer m satisfying above equations is called the pseudo core index of a. If a is pseudo core invertible, then it must be Drazin invertible, and the pseudo core index coincides with the Drazin index [7]. So here and subsequently, we denote the pseudo core index of a by ind (a). The pseudo core inverse is a kind of outer inverse. If the pseudo core index equals one, then the pseudo core inverse of a is the core inverse of a. Dually, the dual pseudo core inverse [7] of $a \in S$ is the unique element $a_{\mathbb{D}} \in S$ satisfying the following three equations

$$
a^{m+1} a_{\overparen{(C)}}=a^{m} \text { for some positive integer } m,\left(a_{\overparen{C}}\right)^{2} a=a_{\overparen{O}} \text { and }\left(a_{\triangle(1)} a\right)^{*}=a_{\circledast} a .
$$

The smallest positive integer m satisfying above equations is called the dual pseudo core index of a. We denote by $a^{®_{m}}$ and $a_{\mathbb{D}_{m}}$ the pseudo core inverse and dual pseudo core inverse of index m of a, respectively. Note that $\left(a^{*}\right)^{®_{m}}$ exists if and only if $a_{\mathbb{O}_{m}}$ exists with $\left(a^{*}\right)^{\mathbb{D}_{m}}=\left(a_{®_{m}}\right)^{*}$.

Lots of work have been done on EP elements in *-semigroups and *-rings in recent years, (see, for example, $[3,4,15,19,21,27])$. In this paper, we use the setting of $*$-semigroups and $*$-rings, and our main goal is to characterize *-DMP elements. The paper is organized as follows: In Section 2, several characterizations of *-DMP elements are given in terms of generalized inverses: the $\{1,3\}$-inverse, Drazin inverse and pseudo core inverse respectively. Then, ${ }^{*}$-DMP elements are characterized in terms of equations and annihilators. After that, we consider conditions for the sum (resp. product) of two *-DMP elements to be *-DMP. It is known that Wang [23] introduced the core-EP decomposition and core-EP order for complex matrices. Core-EP decomposition was shown to be a useful tool in characterizing generalized inverses and partial orders (see [23, 24]). In Section 3, we extend the core-EP decomposition from complex matrices to an arbitrary *-ring, applying a purely algebraic technique. As applications, we use it to characterize *-DMP elements. Core partial order could be used to characterize EP elements (see [25]). Similarly, core-EP order can be used to investigate *-DMP elements. In Section 4, we obtain a characterization of *-DMP elements, in terms of this pre-order. In the final section, we aim to give equivalent conditions for $a a^{\circledR}=b b^{®}$ in *-rings, which contribute to investigate *-DMP elements.

2. Characterizations of *-DMP Elements

In this section, several characterizations of *-DMP elements are given by conditions involving $\{1,3\}-$ inverse, Drazin inverse, pseudo core inverse and dual pseudo core inverse. We begin with some auxiliary lemmas.

Lemma 2.1. [7] Let $a \in S$. Then we have the following facts:
(1) $a^{®_{m}}$ exists if and only if $a^{D_{m}}$ exists and $a^{m} \in S^{\{1,3\}}$. In this case $a^{®_{m}}=a^{D_{m}} a^{m}\left(a^{m}\right)^{(1,3)}$.
(2) $a^{®_{m}}$ and $a_{®_{m}}$ exist if and only if $a^{D_{m}}$ and $\left(a^{m}\right)^{\dagger}$ exist. In this case, $a^{®_{m}}=a^{D_{m}} a^{m}\left(a^{m}\right)^{\dagger}$ and $a_{®_{m}}=\left(a^{m}\right)^{\dagger} a^{m} a^{D_{m}}$.

Lemma 2.2. [11],[19] Let $a \in S$. Then the following conditions are equivalent:
(1) a is *-DMP with index m;
(2) $a^{D_{m}}$ exists and $a a^{D_{m}}$ is symmetric.

Lemma 2.3. Let $a \in S$. Then the following are equivalent:
(1) a is *-DMP with index m;
(2) $a^{D_{m}}$ and $\left(a^{m}\right)^{\dagger}$ exist with $\left(a^{D_{m}}\right)^{m}=\left(a^{m}\right)^{\dagger}$;
(3) $a^{®^{(}}$exists with $a^{®_{m}}=a^{D_{m}}$;
(4) $a^{®_{m}}$ and $\left(a^{m}\right)^{\dagger}$ exist with $\left(a^{®_{m}}\right)^{m}=\left(a^{m}\right)^{\dagger}$.

Proof. (1) $\Rightarrow(2)$ is clear.
(2) \Rightarrow (3). Suppose $a^{D_{m}}$ and $\left(a^{m}\right)^{\dagger}$ exist with $\left(a^{D_{m}}\right)^{m}=\left(a^{m}\right)^{\dagger}$. By Lemma 2.1, $a^{®_{m}}$ exists with $a^{®_{m}}=a^{D_{m}} a^{m}\left(a^{m}\right)^{\dagger}=$ $a^{D_{m}} a^{m}\left(a^{D_{m}}\right)^{m}=a^{D_{m}}$.
$(3) \Rightarrow(4)$. Applying Lemma 2.1, $a^{®_{m}}$ exists if and only if $a^{D_{m}}$ exists and $a^{m} \in S^{\{1,3\}}$, in which case, $a^{®_{m}}=a^{D_{m}} a^{m}\left(a^{m}\right)^{(1,3)}$. From $a^{®_{m}}=a^{D_{m}}$, it follows that $a^{D_{m}} a^{m}\left(a^{m}\right)^{(1,3)}=a^{D_{m}}$. Then, $a a^{D_{m}}=a^{m}\left(a^{m}\right)^{(1,3)}$. So, $\left(a^{m}\right)^{\dagger}$ exists with $\left(a^{m}\right)^{\dagger}=\left(a^{D_{m}}\right)^{m}=\left(a^{®_{m}}\right)^{m}$.
$(4) \Rightarrow(1)$. Since $\left(a^{D_{m}}\right)^{m} a^{m}\left(a^{m}\right)^{(1,3)}=\left(a^{D_{m}} a^{m}\left(a^{m}\right)^{(1,3)}\right)^{m}=\left(a^{®_{m}}\right)^{m}=\left(a^{m}\right)^{\dagger}$, then $a a^{D_{m}}=\left(a^{m}\right)^{\dagger} a^{m}$. Therefore $a a^{D_{m}}$ is symmetric. Hence a is ${ }^{*}$-DMP with index m by Lemma 2.2.

The following result characterizes *-DMP elements in terms of $\{1,3\}$-inverses.
Theorem 2.4. Let $a \in S$. Then a is *-DMP with index m if and only if m is the smallest positive integer such that $a^{m} \in S^{\{1,3\}}$ and one of the following equivalent conditions holds:
(1) $a\left(a^{m}\right)^{(1,3)}=\left(a^{m}\right)^{(1,3)} a$ for some $\left(a^{m}\right)^{(1,3)} \in a^{m}\{1,3\}$;
(2) $a^{m}\left(a^{m}\right)^{(1,3)}=\left(a^{m}\right)^{(1,3)} a^{m}$ for some $\left(a^{m}\right)^{(1,3)} \in a^{m}\{1,3\}$.

Proof. If a is *-DMP with index m, then m is the smallest positive integer such that $\left(a^{m}\right)^{\dagger}$ and $\left(a^{m}\right)^{\#}$ exist with $\left(a^{m}\right)^{\dagger}=\left(a^{m}\right)^{\#}$. So we may regard $\left(a^{m}\right)^{\#}$ as one of the $\{1,3\}$-inverses of a^{m}. Therefore (1) holds (see [5, Theorem 1]).

Conversely, we take $\left(a^{m}\right)^{(1,3)} \in a^{m}\{1,3\}$.
(1) $\Rightarrow(2)$ is obvious.
(2). Equality $a^{m}\left(a^{m}\right)^{(1,3)}=\left(a^{m}\right)^{(1,3)} a^{m}$ yields that $\left(a^{m}\right)^{\dagger}=\left(a^{m}\right)^{(1,3)} a^{m}\left(a^{m}\right)^{(1,3)}=\left(a^{m}\right)^{\#}$. So m is the smallest positive integer such that $\left(a^{m}\right)^{\dagger}=\left(a^{m}\right)^{\#}$. Hence a is *-DMP with index m.

Corollary 2.5. Let $a \in S$. Then a is $E P$ if and only if $a \in S^{\{1,3\}}$ and $a a^{(1,3)}=a^{(1,3)}$ a for some $a^{(1,3)} \in a\{1,3\}$.
In [11, Theorem 7.3], Koliha and Patrício characterized EP elements by using the group inverse. Similarly, we characterize *-DMP elements in terms of the Drazin inverse.

Theorem 2.6. Let $a \in S$. Then a is ${ }^{*}$-DMP with index m if and only if $a^{D_{m}}$ exists and one of the following equivalent conditions holds:
(1) $a^{D_{m}}=a^{D_{m}}\left(a a^{D_{m}}\right)^{*}$;
(2) $a^{D_{m}}=\left(a^{D_{m}} a\right)^{*} a^{D_{m}}$.

If S is $a *$-ring, then (1)-(2) are equivalent to
(3) $a^{D_{m}}\left(1-a a^{D_{m}}\right)^{*}=\left(1-a a^{D_{m}}\right)\left(a^{D_{m}}\right)^{*}$.

Proof. If a is ${ }^{*}$-DMP with index m, then $a^{D_{m}}$ exists and $a a^{D_{m}}$ is symmetric by Lemma 2.2. It is not difficult to verify that conditions (1)-(3) hold.

Conversely, we assume that $a^{D_{m}}$ exists.
$(1) \Rightarrow(3)$. Since $a^{D_{m}}=a^{D_{m}}\left(a a^{D_{m}}\right)^{*}$, we have

$$
a^{D_{m}}\left(1-a a^{D_{m}}\right)^{*}=a^{D_{m}}\left(a a^{D_{m}}\right)^{*}\left(1-a a^{D_{m}}\right)^{*}=a^{D_{m}}\left(\left(1-a a^{D_{m}}\right) a a^{D_{m}}\right)^{*}=0 .
$$

Therefore $a^{D_{m}}\left(1-a a^{D_{m}}\right)^{*}=0=\left(1-a a^{D_{m}}\right)\left(a^{D_{m}}\right)^{*}$.
$(2) \Rightarrow(3)$ is analogous to $(1) \Rightarrow(3)$.
Finally, we will prove a is *-DMP with index m under the assumption that $a^{D_{m}}$ exists with $a^{D_{m}}\left(1-a a^{D_{m}}\right)^{*}=$ $\left(1-a a^{D_{m}}\right)\left(a^{D_{m}}\right)^{*}$. From $a^{D_{m}}\left(1-a^{*}\left(a^{D_{m}}\right)^{*}\right)=\left(1-a^{D_{m}} a\right)\left(a^{D_{m}}\right)^{*}$, we get $\left(a^{D_{m}}\right)^{*}=a^{D_{m}}\left(1-a^{*}\left(a^{D_{m}}\right)^{*}+a\left(a^{D_{m}}\right)^{*}\right)$. Postmultiply this equality by $\left(a^{D_{m}}\right)^{*}\left(a^{2}\right)^{*}$, then we have $a a^{D_{m}}=a a^{D_{m}}\left(a a^{D_{m}}\right)^{*}$. So $a a^{D_{m}}$ is symmetric. Applying Lemma 2.2, a is ${ }^{*}$-DMP with index m.

Let us recall that $a \in S$ is normal if $a a^{*}=a^{*} a$. It is known that an element $a \in S$ is EP may not imply it is normal (such as, take $S=\mathbb{R}^{2 \times 2}$ with transpose as involution, $a=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Then a is EP since $a a^{\dagger}=a^{\dagger} a=1$, but $\left.a a^{*}=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right) \neq\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)=a^{*} a\right)$; a is normal may not imply it is EP (such as, take $S=\mathbb{C}^{2 \times 2}$ with transpose as involution, $a=\left(\begin{array}{cc}i & 1 \\ -1 & 1\end{array}\right)$. Then $a a^{*}=a^{*} a=0$, i.e., a is normal. But a is not Moore-Penrose invertible and hence a is not EP). So we may be of interest to know when a is both EP and normal. Here we give a more extensive case.

Theorem 2.7. Let $a \in S$. Then the following are equivalent:
(1) a is *-DMP with index m and $a\left(a^{*}\right)^{m}=\left(a^{*}\right)^{m} a$;
(2) m is the smallest positive integer such that $\left(a^{m}\right)^{\dagger}$ exists and $a\left(a^{*}\right)^{m}=\left(a^{*}\right)^{m} a$;
(3) $a^{D_{m}}$ exists and $\left(a^{m}\right)^{*}=u a=a u$ for some group invertible element $u \in S$.

Proof. (1) $\Rightarrow(2)$ is clear.
(2) \Rightarrow (1). The equality $a^{m}\left(a^{m}\right)^{*}=\left(a^{m}\right)^{*} a^{m}$ ensures that $a^{m}\left(a^{m}\right)^{\dagger}=\left(a^{m}\right)^{\dagger} a^{m}$ (see [8, Theorem 5]). So a is *-DMP with index m by Theorem 2.4.
$(1) \Rightarrow$ (3). Since a is ${ }^{*}$-DMP with index m, then $a^{D_{m}}$ exists and $a a^{D_{m}}$ is symmetric by Lemma 2.2. So,

$$
\begin{aligned}
& \left(a^{m}\right)^{*}=\left(a^{m} a^{D_{m}} a\right)^{*}=a a^{D_{m}}\left(a^{m}\right)^{*}, \text { and } \\
& \left(a^{m}\right)^{*}=\left(a a^{D_{m}} a^{m}\right)^{*}=\left(a^{m}\right)^{*} a a^{D_{m}} .
\end{aligned}
$$

Since $a^{D_{m}}$ exists and $\left(a^{m}\right)^{*} a=a\left(a^{m}\right)^{*}$, then we obtain $a^{D_{m}}\left(a^{m}\right)^{*}=\left(a^{m}\right)^{*} a^{D_{m}}$ (see [5, Theorem 1]). Take $u=a^{D_{m}}\left(a^{m}\right)^{*}$, then $a u=u a=\left(a^{m}\right)^{*}$. In what follows, we show $u^{\#}=a\left(\left(a^{D_{m}}\right)^{m}\right)^{*}$. In fact,
(i) $u a\left(\left(a^{D_{m}}\right)^{m}\right)^{*} u=a^{D_{m}}\left(a^{m}\right)^{*} a\left(\left(a^{D_{m}}\right)^{m}\right)^{*} a^{D_{m}}\left(a^{m}\right)^{*}=\left(a^{m}\right)^{*} a a^{D_{m}}\left(\left(a^{D_{m}}\right)^{m}\right)^{*} a^{D_{m}}\left(a^{m}\right)^{*}$

$$
=\left(a^{m}\right)^{*}\left(\left(a^{D_{m}}\right)^{m}\right)^{*} a^{D_{m}}\left(a^{m}\right)^{*}=\left(a a^{D_{m}}\right)^{*} a^{D_{m}}\left(a^{m}\right)^{*}=a^{D_{m}}\left(a^{m}\right)^{*}=u ;
$$

(ii) $a\left(\left(a^{D_{m}}\right)^{m}\right)^{*} u a\left(\left(a^{D_{m}}\right)^{m}\right)^{*}=a\left(\left(a^{D_{m}}\right)^{m}\right)^{*} a^{D_{m}}\left(a^{m}\right)^{*} a\left(\left(a^{D_{m}}\right)^{m}\right)^{*}$

$$
\begin{aligned}
& =a\left(\left(a^{D_{m}}\right)^{m}\right)^{*}\left(a^{m}\right)^{*} a^{D_{m}} a\left(\left(a^{D_{m}}\right)^{m}\right)^{*} \\
& =a\left(a a^{D_{m}}\right)^{*} a^{D_{m}} a\left(\left(a^{D_{m}}\right)^{m}\right)^{*}=a\left(a a^{D_{m}}\right)^{*}\left(\left(a^{D_{m}}\right)^{m}\right)^{*} \\
& =a\left(\left(a^{D_{m}}\right)^{m}\right)^{*} ;
\end{aligned}
$$

(iii) $a\left(\left(a^{D_{m}}\right)^{m}\right)^{*} u=a\left(\left(a^{D_{m}}\right)^{m}\right)^{*} a^{D_{m}}\left(a^{m}\right)^{*}=a\left(\left(a^{D_{m}}\right)^{m}\right)^{*}\left(a^{m}\right)^{*} a^{D_{m}}=a\left(a a^{D_{m}}\right)^{*} a^{D_{m}}$

$$
=a a^{D_{m}} \text { and }
$$

$$
u a\left(\left(a^{D_{m}}\right)^{m}\right)^{*}=a^{D_{m}}\left(a^{m}\right)^{*} a\left(\left(a^{D_{m}}\right)^{m}\right)^{*}=a^{D_{m}} a\left(a^{m}\right)^{*}\left(\left(a^{D_{m}}\right)^{m}\right)^{*}=a a^{D_{m}}
$$

$$
\text { so, } a\left(\left(a^{D_{m}}\right)^{m}\right)^{*} u=u a\left(\left(a^{D_{m}}\right)^{m}\right)^{*}
$$

Hence $u^{\#}=a\left(\left(a^{D_{m}}\right)^{m}\right)^{*}$.
(3) $\Rightarrow(1)$. Since $u^{\#}$ and $a^{D_{m}}$ exist with $a u=u a$, then $a u^{\#}=u^{\#} a$ and $(u a)^{D}=u^{\#} a^{D_{m}}$.

So, $\left(a a^{D_{m}}\right)^{*}=\left(a^{m}\left(a^{D_{m}}\right)^{m}\right)^{*}=\left(\left(a^{m}\right)^{D} a^{m}\right)^{*}=\left(a^{m}\right)^{*}\left(\left(a^{m}\right)^{*}\right)^{D}=u a(u a)^{D}=u a u^{\#} a^{D_{m}}$

$$
=u u^{\#} a a^{D_{m}} .
$$

Therefore $\left(a a^{D_{m}}\right)^{*} a a^{D_{m}}=u u^{\#} a a^{D_{m}}=\left(a a^{D_{m}}\right)^{*}$. That is, $a a^{D_{m}}$ is symmetric.
We thus have a is ${ }^{*}$-DMP with index m.
Corollary 2.8. Let $a \in S$. Then the following are equivalent:
(1) a is EP and normal;
(2) a^{\dagger} exists and a is normal;
(3) $a^{\#}$ exists and $a^{*}=u a=$ au for some group invertible element $u \in S$.

In what follows, *-DMP elements are characterized in terms of the pseudo core inverse and dual pseudo core inverse.

Theorem 2.9. Let $a \in S$. Then the following are equivalent:
(1) a is ${ }^{*}$-DMP with index m;
(2) $a^{®_{m}}$ and $a_{®_{m}}$ exist with $a^{®_{m}}=a_{®_{m}}$;
(3) $a^{®_{m}}$ and $a_{®_{m}}$ exist with $a a^{®_{m}}=a_{®_{m}} a$.

Proof. (1) \Rightarrow (2), (3). If a is *-DMP with index m, then by Lemma 2.3, $a^{D_{m}}$ and $\left(a^{m}\right)^{\dagger}$ exist with $\left(a^{m}\right)^{\dagger}=\left(a^{D_{m}}\right)^{m}$. Hence $a^{®_{m}}$ and $a_{®_{m}}$ exist by Lemma 2.1 (2). It is not difficult to verify that $a_{®_{m}}=a^{®_{m}}$ and $a a^{®_{m}}=a_{\mathbb{O}_{m}} a$.
$(2) \Rightarrow(1)$. If $a^{\mathbb{D}_{m}^{m}}$ and $a_{®_{m}}$ exist, then $a^{D_{m}}$ and $\left(a^{m}\right)^{\dagger}$ exist with $a^{®_{m}}=a^{D_{m}} a^{m}\left(a^{m}\right)^{\dagger}, a_{®_{m}}=\left(a^{m}\right)^{\dagger} a^{m} a^{D_{m}}$. Equality $a_{\mathbb{D}_{m}}=a^{®_{m}}$ would imply that $a^{D_{m}} a^{m}\left(a^{m}\right)^{\dagger}=\left(a^{m}\right)^{\dagger} a^{m} a^{D_{m}}$. Post-multiply this equality by $a^{m+1}\left(a^{D_{m}}\right)^{m}$, then we obtain $a a^{D_{m}}=\left(a^{m}\right)^{\dagger} a^{m}$. So $a a^{D_{m}}$ is symmetric. According to Lemma 2.2, a is ${ }^{*}$-DMP with index m.
(3) \Rightarrow (1). By the hypothesis, we have $a a^{D_{m}} a^{m}\left(a^{m}\right)^{\dagger}=\left(a^{m}\right)^{\dagger} a^{m} a^{D_{m}} a$. That is, $a^{m}\left(a^{m}\right)^{\dagger}=\left(a^{m}\right)^{\dagger} a^{m}$. So $a a^{D_{m}}=a^{m}\left(a^{D_{m}}\right)^{m}=a^{m}\left(a^{m}\right)^{\dagger} a^{m}\left(a^{D_{m}}\right)^{m}=\left(a^{m}\right)^{\dagger} a^{m} a^{m}\left(a^{D_{m}}\right)^{m}=\left(a^{m}\right)^{\dagger} a^{m}$. Therefore $a a^{D_{m}}$ is symmetric. Hence a is *-DMP with index m.

The following result characterizes *-DMP elements merely in terms of the pseudo core inverse.
Theorem 2.10. Let $a \in S$. Then a is ${ }^{*}$-DMP with index m if and only if $a^{®_{m}}$ exists and one of the following equivalent conditions holds:
(1) $a a^{®_{m}}=a^{®_{m}} a$;
(2) $a^{D_{m}} a^{®_{m}}=a^{®_{m}} a^{D_{m}}$;
(3) $a^{®_{m}}=\left(a^{m}\right)^{(1,3)} a^{m} a^{D_{m}}$ for some $\left(a^{m}\right)^{(1,3)} \in a^{m}\{1,3\}$;
(4) $a^{m+1} a^{\mathbb{O}_{m}}=a^{m}$;
(5) $\left(a^{®_{m}}\right)^{2} a=a^{®_{m}}$;
(6) $a^{®^{m}} a$ is symmetric;
(7) a $a^{®_{m}}$ commutes with $a^{®_{m}} a$.

Proof. If a is *-DMP with index m, then $\left(a^{D_{m}}\right)^{m}=\left(a^{m}\right)^{\dagger}, a^{®_{m}}=a^{D_{m}}$ by Lemma 2.3 and $a a^{D_{m}}$ is symmetric by Lemma 2.2. So (1)-(7) hold.

Conversely, we assume that $a^{\mathbb{D}_{m}}$ exists.
(1). By the definition of the pseudo core inverse, we have $a^{®_{m}} a^{m+1}=a^{m}$, and we also have $a^{®_{m}} a a^{®_{m}}=a^{®_{m}}$ by calculation. The equalities $a a^{®_{m}}=a^{®_{m}} a, a^{®_{m}} a a^{®_{m}}=a^{®_{m}}$ and $a^{®_{m}} a^{m+1}=a^{m}$ yield that $a^{D_{m}}=a^{®_{m}}$. Therefore a is *-DMP with index m by Lemma 2.3.
(2). Since $a^{D_{m}} a^{®_{m}}=a^{®_{m}} a^{D_{m}}$, then $\left(a^{D_{m}}\right)^{\#} a^{®_{m}}=a^{®_{m}}\left(a^{D_{m}}\right)^{\#}$ (see [5, Theorem 1]). Namely,

$$
a^{2} a^{D_{m}} a^{®_{m}}=a^{®_{m}} a^{2} a^{D_{m}} .
$$

So $a a^{®_{m}}=a^{m}\left(a^{®_{m}}\right)^{m}=a a^{D_{m}} a^{m}\left(a^{®_{m}}\right)^{m}=a a^{D_{m}} a a^{®_{m}}=a^{2} a^{D_{m}} a^{®_{m}}=a^{®_{m}} a^{2} a^{D_{m}}$

$$
=a^{®_{m}} a^{m+1}\left(a^{D_{m}}\right)^{m}=a^{m}\left(a^{D_{m}^{\prime}}\right)^{m}=a a^{D_{m}} .
$$

Therefore $a a^{D_{m}}$ is symmetric. Hence a is ${ }^{*}$-DMP with index m by Lemma 2.2.
(3). Since $a^{®_{m}}$ exists, then by Lemma 2.1 (1), $a^{D_{m}}$ and $\left(a^{m}\right)^{(1,3)}$ exist. From equality (3) and $a^{®_{m}}=a^{D_{m}} a^{m}\left(a^{m}\right)^{(1,3)}$, it follows that $a^{D_{m}} a^{m}\left(a^{m}\right)^{(1,3)}=\left(a^{m}\right)^{(1,3)} a^{m} a^{D_{m}}$. Pre-multiply this equality by $\left(a^{D_{m}}\right)^{m-1} a^{m}$, then we get

$$
a^{m}\left(a^{m}\right)^{(1,3)}=a a^{D_{m}} .
$$

So $a a^{D_{m}}$ is symmetric. Hence a is *-DMP with index m by Lemma 2.2.
(4). The equalities $a^{m+1} a^{®_{m}}=a^{m}$ and $a^{®_{m}} a^{m+1}=a^{m}$ yield that a is strongly π-regular and $a^{D_{m}}=a^{m}\left(a^{0_{m}}\right)^{m+1}=$ $a^{®_{m}}$ (see [5, Theorem 4]). So a is *-DMP with index m by Lemma 2.3.
$(5) \Rightarrow(1)$. Pre-multiply (5) by a, then we get $a\left(a^{®_{m}}\right)^{2} a=a a^{®_{m}}$. That is, $a^{®_{m}} a=a a^{®_{m}}$.
(6) $\Rightarrow(1)$. Pre-multiply $\left(a^{®_{m}} a\right)^{*}=a^{®_{m}} a$ by $a a^{®_{m}}$, then we obtain

$$
a a^{®_{m}}\left(a^{®_{m}} a\right)^{*}=a a^{®_{m}} a^{®_{m}} a=a^{®_{m}} a .
$$

So,

$$
\begin{aligned}
a a^{®_{m}} & =a^{m}\left(a^{®_{m}}\right)^{m}=\left(a^{m}\left(a^{®_{m}}\right)^{m}\right)^{*}=\left(a^{®_{m}} a^{m+1}\left(a^{®_{m}}\right)^{m}\right)^{*}=\left(a^{®_{m}} a a a^{®_{m}}\right)^{*} \\
& =\left(a a^{®_{m}}\right)^{*}\left(a^{®_{m}} a\right)^{*}=a a^{®_{m}}\left(a^{®_{m}} a\right)^{*}=a^{®_{m}} a .
\end{aligned}
$$

(7) \Rightarrow (1). From $a a^{®_{m}}\left(a^{®_{m}} a\right)=\left(a^{®_{m}} a\right) a a^{®_{m}}, a a^{®_{m}}\left(a^{®_{m}} a\right)=a^{®_{m}} a$ and $\left(a^{®_{m}} a\right) a a^{®_{m}}=a^{®_{m}} a^{m+1}\left(a^{®_{m}}\right)^{m}=a a^{®_{m}}$, it follows that $a a^{\mathbb{D}_{m}}=a^{\mathbb{D}_{m}} a$.

In [27], Xu and Chen characterized EP elements in terms of equations. Similarly, we utilize equations to characterize *-DMP elements.

Theorem 2.11. Let $a \in S$. Then the following are equivalent:
(1) a is ${ }^{*}$-DMP with index m;
(2) m is the smallest positive integer such that $x a^{m+1}=a^{m}, a x^{2}=x$ and $\left(x^{m} a^{m}\right)^{*}=x^{m} a^{m}$ for some $x \in S$;
(3) m is the smallest positive integer such that $x a^{m+1}=a^{m}, a x=x a$ and $\left(x^{m} a^{m}\right)^{*}=x^{m} a^{m}$ for some $x \in S$.

Proof. (1) \Rightarrow (2), (3). Suppose a is ${ }^{*}$-DMP with index m, then $a^{D_{m}}$ exists and $a^{D_{m}} a$ is symmetric by Lemma 2.2. Take $x=a^{D_{m}}$, then (2) and (3) hold.
(2) \Rightarrow (1). From $x a^{m+1}=a^{m}$ and $a^{m}=x a^{m+1}=\left(a x^{2}\right) a^{m+1}=\left(a^{m+1} x^{m+2}\right) a^{m+1}=a^{m+1}\left(x^{m+2} a^{m+1}\right)=a^{m+1}\left(x^{m+1} a^{m}\right)=$ $a^{m+1} x^{m+1} a^{m}$, it follows that a is strongly π-regular and $a^{D_{m}}=x^{m+1} a^{m}$. So $a a^{D_{m}}=a x^{m+1} a^{m}=x^{m} a^{m}$. Therefore $a^{D_{m}}$ exists and $a a^{D_{m}}$ is symmetric. Hence a is ${ }^{*}$-DMP with index m by Lemma 2.2.
(3) \Rightarrow (1). Equalities $x a^{m+1}=a^{m}$ and $a^{m}=a^{m+1} x$ yield that $a^{D_{m}}=x^{m+1} a^{m}$. So $a^{D_{m}} a=x^{m+1} a^{m+1}=x^{m} a^{m}$. Therefore $a^{D_{m}}$ exists and $a a^{D_{m}}$ is symmetric. Hence a is ${ }^{*}$-DMP with index m.

Let S^{0} denote a *-semigroup with zero element 0 . The left annihilator of $a \in S^{0}$ is denoted by ${ }^{\circ} a$ and is defined by ${ }^{\circ} a=\left\{x \in S^{0}: x a=0\right\}$. The following result characterizes ${ }^{*}$-DMP elements in S^{0} in terms of left annihilators. We begin with an auxiliary lemma.

Lemma 2.12. [7] Let $a, x \in S^{0}$. Then $a^{®_{m}}=x$ if and only if m is the smallest positive integer such that one of the following equivalent conditions holds:
(1) $x a x=x$ and $x S^{0}=x^{*} S^{0}=a^{m} S^{0}$;
(2) $x a x=x,{ }^{\circ} x={ }^{\circ}\left(a^{m}\right)$ and ${ }^{\circ}\left(x^{*}\right) \subseteq{ }^{\circ}\left(a^{m}\right)$.

Theorem 2.13. Let $a \in S^{0}$. Then a is ${ }^{*}$-DMP with index m if and only if m is the smallest positive integer such that one of the following equivalent conditions holds:
(1) $x a x=x, x S^{0}=x^{*} S^{0}=a^{m} S^{0}$ and $x^{m} S^{0}=\left(a^{m}\right)^{*} S^{0}$ for some $x \in S^{0}$;
(2) $x a x=x,{ }^{\circ} x={ }^{\circ}\left(a^{m}\right),{ }^{\circ}\left(x^{*}\right) \subseteq{ }^{\circ}\left(a^{m}\right)$ and ${ }^{\circ}\left(a^{m}\right)^{*} \subseteq{ }^{\circ}\left(x^{m}\right)$ for some $x \in S^{0}$.

Proof. Suppose a is *-DMP with index m. Then $a^{®_{m}},\left(a^{m}\right)^{\dagger}$ exist with $\left(a^{®_{m}}\right)^{m}=\left(a^{m}\right)^{\dagger}$ by Lemma 2.3. Take $x=a^{®_{m}}$, then $x a x=x, x S^{0}=x^{*} S^{0}=a^{m} S^{0}$ by Lemma 2.12. Further, from $x^{m}=\left(a^{m}\right)^{\dagger}$, it follows that $x^{m}=\left(x^{m} a^{m}\right)^{*} x^{m}=\left(a^{m}\right)^{*}\left(x^{m}\right)^{*} x^{m} \in\left(a^{m}\right)^{*} S^{0}$ and $\left(a^{m}\right)^{*}=\left(a^{m} x^{m} a^{m}\right)^{*}=x^{m} a^{m}\left(a^{m}\right)^{*} \in x^{m} S^{0}$. Hence (1) holds.
$(1) \Rightarrow(2)$ is clear.
(2). From $x a x=x,{ }^{\circ} x={ }^{\circ}\left(a^{m}\right)$ and ${ }^{\circ}\left(x^{*}\right) \subseteq{ }^{\circ}\left(a^{m}\right)$, it follows that $a^{®_{m}}=x$ by Lemma 2.12. Then $1-\left(x^{m} a^{m}\right)^{*} \in$ ${ }^{\circ}\left(a^{m}\right)^{*} \subseteq{ }^{\circ}\left(x^{m}\right)$ implies $x^{m}=\left(x^{m} a^{m}\right)^{*} x^{m}$. So $x^{m} a^{m}=\left(x^{m} a^{m}\right)^{*} x^{m} a^{m}$. Therefore $\left(x^{m} a^{m}\right)^{*}=x^{m} a^{m}$, together with $x a^{m+1}=a^{m}, a x^{2}=x$, implies a is *-DMP with index m by Theorem 2.11.

It is known that a^{D} exists if and only if $\left(a^{k}\right)^{D}$ exists for any positive integer k if and only if $\left(a^{k}\right)^{D}$ exists for some positive integer k [5]. We find this property is inherited by ${ }^{*}$-DMP.

Theorem 2.14. Let $a \in S$ and k a positive integer, then a is *-DMP if and only if a^{k} is *-DMP.
Proof. Observe that a^{D} exists and $a a^{D}$ is symmetric if and only if $\left(a^{k}\right)^{D}$ exists and $a^{k}\left(a^{k}\right)^{D}$ is symmetric. So a is *-DMP if and only if a^{k} is ${ }^{*}$-DMP by Lemma 2.2.

Given two *-DMP elements a and b, we may be of interest to consider conditions for the product $a b$ (resp. sum $a+b$) to be *-DMP.

Theorem 2.15. Let $a, b \in S$ with $a b=b a, a b^{*}=b^{*} a$. If both a and b are ${ }^{*}$-DMP, then $a b$ is ${ }^{*}$-DMP.
Proof. Suppose that both a and b are *-DMP, then $a^{®}, a^{D}$ and $b^{®}, b^{D}$ exist with $a^{®}=a^{D}, b^{®}=b^{D}$ by Lemma 2.3. Since $a^{®}$ and $b^{®}$ exist with $a b=b a, a b^{*}=b^{*} a$, then $(a b)^{®}$ exists with $(a b)^{®}=a^{®} b^{®}$ (see [7, Theorem 4.3]). Also, $(a b)^{D}$ exists with $(a b)^{D}=a^{D} b^{D}$. So,

$$
(a b)^{®}=a^{®} b^{®}=a^{D} b^{D}=(a b)^{D} .
$$

Hence $a b$ is *-DMP by Lemma 2.3.
Theorem 2.16. Let $a, b \in R$ with $a b=b a=0, a^{*} b=0$. If both a and b are ${ }^{*}$-DMP, then $a+b$ is *-DMP.
Proof. If both a and b are *-DMP, then $a^{®}, a^{D}$ and $b^{®}, b^{D}$ exist with $a^{®}=a^{D}, b^{®}=b^{D}$ by Lemma 2.3. Since $a^{®}$ and $b^{®}$ exist with $a b=b a=0, a^{*} b=0$, then $(a+b)^{®}$ exists with $(a+b)^{®}=a^{®}+b^{®}$ (see [7, Theorem 4.4]). Also, $(a+b)^{D}$ exists with $(a+b)^{D}=a^{D}+b^{D}$ (see [5, Corollary 1]). So we have

$$
(a+b)^{®}=a^{®}+b^{®}=a^{D}+b^{D}=(a+b)^{D} .
$$

Hence $a+b$ is *-DMP by Lemma 2.3.
Example 2.17. The condition $a b=0, a^{*} b=0$ (without $b a=0$) is not sufficient to show that $a+b$ is *-DMP, although both a and b are *-DMP.

Let $R=\mathbb{C}^{2 \times 2}$ with transpose as involution, $a=\left(\begin{array}{ll}i & 0 \\ 0 & 0\end{array}\right), b=\left(\begin{array}{cc}0 & 0 \\ -1 & 0\end{array}\right)$, then $a b=a^{*} b=0, b u t b a \neq 0$. Since $a^{®}=a^{\oplus}=a^{\#} a a^{(1,3)}=\left(\begin{array}{cc}-i & 0 \\ 0 & 0\end{array}\right)=a^{\#}=a^{D}$, a is *-DMP. It is clear that b is *-DMP. Observe that $a+b=\left(\begin{array}{cc}i & 0 \\ -1 & 0\end{array}\right)$, by calculation, we find that neither $a+b$ nor $(a+b)^{2}$ has any $\{1,3\}$-inverse. Since $(a+b)^{m}=\left\{\begin{array}{ll}(-1)^{\frac{m-1}{2}}(a+b) & m \text { is odd } \\ (-1)^{\frac{m}{2}+1}(a+b)^{2} & m \text { is even }\end{array}\right.$, we conclude that $(a+b)^{m}$ has no $\{1,3\}$-inverse for arbitrary positive integer m. Hence $a+b$ is not *-DMP.

3. Core-EP Decomposition

Core-nilpotent decomposition was introduced in [2] for complex matrices. Later, Patrício and Puystjens [19] generalized this decomposition from complex matrices to rings. Let $a \in R$ with $a^{D_{m}}$ exists. The sum $a=c_{a}+n_{a}$ is called the core-nilpotent decomposition of a, where $c_{a}=a a^{D_{m}} a$ is the core part of $a, n_{a}=\left(1-a a^{D_{m}}\right) a$ is the nilpotent part of a. This decomposition is unique and it brings $n_{a}^{m}=0, c_{a} n_{a}=n_{a} c_{a}=0, c_{a}^{\#}$ exists with $c_{a}^{\#}=a^{D_{m}}$.

Wang [23] introduced the core-EP decomposition for a complex matrix, and proved its uniqueness by using the rank of a matrix and matrix decomposition. Let A be a square complex matrix with index m, then $A=A_{1}+A_{2}$, where $A_{1}^{\#}$ exists, $A_{2}^{m}=0$ and $A_{1}^{*} A_{2}=A_{2} A_{1}=0$. In the following, we show that neither the rank nor the matrix decomposition are necessary for the characterization of core-EP decomposition in rings.

Theorem 3.1. Let $a \in R$ with $a^{\mathbb{D}_{m}}$ exists. Then $a=a_{1}+a_{2}$, where
(1) $a_{1}^{\#}$ exists;
(2) $a_{2}^{m}=0$;
(3) $a_{1}^{*} a_{2}=a_{2} a_{1}=0$.

Proof. Since $a^{®_{m}}$ exists. Take $a_{1}=a a^{®_{m}} a$ and $a_{2}=a-a a^{®_{m}} a$, then $a_{2}^{m}=0$ and $a_{1}^{*} a_{2}=a_{2} a_{1}=0$. Next, we will prove that $a_{1}^{\#}$ exists. In fact,

$$
a_{1}=a a^{®_{m}} a=\left(a a^{®_{m}} a\right)^{2}\left(a^{®_{m}}\right)^{2} a \in a_{1}^{2} R \text { and } a_{1}=a a^{®_{m}} a=a^{®_{m}}\left(a a^{®_{m}} a\right)^{2} \in R a_{1}^{2} .
$$

Hence $a_{1}^{\#}$ exists with $a_{1}^{\#}=\left(a^{®_{m}}\right)^{2} a$ (see [9, Proposition 7]).
Theorem 3.2. The core-EP decomposition of an element in R is unique.
Proof. The proof is similar to [23, Theorem 2.4], the matrices case. We give the proof for completeness.
Let $a=a_{1}+a_{2}$ be the core-EP decomposition of $a \in R$, where $a_{1}=a a^{@_{m}} a, a_{2}=a-a a^{®_{m}} a$. Let $a=b_{1}+b_{2}$ be another core-EP decomposition of a. Then $a^{m}=\sum_{i=0}^{m} b_{1}^{i} b_{2}^{m-i}$. Since $b_{1}^{*} b_{2}=0$ and $b_{2}^{m}=0$, then $\left(a^{m}\right)^{*} b_{2}=0$. Since $b_{2} b_{1}=0$, then $a^{m} b_{1}\left(b_{1}^{m}\right)^{\#}=b_{1}$. Therefore,

$$
\begin{aligned}
b_{1}-a_{1} & =b_{1}-a a^{®_{m}} a=b_{1}-a a^{®_{m}} b_{1}-a a^{®_{m}} b_{2}=b_{1}-a^{m}\left(a^{®_{m}}\right)^{m} b_{1}-\left[a^{m}\left(a^{®_{m}}\right)^{m}\right]^{*} b_{2} \\
& =b_{1}-a^{m}\left(a^{®_{m}}\right)^{m} a^{m} b_{1}\left(b_{1}^{m}\right)^{\#}=b_{1}-a^{m} b_{1}\left(b_{1}^{m}\right)^{\#}=0 .
\end{aligned}
$$

Thus, $b_{1}=a_{1}$. Hence the core-EP decomposition of a is unique.

Next, we exhibit two applications of the core-EP decomposition. On one hand, we give a characterization of the pseudo core inverse by using the core-EP decomposition.

Theorem 3.3. Let $a \in R$ with $a^{®_{m}}$ exists and let the core-EP decomposition of a be as in Theorem 3.1. Then $a_{1}^{\oplus}=a^{®_{m}}$.
Proof. Suppose $a^{®_{m}}$ exists, then $a^{D_{m}}$ and $\left(a^{m}\right)^{(1,3)}$ exist by Lemma 2.1, as well as
$a^{®_{m}}\left(a_{1}\right)^{2}=a^{®_{m}}\left(a a^{®_{m}} a\right)^{2}=a a^{®_{m}} a=a_{1} ; a_{1}\left(a^{®_{m}}\right)^{2}=a a^{®_{m}} a\left(a^{®_{m}}\right)^{2}=a^{®_{m}} ;$
$a_{1} a^{®_{m}}=a a^{®_{m}} a a^{®_{m}}=a a^{®_{m}}$, which implies $\left(a_{1} a^{®_{m}}\right)^{*}=a_{1} a^{®_{m}}$.
We thus get $a_{1}^{\oplus}=a^{®^{(1)}}$.

On the other hand, we use core-EP decomposition to characterize *-DMP elements.
Theorem 3.4. Let $a \in R$ with $a^{\mathbb{D}_{m}}$ exists and let the core-EP decomposition of a be as in Theorem 3.1. Then the following are equivalent:
(1) a is *-DMP with index m;
(2) a_{1} is $E P$.

Proof. (1) \Leftrightarrow (2). a is *-DMP with index m if and only if $a^{®_{m}}$ exists with $a a^{®_{m}}=a^{®_{m}} a$ by Theorem 2.10 (1). According to Theorem 3.3, $a_{1}^{\oplus}=a^{®_{m}}$. By a simple calculation, $a_{1} a_{1}^{\oplus}=a a_{1}^{\oplus}=a a^{®_{m}}$, and $a_{1}^{\oplus} a_{1}=a_{1}^{\oplus} a=a^{®_{m}} a$. So $a a^{®_{m}}=a^{®_{m}} a$ is equivalent to $a_{1} a_{1}^{\oplus}=a_{1}^{\oplus} a_{1}$, which is equivalent to, a_{1} is EP (see [21, Theorem 3.1]).

Remark 3.5. If a is ${ }^{*}-D M P$ with index m. Then the core-EP decomposition of a coincides with its core-nilpotent decomposition. In fact, if a is ${ }^{*}$-DMP with index m, then $a^{®_{m}}=a^{D_{m}}$ by Lemma 2.3. Hence the core-EP decomposition and core-nilpotent decomposition coincide.

4. Core-EP Order

In the following, R^{\oplus} and R^{\circledR} denote the sets of all core invertible and pseudo core invertible elements in R, respectively. $R^{\mathbb{D}_{m}}$ and $R_{\mathbb{D}_{m}}$ denote the sets of all pseudo core invertible and dual pseudo core invertible elements of index m, respectively.

Baksalary and Trenkler [1] introduced the core partial order for complex matrices of index one. Then, Rakić and Djordjević [22] generalized the core partial order from complex matrices to *-rings. Let $a, b \in R^{\oplus}$, the core partial order $a \leq b$ was defined as

$$
a \stackrel{\oplus}{\leq} b: a^{\oplus} a=a^{\oplus} b \text { and } a a^{\oplus}=b a^{\oplus} .
$$

In [23], Wang introduced the core-EP order for complex matrices. Let $A, B \in \mathbb{C}^{n \times n}$, the core-EP order $A \stackrel{\oplus}{\leq} B$ was defined as

$$
A \stackrel{\oplus}{\leq} B: A^{\oplus} A=A^{\oplus} B \text { and } A A^{\oplus}=B A^{\oplus},
$$

where A^{\oplus} denotes the core-EP inverse [13] of A.
One can see [6], [14] for a deep study of the partial order.
In what follows, we generalize the core-EP order from complex matrices to *-rings and give some properties.

Definition 4.1. Let $a, b \in R^{®}$. The core-EP order $a{ }^{(®)} b$ is defined as

$$
\begin{equation*}
a a^{®} b: a^{®} a=a^{\unrhd} b \text { and } a a^{®}=b a^{®} . \tag{4.1}
\end{equation*}
$$

We extend some results of the core-EP order [23] from matrices to an arbitrary *-ring, using a different method. First, we have the following result.

Theorem 4.2. The core-EP order is not a partial order but merely a pre-order.
Proof. It is clear that the core-EP order (4.1) is reflexive. Let $a, b, c \in R^{\oplus}, a \stackrel{®}{\leq} b$ and $b \stackrel{(1)}{\leq} c$. Next, we prove $a \stackrel{(1)}{\leq} c$.

Suppose $k=\max \{\operatorname{ind}(a), \operatorname{ind}(b)\}$. From $a a^{®}=b a^{®}$ and $b b^{®}=c b^{®}$, it follows that

$$
\begin{aligned}
a a^{®} & =b a^{®}=b a\left(a^{®}\right)^{2}=b^{2}\left(a^{®}\right)^{2}=b^{k+1}\left(a^{®}\right)^{k+1}=b b^{®} b^{k+1}\left(a^{®}\right)^{k+1}=c b^{®} b^{k+1}\left(a^{®}\right)^{k+1} \\
& =c b^{k}\left(a^{®}\right)^{k+1}=c b\left(a^{®}\right)^{2}=c a^{®} .
\end{aligned}
$$

 $a^{\mathbb{D}}\left[b^{k}\left(a^{®}\right)^{k}\right]^{*} b b^{®^{C}}=a^{\mathbb{D}} c$.
We thus have $a \leq c$.
However, the core-EP order is not anti-symmetric (see [23, Example 4.1]).

The following result give some characterizations of the core-EP order, generalizing [23, Theorem 4.2] from matrices to an arbitrary *-ring without using matrix decomposition.

Theorem 4.3. Let $a, b \in R^{®}$ with $k=\max \{\operatorname{ind}(a)$, ind $(b)\}$ and let $a=a_{1}+a_{2}$ and $b=b_{1}+b_{2}$ be the core-EP decompositions. Then the following are equivalent:
(1) $a \leq b$;
(2) $a^{k+1}=b a^{k}$ and $a^{*} a^{k}=b^{*} a^{k}$;
(3) $a_{1} \stackrel{\oplus}{\leq} b_{1}$.

Proof. (1) \Rightarrow (2). Post-multiply $a a^{®}=b a^{®}$ by a^{k+1}, then we derive $a^{k+1}=b a^{k}$. From $a^{®} a=a^{®} b$, it follows that $a^{*}\left(a^{(®}\right)^{*}=b^{*}\left(a^{®}\right)^{*}$. Post-multiply this equality by $a^{*} a^{k}$, then $a^{*} a^{k}=b^{*} a^{k}$.
(2) \Rightarrow (1). Equality $a^{*} a^{k}=b^{*} a^{k}$ yields that $\left(a^{k}\right)^{*} a=\left(a^{k}\right)^{*} b$. Pre-multiply this equality by $a^{\unrhd}\left(\left(a^{®}\right)^{k}\right)^{*}$, then $a^{®} a=a^{®} b$. Post-multiply $a^{k+1}=b a^{k}$ by $\left(a^{®}\right)^{k+1}$, then $a a^{®}=b a^{®}$.
$(1) \Rightarrow$ (3). From Theorem 3.3 and $a a^{®}=b a^{®}$, it follows that

$$
\begin{aligned}
a_{1} a_{1}^{\oplus} & =a a_{1}^{\oplus}=a a^{®}=b a^{®}=b a\left(a^{®}\right)^{2}=b^{2}\left(a^{®}\right)^{2}=\cdots=b^{k}\left(a^{®}\right)^{k}=b b^{®} b^{k}\left(a^{®}\right)^{k} \\
& =b b^{®} b a^{®}=b_{1} a_{1}^{\oplus} .
\end{aligned}
$$

Meanwhile, we have $a a^{\unrhd}=a a^{\unrhd} b b^{\unrhd}$ by taking an involution on $a a^{\unrhd}=b b^{\unrhd} b a^{\unrhd}=b b^{®} a a^{\unrhd}$. So $a^{®}=a^{\unrhd} b b^{\unrhd}$. Therefore $a_{1}^{\oplus} a_{1}=a_{1}^{\oplus} a=a^{®} a=a^{\unrhd} b=a^{®} b b^{\unrhd} b=a_{1}^{\oplus} b_{1}$.
$(3) \Rightarrow(1)$. Since $a a^{®}=a_{1} a_{1}^{\oplus}=b_{1} a_{1}^{\oplus}=b b^{®} b a^{®}$, then

$$
\begin{aligned}
a a^{®} & =b b^{®} b a a^{®} a^{®}=\left(b b^{®} b\right)^{2}\left(a^{®}\right)^{2}=b b^{®} b b^{k}\left(b^{®}\right)^{k} b\left(a^{®}\right)^{2}=b\left(b b^{®} b a^{®}\right) a^{(®)}=b a\left(a^{®}\right)^{2} \\
& =b a^{®} .
\end{aligned}
$$

 $a^{®} b b^{®} b=a_{1}^{\oplus} b_{1}=a_{1}^{\oplus} a_{1}=a^{®} a$.

Wang and Chen [25] gave some equivalences to $a \stackrel{\oplus}{\leq} b$ under the assumption that a is EP. Similarly, we give a characterization of $a \stackrel{\circledR}{\leq} b$ whenever a is *-DMP. In the following result, c_{a} and c_{b} are the core parts of the core-nilpotent decompositions of a, b respectively.

Theorem 4.4. Let $a, b \in R^{®}$. If a is *-DMP, then the following are equivalent:
(1) $a \stackrel{®}{\leq} b$;
(2) $c_{a} \stackrel{\oplus}{\leq} c_{b}$;
(3) $a^{®} b^{®}=b^{®} a^{®}$ and $a^{®} b=a^{®} a$;
(4) $a^{\oplus(} \stackrel{®}{\leq} b^{®}$ and $a^{®} b=a^{®} a$.

Proof. Let $k=\max \{\operatorname{ind}(a), \operatorname{ind}(b)\}$. If a is ${ }^{*}-$ DMP, then $a^{®}=a^{D}$ by Lemma 2.3 and $a a^{®}=a^{®} a$ by Theorem 2.10. $(1) \Rightarrow(2) . a^{®}=c_{a}^{\oplus}$ (see [7, Theorem 2.9]) and $a^{®} a=a^{®} b$ imply $c_{a}^{\oplus} a=c_{a}^{\oplus} b$. From $a^{®} b=a^{®} a=a a^{®}=b a^{®}$, we have $a^{®} b^{D}=b^{D} a^{®}$. So, $a^{®} b b^{D} b=b b^{D} b a^{®}=b b^{D} b^{k}\left(a^{®}\right)^{k}=b^{k}\left(a^{®}\right)^{k}=a a^{®}$. Therefore $c_{a}^{\oplus} c_{b}=c_{b} c_{a}^{\oplus}=c_{a} c_{a}^{\oplus}=c_{a}^{\oplus} c_{a}$. (2) \Rightarrow (1). $a a^{®}=c_{a} c_{a}^{\oplus}=c_{b} c_{a}^{\oplus}=b b^{D} b a^{®}=\left(b b^{D} b\right)^{2}\left(a^{®}\right)^{2}=b^{2} b^{D} b\left(a^{®}\right)^{2}=b\left(b b^{D} b a^{®}\right) a^{®}=b a a^{®} a^{®}=b a^{®}$, and $a^{\mathbb{D}} a=c_{a}^{\oplus} c_{a}=c_{a}^{\oplus} c_{b}=a^{®} b b^{D} b=a^{®} a^{®}\left(b b^{D} b\right)^{2}=a^{®} a^{®} a b=a^{®} b$.
(1) \Rightarrow (3). From $a^{®} a=a^{®} b$ and $a a^{®}=b a^{®}$, it follows that

$$
a a^{®} b=a a^{®} a=b a^{®} a=b a a^{®},
$$

 $b^{®} a^{®}$.
(3) \Rightarrow (1). $b a^{\unrhd}=b\left(a^{\unrhd}\right)^{2} a=b\left(a^{\unrhd}\right)^{2} b=b\left(a^{\unrhd}\right)^{k+1} b^{k}=b\left(a^{\unrhd}\right)^{k+1} b^{\unrhd} b^{k+1}=b b^{\unrhd}\left(a^{®}\right)^{k+1} b^{k+1}=b b^{\unrhd} a a^{\unrhd}$, together with $a a^{®}=a^{®} a=a^{®} b=\left(a^{®}\right)^{k} b^{k}=\left(a^{®}\right)^{k} b^{®} b^{k+1}=b^{\unrhd}\left(a^{®}\right)^{k} b^{k+1}=b b^{®} a a^{®}$, implies $a a^{®}=b a^{®}$.
(3) \Rightarrow (4). From $a^{®} b^{®}=b^{®} a^{®}$, it follows that (1) holds and

$$
\begin{aligned}
& \left(a^{®}\right)^{®} a^{®}=a^{2}\left(a^{®}\right)^{2}=a^{2} b^{k}\left(a^{®}\right)^{k+2}=a^{2} b^{®} b^{k+1}\left(a^{®}\right)^{k+2}=a^{2} b^{®} a\left(a^{®}\right)^{2} \\
& =a^{2} b^{®} a^{®}=a^{2} a^{®} b^{(1)}=\left(a^{®}\right)^{®} b^{(\square},
\end{aligned}
$$

 $b^{®} a^{2} a^{®}$. So $b^{®} a^{®}=\left(a^{®}\right)^{2}=a^{\unrhd} b^{®}$.

Wang and Chen [25] proved that if $a \stackrel{*}{\leq} b, a^{\dagger}$ exists, then b^{\dagger} exists if and only if $\left[b\left(1-a a^{\dagger}\right)\right]^{\dagger}$ exists. Similarly, we have the following result.

Theorem 4.5. Let $a, b \in R^{®}$ with $a \stackrel{(®)}{\leq} b$. Suppose that a is *-DMP. Then b is *-DMP if and only if $b\left(1-a a^{®}\right)$ is *-DMP.

Proof. From $a^{®} a=a^{®} b$ and $a a^{®}=b a^{®}$, it follows that

$$
a a^{®} b=a a^{\circledR} a=b a^{®} a=b a a^{®} .
$$

Suppose that b is *-DMP, then $b b^{®}=b^{®} b$. Next, we prove $\left[b\left(1-a a^{®}\right)\right]^{®}=b^{®}-a^{®}$. In fact, suppose ind $(b)=k$, then

$$
\begin{aligned}
\left(b^{®}-a^{®}\right)\left[b\left(1-a a^{®}\right)\right]^{k+1} & =\left(b^{®}-a^{®}\right) b^{k+1}\left(1-a a^{®}\right)=b^{k}\left(1-a a^{®}\right)-a^{®} b^{k+1}\left(1-a a^{®}\right) \\
& =b^{k}\left(1-a a^{®}\right)=\left[b\left(1-a a^{®}\right)\right]^{k} ;
\end{aligned}
$$

$$
\begin{aligned}
& b\left(1-a a^{®}\right)\left(b^{®}-a^{®}\right)=b b^{®}-a a^{®} ;
\end{aligned}
$$

We thus have $\left[b\left(1-a a^{®}\right)\right]^{®}=b^{®}-a^{®}$.

Therefore, $b\left(1-a a^{®}\right)\left[b\left(1-a a^{®}\right)\right]^{®}=\left[b\left(1-a a^{®}\right)\right]^{®} b\left(1-a a^{®}\right)$. Hence $b\left(1-a a^{®}\right)$ is *-DMP.
Conversely, suppose that $b\left(1-a a^{®}\right)$ is *-DMP. Then, $\left[b\left(1-a a^{®}\right)\right]^{®}=\left[b\left(1-a a^{®}\right)\right]^{D}$. We can easily check that

$$
\left(b a a^{®}\right)^{(1)}=\left(b a a^{®}\right)^{\oplus}=\left(b a a^{®}\right)^{\#}=a^{®} .
$$

 and $\left(b a a^{®}\right)^{*} b\left(1-a a^{®}\right)=b^{*} a a^{®}\left(1-a a^{®}\right) b=0$, then $b^{®}=\left[b\left(1-a a^{®}\right)\right]^{®}+a^{®}$ (see [7, Theorem 4.4]) and $b^{D}=\left[b\left(1-a a^{®}\right)\right]^{D}+\left(b a a^{®}\right)^{\#}=\left[b\left(1-a a^{®}\right)\right]^{D}+a^{®}$. Thus, b is ${ }^{*}$-DMP.

5. Characterizations for $a a^{(\square)}=b b^{(1)}$

Let $a, b \in R$. If a^{\odot} and b^{\odot} are some kind of generalized inverses of a and b. It is very interesting to discuss when $a a^{\circ}=b b^{\odot}$. Koliha et al. [11, Theorem 6.1], Mosić et al. [17, Theorem 3.7] and Patrício et al. [18, Theorem 2.3] gave some equivalences for generalized Drazin inverses, image-kernel (p, q)-inverses and Moore-Penrose inverses, respectively. Here we give a characterization for $a a^{\circledR}=b b^{®}$.

Proposition 5.1. Let $a, b \in R^{®}$. Then the following are equivalent:
(1) $a a^{®}=b b^{®} a a^{®}$;
(2) $a a^{®}=a a^{®} b b^{®}$;
(3) $a^{®}=a^{®} b b^{®}$;
(4) $R a^{®} \subseteq R a^{®} b b^{®}$.

Proof. (1) \Leftrightarrow (2) by taking an involution.
$(2) \Rightarrow$ (3). Pre-multiply $a a^{®}=a a^{®} b b^{®}$ by $a^{®}$, then we get $a^{®}=a^{®} b b^{®}$.
$(3) \Rightarrow(4)$ is clear.
(4) \Rightarrow (2). From $R a^{®} \subseteq R a^{®} b b^{®}$, it follows that $a^{®}=x a^{®} b b^{®}$ for some $x \in R$. Then, $a a^{®}=a x a^{®} b b^{®}=$ $\left(a x a^{®} b b^{®}\right) b b^{®}=a a^{®} b b^{®}$.

The above proposition gives some equivalences to $a a^{®}=b b^{®} a a^{®}$, which enrich the following result. R^{-1} denotes the set of all invertible elements in R.

Theorem 5.2. Let $a, b \in R^{®}$ with ind $(a)=m$. Then the following are equivalent:
(1) $a a^{®}=b b^{®}$;
(2) $a a^{\circledR}=a a^{®} b b^{®}$ and $u=a a^{\circledR}+1-b b^{®} \in R^{-1}$;
(3) $a a^{®}=a a^{®} b b^{®}$ and $v=a^{m}+1-b b^{®} \in R^{-1}$;
(4) $a a^{®}$ commutes with $b b^{®}, u=a a^{®}+1-b b^{®} \in R^{-1}$ and $s=b b^{\unrhd}+1-a a^{\unrhd} \in R^{-1}$;
(5) $a a^{®}$ commutes with $b b^{®}$ and $w=1-\left(a a^{®}-b b^{®}\right)^{2} \in R^{-1}$;
(6) $a a^{®}$ commutes with $b b^{®}$ and $b^{®} a a^{®}-a^{®} b b^{®}=b^{®}-a^{®}$.

Proof. (1) $\Rightarrow(2)-(6)$ is clear.
(2) $\Leftrightarrow(3)$. Since $a^{®_{m}}$ exists, then $a^{D_{m}}$ exists by Lemma 2.1. So $\left(a^{m}\right)^{\#}$ exists. Therefore $a^{m}+1-a a^{®_{m}} \in R^{-1}$ (see [20, Theorem 1]). From $a a^{®}=a a^{®} b b^{®}$, it follows that $a a^{®} b b^{®}=b b^{®} a a^{®}=a a^{®}$ by Proposition 5.1. Observe that $\left(a a^{®}+1-b b^{®}\right)\left(a^{m}+1-a a^{®}\right)=a^{m}+1-b b^{®}$, and hence $u \in R^{-1}$ if and only if $v \in R^{-1}$.
 $a a^{\circledR}=b b^{®}$.

$(5) \Rightarrow(4)$. Note that $1-\left(a a^{®}-b b^{®}\right)^{2}=\left(b b^{®}+1-a a^{®}\right)\left(a a^{®}+1-b b^{®}\right)=\left(a a^{®}+1-b b^{®}\right)\left(b b^{®}+1-a a^{®}\right)$. Hence $w \in R^{-1}$ implies $u, s \in R^{-1}$.

Take $b=a^{*}$ in Theorem 5.2, then we obtain a characterization of *-DMP elements by applying Theorem 2.9.

Corollary 5.3. Let $a \in R^{®_{m}} \cap R_{®_{m}}$. Then the following are equivalent:
(1) a is ${ }^{*}$-DMP with index m;
(2) $a a^{®_{m}}=a_{\mathbb{D}_{m}} a$;
(3) $a a^{\bigotimes_{m}}=a a^{®_{m}} a_{\bigotimes_{m}} a$ and $u=a a^{®_{m}}+1-a_{®_{m}} a \in R^{-1}$;
(4) $a a^{®_{m}}=a a^{®_{m}} a_{\mathbb{D}_{m}} a$ and $v=a^{m}+1-a_{®_{m}} a \in R^{-1}$;
(5) a $a^{®_{m}}$ commutes with $a_{®_{m}} a, u=a a^{®_{m}}+1-a_{®_{m}} a \in R^{-1}$ and $s=a_{®_{m}} a+1-a a^{®_{m}} \in R^{-1}$;
(6) $a a^{®_{m}}$ commutes with $a_{®_{m}} a$ and $w=1-\left(a a^{®_{m}}-a_{®_{m}} a\right)^{2} \in R^{-1}$;
(7) $a a^{®_{m}}$ commutes with $a_{®_{m}} a$ and $a_{\mathbb{D}_{m}}^{*} a a^{®_{m}}-a^{®_{m}} a_{\mathbb{O}_{m}} a=a_{®_{m}}^{*}-a^{®_{m}}$.

References

[1] O.M. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilinear Algebra 58 (2010) 681-697.
[2] A. Ben-Israel, T.N.E. Greville, Generalized Inverses: Theory and Applications, Wiley-Interscience, New York, 1974; 2nd ed., Springer, New York, 2002.
[3] N. Castro-González, J.Y. Vélez-Cerrada, Elements of rings and Banach algebras with related spectral idempotents, J. Aust. Math. Soc. 80 (2006) 383-396.
[4] W. Chen, On EP elements, normal elements and partial isometries in rings with involution, Electron. J. Linear Algebra 23 (2012) 553-561.
[5] M.P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958) 506-514.
[6] M.P. Drazin, Natural structures on semigroups with involution, Bull. Amer. Math. Soc. 84 (1978) 139-141.
[7] Y.F. Gao, J.L. Chen, Pseudo core inverses in rings with involution, Comm. Algebra 46 (2018) 38-50.
[8] R.E. Harte, M. Mbekhta, On generalized inverses in C*-algebras, Studia Math. 103 (1992) 71-77.
[9] R.E. Hartwig, Block generalized inverses, Arch. Ration. Mech. Anal. 61 (1976) 197-251.
[10] R.E. Hartwig, I.J. Katz, Products of EP elements in reflexive semi-groups, Linear Algebra Appl. 14 (1976) 11-19.
[11] J.J. Koliha, P. Patrício, Elements of rings with equal spectral idempotents, J. Austral. Math. Soc. 72 (2002) 137-152.
[12] S.B. Malik, L. Rueda, N. Thome, The class of m-EP and m-normal matrices, Linear Multilinear Algebra 64 (2016) $2119-2132$.
[13] K. Manjunatha Prasad, K.S. Mohana, Core-EP inverse, Linear Multilinear Algebra 62 (2014) 792-802.
[14] S.K. Mitra, P. Bhimasankaram, S.B. Malik, Matrix Partial Orders, Shorted Operators and Applications, World Scientific Publishing Co. Pte. Ltd., Hackensack, N.J., 2010.
[15] D. Mosić, D.S. Djordjević, Partial isometries and EP elements in rings with involution, Electron. J. Linear Algebra 18 (2009) 761-772.
[16] D. Mosić, D.S. Djordjević, J.J. Koliha, EP elements in rings, Linear Algebra Appl. 431 (2009) 527-535.
[17] D. Mosić, D.S. Djordjević, G. Kantún-Montiel, Image-Kernel (P, Q)-inverses in rings, Electron. J. Linear Algebra 27 (2014) $272-283$.
[18] P. Patrício, C.M. Araújo, Moore-Penrose invertibility in involutory rings: the case $a a^{\dagger}=b b^{\dagger}$, Linear Multilinear Algebra 58 (2010) 445-452.
[19] P. Patrício, R. Puystjens, Drazin-Moore-Penrose invertibility in rings, Linear Algebra Appl. 389 (2004) 159-173.
[20] R. Puystjens, R.E. Hartwig, The group invers of a companion matrix, Linear Multilinear Algebra 43 (1997) 137-150.
[21] D.S. Rakić, N.Č. Dinčić, D.S. Djordjević, Group, Moore-Penrose, core and dual core inverse in rings with involution, Linear Algebra Appl. 463 (2014) 115-133.
[22] D.S. Rakić, D.S. Djordjević, Star, sharp, core and dual core partial order in rings with involution, Appl. Math. Comput. 259 (2015) 800-818.
[23] H.X. Wang, Core-EP decomposition and its applications, Linear Algebra Appl. 508 (2016) 289-300.
[24] H.X. Wang, J.L. Chen, Weak group inverse, Open Math., doi:10.1515/math-2018-0100.
[25] L. Wang, J.L. Chen, Further results on partial ordering and the generalized inverses, Linear Multilinear Algebra 63 (2015) 2419-2429.
[26] X.N. Wang, C.Y. Deng, Properties of m-EP operators, Linear Multilinear Algebra 65 (2017) 1349-1361.
[27] S.Z. Xu, J.L. Chen, EP elements in rings with involution, arXiv: 1602.08184v1 [math.RA], 2016.
[28] S.Z. Xu, J.L. Chen, X.X. Zhang, New characterizations for core inverses in rings with involution, Front. Math. China 12 (2017) 231-246.
[29] H.L. Zou, J.L. Chen, P. Patrício, Characterizations of m-EP elements in rings, Linear Multilinear Algebra 66 (2018) 1244-1256.

[^0]: 2010 Mathematics Subject Classification. 15A09; 16W10; 20M99
 Keywords. *-DMP element; pseudo core inverse; core-EP inverse; core-EP decomposition; core-EP order
 Received: 08 August 2017; Accepted: 18 September 2017
 Communicated by Dijana Mosić
 Research supported by the National Natural Science Foundation of China (No.11771076), the Scientific Innovation Research of College Graduates in Jiangsu Province (No.KYZZ16_0112)

 Email addresses: yfgao91@163.com (Yuefeng Gao), jlchen@seu. edu. cn (Jianlong Chen), keyy086@126. com (Yuanyuan Ke)

