Filomat 32:6 (2018), 2327–2334 https://doi.org/10.2298/FIL1806327G

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On an Inversion Formula for the Fourier Transform on Distributions by Means of Gaussian Functions

B. J. González^a, E. R. Negrín^a

^aDepartamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna (ULL). Campus de Anchieta. ES-38271 La Laguna (Tenerife), España

Abstract. Gaussian functions are useful in order to establish inversion formulae for the classical Fourier transform. In this paper we show that they also are helpful in order to obtain a Fourier inversion formula for the distributional case.

1. Introduction

In a series of papers published by the authors, different aspects of the Fourier transform on the spaces of distributions denoted by S'_k (duals of the spaces S_k introduced by J. Horváth in [9]) were studied (see [3], [4], [5] and [6]).

These spaces can be identified with subspaces of the Schwartz space S' and its members can be considered as tempered distributions. Moreover, the usual distributional Fourier transform of $f \in S'_k$ [12, Chap. VII, §6, p. 248] is the regular distribution generated by the function in \mathbb{R}^n given by $(\mathcal{F}f)(y) = \langle f, e^{ixy} \rangle$.

In [4, Theorem 2.1] it was established that if $f \in S'_k$, $k \in \mathbb{Z}$, k < 0, then for all $\phi \in S$ the Parseval equality

$$\left\langle f, \mathcal{F}\phi \right\rangle = \left\langle T_{< f, e^{ixy} >}, \phi(y) \right\rangle$$

holds, where $T_{< f, e^{ixy}>}$ is the member of S' given by

$$\left\langle T_{< f, e^{ixy}>}, \phi(y) \right\rangle = \int_{\mathbb{R}^n} \left\langle f, e^{ixy} \right\rangle \phi(y) dy,$$

and $\mathcal{F}\phi$ denotes the classical Fourier transform of ϕ , namely

$$(\mathcal{F}\phi)(t) = \int_{\mathbb{R}^n} \phi(y) e^{ity} dy, \quad t \in \mathbb{R}^n.$$

Moreover, in [4, Theorem 3.1] it was proved the following inversion formula:

Communicated by Hari M. Srivastava

²⁰¹⁰ Mathematics Subject Classification. Primary 42A38; Secondary 46F12

Keywords. Fourier transform; Distributions; Inversion formula; Gaussian functions; Convolution equations; Differential equations. Received: 23 May 2017; Revised: 01 October 2017; Accepted: 27 October 2017

Email addresses: bjglez@ull.es (B. J. González), enegrin@ull.es (E. R. Negrín)

Let $f \in \mathcal{S}'_{k}$, $k \in \mathbb{Z}$, k < 0, and set $(\mathcal{F}f)(y) = \langle f, e^{ixy} \rangle$ for $y \in \mathbb{R}^n$. Then for any $\phi_1, \dots, \phi_n \in \mathcal{D}(\mathbb{R})$, $t = (t_1, \dots, t_n) \in \mathbb{R}^n$ and $\phi(t) = \phi_1(t_1) \cdots \phi_n(t_n)$, one has

$$\langle f, \phi \rangle = \lim_{Y \to +\infty} \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{C(0;Y)} (\mathcal{F}f)(y) e^{-ity} dy \phi(t) dt,$$

where C(0; Y) is the *n*-cube $[-Y, Y], \times \cdots \times [-Y, Y] \subset \mathbb{R}^n, Y > 0$.

Later, in [6, Theorem 1], this inversion formula was extended to functions $\phi \in S$ such that $\phi(t) = \phi_1(t_1) \cdots \phi_n(t_n), t = (t_1, \dots, t_n) \in \mathbb{R}^n$, where $\phi_1, \dots, \phi_n \in S(\mathbb{R})$.

The purpose of the present paper is to obtain a distributional Fourier inversion formula which be valid for any $\phi \in S$. For it we follow to Lang in [10, Theorem 4, p. 264] for obtaining an inversion formula for the classical Fourier transform by means of Gaussian functions.

As a consequence of this distributional inversion formula we get a representation over S of the solution in S'_k of convolution equations and, consequently, of linear partial differential equations with complex constant coefficients.

A representation of the Fourier transform on distributions was obtained in [1] (amongst others).

Gaussian functions have been useful in the context of integral transforms, as has been revealed in recent papers (see [7] and [13]). We also recall some interesting recent advances concerning to integral transforms [15].

Related differential equations have been solved in [16] by using the operational method.

We recall that the spaces S_k , $k \in \mathbb{Z}$ [9, p. 90], are defined as the vector spaces of all functions ϕ on \mathbb{R}^n which possess continuous partial derivatives of all orders and which satisfy the condition that if $p \in \mathbb{N}^n$ and $\varepsilon > 0$, then there exists $A(\phi, p, \varepsilon) > 0$ such that

 $|(1+|x|^2)^k \partial^p \phi(x)| \le \varepsilon$, for $|x| > A(\phi, p, \varepsilon)$.

For every $p \in \mathbb{N}^n$, Horváth defines on S_k the seminorms

$$q_{k,p}(\phi) = \max_{x \in \mathbb{R}^n} \left| (1 + |x|^2)^k \partial^p \phi(x) \right|$$

The spaces S_k equipped with the countable family of seminorms $q_{k,p}$ are Fréchet spaces. The well known space of test functions D is a dense subspace of S_k (see [9], p. 419). As it is usual, S'_k denotes the dual of the space S_k .

In this paper we make use of the well known fact that

$$(2\pi c)^{(-1/2)} \cdot \int_{-\infty}^{+\infty} \exp\left[\nu x - (x^2/2c)\right] dx = \exp(c\nu^2/2), \quad \nu \in \mathbb{C}, \quad c > 0.$$
(1)

Throughout this paper we shall use the terminology and notation of [9].

2. The inversion formula

Firstly, we will establish the next assertion

Lemma 2.1. Let $\phi \in S$, $k \in \mathbb{Z}$ and k < 0, then

$$\frac{1}{\pi^{\frac{n}{2}}}\int_{\mathbb{R}^n}\phi(x+2aw)e^{-||w||^2}dw\longrightarrow \phi(x),$$

in S for $a \rightarrow 0^+$.

Proof. First, we claim that for all $\phi \in S$ and all a > 0 one has

$$\frac{1}{\pi^{\frac{n}{2}}}\int_{\mathbb{R}^n}\phi(x+2aw)e^{-\|w\|^2}dw\in\mathcal{S}$$

In fact, for any $p \in \mathbb{N}^n$ there exists a $M_{p,\phi} > 0$ such that $|\partial^p \phi(x)| \le M_{p,\phi}$, for all $x \in \mathbb{R}^n$. Thus, for $\mathbf{0} = (0, \dots, 0)$, it is clear that

$$\left|\phi(x+2aw)e^{-\|w\|^2}\right| \le M_{0,\phi}e^{-\|w\|^2}$$

Also, for $r(j) = (r_1(j), \dots, r_n(j))$, where $r_m(j) = 0$ for $m \neq j$ and $r_j(j) = 1$, $j = 1, \dots, n$, it follows that

$$\left|\frac{\partial}{\partial x_j}\phi(x+2aw)e^{-\|w\|^2}\right| \le M_{r(j),\phi}e^{-\|w\|^2}, \quad j=1,\ldots,n, \text{ and all } x \in \mathbb{R}^n$$

Since $M_{0,\phi}e^{-||w||^2}$ and $M_{r(j),\phi}e^{-||w||^2}$, j = 1, ..., n, are integrable functions over \mathbb{R}^n , the use of [2, Theorem 5.9, p. 238] yields to

$$\frac{\partial}{\partial x_j} \int_{\mathbb{R}^n} \phi(x+2aw) e^{-\|w\|^2} dw = \int_{\mathbb{R}^n} \frac{\partial}{\partial x_j} \phi(x+2aw) e^{-\|w\|^2} dw$$

A similar argument allows us to prove that for all $p_i \in \mathbb{N}$,

$$\frac{\partial^{p_j}}{\partial x_j^{p_j}} \int_{\mathbb{R}^n} \phi(x + 2aw) e^{-||w||^2} dw$$
$$= \int_{\mathbb{R}^n} \frac{\partial^{p_j}}{\partial x_j^{p_j}} \phi(x + 2aw) e^{-||w||^2} dw,$$

for all j = 1, ..., n. Now, since for $p = (p_1, ..., p_n) \in \mathbb{N}^n$, is $\partial^p = \frac{\partial^{p_1 + \dots + p_n}}{\partial x_1^{p_1} \cdots \partial x_n^{p_n}}$, it follows that

$$\partial^p \int_{\mathbb{R}^n} \phi(x+2aw) e^{-||w||^2} dw = \int_{\mathbb{R}^n} \partial^p \phi(x+2aw) e^{-||w||^2} dw.$$

On the other hand, being

$$\frac{1}{\pi^{\frac{n}{2}}}\int_{\mathbb{R}^n} e^{-\|w\|^2} dw = 1$$

we find that

$$\begin{split} & \left| \left(1 + |x|^2 \right)^k \frac{1}{\pi^{\frac{n}{2}}} \partial^p \int_{\mathbb{R}^n} \phi(x + 2aw) e^{-||w||^2} dw \right| \\ & \leq \left(1 + |x|^2 \right)^k M_{p,\phi} \frac{1}{\pi^{\frac{n}{2}}} \int_{\mathbb{R}^n} e^{-||w||^2} dw = \left(1 + |x|^2 \right)^k \cdot M_{p,\phi} , \end{split}$$

(1)

from which, being k < 0, it follows that (1) tends to zero as |x| tends to infinity.

Now, for all $p = (p_1, \ldots, p_n) \in \mathbb{N}^n$,

$$\max_{x \in \mathbb{R}^{n}} \left| \left(1 + |x|^{2} \right)^{k} \frac{1}{\pi^{\frac{n}{2}}} \partial^{p} \left\{ \int_{\mathbb{R}^{n}} \phi(x + 2aw) e^{-||w||^{2}} dw - \phi(x) \right\} \right|$$

$$= \max_{x \in \mathbb{R}^{n}} \left| \left(1 + |x|^{2} \right)^{k} \frac{1}{\pi^{\frac{n}{2}}} \partial^{p} \left\{ \int_{\mathbb{R}^{n}} \left[\phi(x + 2aw) - \phi(x) \right] e^{-||w||^{2}} dw \right\} \right|, \qquad (2)$$

which, applying again [2, Theorem 5.9, p. 238], we have that the last expression is equal to

$$\frac{1}{\pi^{\frac{n}{2}}} \max_{x \in \mathbb{R}^n} \left| \int_{\mathbb{R}^n} \left\{ \partial^p \phi(x + 2aw) - \partial^p \phi(x) \right\} e^{-\|w\|^2} dw \right|$$

B. J. Gonzalez, E. R. Negrín / Filomat 32:6 (2018), 2327-2334

$$\leq \frac{1}{\pi^{\frac{n}{2}}} \max_{x \in \mathbb{R}^n} \int_{\mathbb{R}^n} \left| \partial^p \phi(x + 2aw) - \partial^p \phi(x) \right| e^{-||w||^2} dw,$$

and by the Mean-Value theorem it is less than or equal to

$$\frac{2a}{\pi^{\frac{n}{2}}} \cdot \left\{ \sum_{j=1}^{n} M_{p(j),\phi} \right\} \cdot \int_{\mathbb{R}^{n}} \|w\| e^{-\|w\|^{2}} dw,$$

where $p(j) = (p_1, ..., p_j + 1, ..., p_n)$.

Also, using spherical coordinates in \mathbb{R}^n it is easily obtained that

$$\int_{\mathbb{R}^n} \|w\| e^{-\|w\|^2} dw = \pi^{n-1} \Gamma\left(\frac{n+1}{2}\right),$$

from which (2) is less than or equal to

 $\frac{2a}{\pi^{\frac{n}{2}}}\cdot\left\{\sum_{j=1}^{n}M_{p(j),\phi}\right\}\cdot\pi^{n-1}\Gamma\left(\frac{n+1}{2}\right),$

and, thus, the Lemma holds.

We are now ready to prove the main result

Theorem 2.2. Let $f \in S'_k$, $k \in \mathbb{Z}$, k < 0, and $(\mathcal{F}f)(y) = \langle f, e^{ixy} \rangle$, $y \in \mathbb{R}^n$, then, for all $\phi \in S$ it follows

$$\left\langle f,\phi\right\rangle = \lim_{a\to 0^+} \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} (\mathcal{F}f)(y) e^{-ity} e^{-a^2 ||y||^2} dy \,\phi(t) dt.$$
(3)

Proof.

First, from [9, Proposition 2, p. 97], there exist a C > 0 and a nonnegative integer r, both depending on f, such that

$$|(\mathcal{F}f)(y)| = \left| \left\langle f, e^{ixy} \right\rangle \right| \le C \max_{|p| \le r} \max_{x \in \mathbb{R}^n} \left| \left(1 + |x|^2 \right)^k \partial_x^p e^{ixy} \right| = C \max_{|p| \le r} |y^p|.$$

Thus, for any $\phi \in S$, one has

$$\frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} (\mathcal{F}f)(y) e^{-ity} e^{-a^2 ||y||^2} dy \,\phi(t) dt$$
$$= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \left\langle f, e^{ixy} \right\rangle e^{-ity} e^{-a^2 ||y||^2} dy \,\phi(t) dt,$$

and by Fubini theorem it is equal to

$$\frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \left\langle f, e^{ixy} \right\rangle e^{-a^2 ||y||^2} \int_{\mathbb{R}^n} e^{-ity} \phi(t) dt \, dy. \tag{4}$$

Note that, since $\phi \in S$ it follows that

$$e^{-a^2||y||^2}\int_{\mathbb{R}^n}e^{-ity}\phi(t)dt\in\mathcal{S}.$$

Thus, as a consequence of [4, Theorem 2.1], we have that (4) is equal to

$$\left\langle f, \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ixy} e^{-a^2 ||y||^2} \int_{\mathbb{R}^n} e^{-ity} \phi(t) dt \, dy \right\rangle,$$

2330

which, making use again of Fubini theorem, is equal to

$$\left\langle f, \frac{1}{\left(2\pi\right)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{ixy} e^{-ity} e^{-a^2 ||y||^2} dy \,\phi(t) dt \right\rangle.$$
(5)

Now, observe that by (1) we have

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{i(x-t)y} e^{-a^2y^2} dy = \frac{1}{2\sqrt{\pi a}\sqrt{2\pi \frac{1}{2a^2}}} \int_{-\infty}^{+\infty} e^{i(x-t)y} e^{-\frac{y^2}{2a^2}} dy$$
$$= \frac{1}{2\sqrt{\pi a}} e^{-\frac{1}{2a^2}\frac{(x-t)^2}{2}} = \frac{1}{2\sqrt{\pi a}} e^{-\frac{(x-t)^2}{4a^2}},$$

and thus we get that

$$\frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i(x-t)y} e^{-a^2 ||y||^2} dy = \frac{1}{2^n \pi^{n/2} a^n} e^{-\frac{||x-t||^2}{4a^2}}.$$
(6)

Therefore, (5) is equal to

$$\left\langle f, \frac{1}{2^n \pi^{\frac{n}{2}} a^n} \int_{\mathbb{R}^n} \phi(t) e^{\frac{-\|x-t\|^2}{4a^2}} dt \right\rangle.$$

$$\tag{7}$$

Now, performing the change of variables t = x + 2aw, (7) becomes

$$\left\langle f, \frac{1}{\pi^{\frac{n}{2}}} \int_{\mathbb{R}^n} \phi(x + 2aw) e^{-\|w\|^2} dw \right\rangle,\tag{8}$$

from which, since $f \in S'_k$ by Lemma 2.1, the equality (3) follows.

As it is well known, the Dirac distribution δ_u at $u \in \mathbb{R}^n$ given by $\langle \delta_u, \phi \rangle = \phi(u)$, for all $\phi \in S_k$, is a member in S'_k . As it is usual we denote $\delta = \delta_0$. Also, for all $m \in \mathbb{N}^n$, $\partial^m \delta_u$ at $u \in \mathbb{R}^n$ given by $\langle \partial^m \delta_u, \phi \rangle = \langle \delta_u, (-1)^{|m|} \partial^m \phi \rangle = (-1)^{|m|} \partial^m \phi(u)$, for all $\phi \in S_k$, is a member in S'_k .

Now, one obtains the next result

Corollary 2.3. For all $\phi \in S$, $u \in \mathbb{R}^n$ and all $m \in \mathbb{N}^n$, one has

$$\left\langle \partial^m \delta_u, \phi \right\rangle = \lim_{a \to 0^+} \frac{(-1)^{|m|}}{2^n \pi^{n/2} a^n} \int_{\mathbb{R}^n} e^{-\frac{|u-t||^2}{4a^2}} \partial^m \phi(t) dt,$$

and

$$\partial^m \phi(u) = \lim_{a \to 0^+} \frac{1}{2^n \pi^{n/2} a^n} \int_{\mathbb{R}^n} e^{-\frac{\|u-t\|^2}{4a^2}} \partial^m \phi(t) dt.$$

Proof.

Since $\langle \delta_u, e^{ixy} \rangle = e^{iuy}$, $y \in \mathbb{R}^n$, and according to the above inversion formula, for any $\phi \in S$, one has

$$<\partial^{m}\delta_{u},\phi>=\lim_{a\to0^{+}}\frac{(-1)^{|m|}}{(2\pi)^{n}}\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}e^{i(u-t)y}e^{-a^{2}||y||^{2}}dy\,\partial^{m}\phi(t)dt.$$
(9)

Now, using (6), formula (9) becomes

$$\left\langle \partial^m \delta_u, \phi \right\rangle = (-1)^{|m|} \partial^m \phi(u) = \lim_{a \to 0^+} \frac{(-1)^{|m|}}{2^n \pi^{n/2} a^n} \int_{\mathbb{R}^n} e^{-\frac{||u-t||^2}{4a^2}} \partial^m \phi(t) dt.$$

Also, using Theorem 2.2 above and [6, Theorem 2.1] one has

Corollary 2.4. Set $f \in S'_{k'}$, $k \in \mathbb{Z}$, k < 0. Then

$$\lim_{Y \to +\infty} \int_{\mathbb{R}^n} \int_{C(0;Y)} (\mathcal{F}f)(y) e^{-ity} dy \phi(t) dt$$
$$= \lim_{a \to 0^+} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} (\mathcal{F}f)(y) e^{-ity} e^{-a^2 ||y||^2} dy \phi(t) dt,$$

for all $\phi \in S$ such that $\phi(t) = \phi_1(t_1) \cdots \phi_n(t_n)$, $t = (t_1, \dots, t_n) \in \mathbb{R}^n$, where $\phi_1, \dots, \phi_n \in S(\mathbb{R})$.

The next result is a variant of [5, Corollary 2.1] concerning the solution of convolution equations.

Corollary 2.5. Set $h, g \in S'_{k'}$, $k \in \mathbb{Z}$, k < 0. Assume that $\mathcal{F}h$ has no zeros in \mathbb{R}^n , suppose that $\mathcal{F}h \in C^{-2k+2n}(\mathbb{R}^n)$ and there exists a polynomial P such that

$$\left|\partial^m \left(\frac{1}{(\mathcal{F}h)(y)}\right)\right| \le P(|y|), \ \forall y \in \mathbb{R}^n, \ \forall m \in \mathbb{N}^n, \ |m| \le -2k+2n$$

Then, the convolution equation

$$h * f = g, \tag{10}$$

has a unique solution $f \in S'_k$ and this solution has the next representation over members in S

$$\langle f, \phi \rangle = \lim_{a \to 0^+} \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{(\mathcal{F}g)(y)}{(\mathcal{F}h)(y)} e^{-ity} e^{-a^2 ||y||^2} dy \,\phi(t) dt, \quad \phi \in \mathcal{S}.$$

$$\tag{11}$$

Proof.

In fact, from the hypothesis of this Corollary and using [5, Theorem 2.1] it follows that there exists an element $w \in S'_k$ such that $\mathcal{F}w = \frac{1}{\mathcal{F}h}$. Therefore, using [4, Proposition 4.1] one has

$$\mathcal{F}[h * w] = \mathcal{F}h \cdot \frac{1}{\mathcal{F}h} = 1 = \mathcal{F}\delta.$$

So, using [4, Corollary 3.1], it follows that $h * w = \delta$. Now, the member of S'_{k} given by f = w * g is a solution of equation (10). In fact,

$$h * (w * g) = (h * w) * g = \delta * g = g.$$

Note that if $f_1, f_2 \in S'_k$ satisfy $h * f_1 = g$ and $h * f_2 = g$ then $f_1 = f_2$. Indeed, taking Fourier transform it follows that

$$\mathcal{F}f_1 = \mathcal{F}f_2 = \frac{\mathcal{F}g}{\mathcal{F}h'},$$

and, again by [5, Corollary 3.1], we have $f_1 = f_2$. Also, since $\mathcal{F}[h * f] = \mathcal{F}g$ and using again [5, Proposition 4.1] one obtain that

$$\mathcal{F}f = \frac{\mathcal{F}g}{\mathcal{F}h'}$$

which by Theorem 2.2 above allows us to the representation over S given by (11).

Remark (invertible elements of S'_{k}).

Observe that the distribution $w = h^{-1}$ in S'_k , $k \in \mathbb{Z}$, k < 0, which satisfies the equation $h * w = \delta$, is the inverse by convolution of the member $h \in S'_k$. So, when the distributional Fourier transform of h has no zeros in \mathbb{R}^n , with $\mathcal{F}h \in C^{-2k+2n}(\mathbb{R}^n)$ and it satisfies the inequality

$$\left|\partial^m \left(\frac{1}{(\mathcal{F}h)(y)}\right)\right| \le P(|y|), \ \forall y \in \mathbb{R}^n, \ m \in \mathbb{N}^n, \ |m| \le -2k + 2n,$$

for some polynomial *P*, this distribution h^{-1} has the next representation over *S*

$$< h^{-1}, \phi >= \lim_{a \to 0^+} \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{1}{(\mathcal{F}h)(y)} e^{-ity} e^{-a^2 ||y||^2} dy \phi(t) dt, \quad \phi \in \mathcal{S}.$$

FINAL OBSERVATION

As in [8] and [11], we consider linear partial differential equations with constant coefficients of the form

$$P(\partial) u = v, \tag{1}$$

where as it is usual *P* is a polynomial in \mathbb{R}^n (with complex coefficients) and *P*(∂) denotes the corresponding polynomial differential operator given by

$$\sum_{|\alpha|\leq m}a_{\alpha}\partial^{\alpha}, \quad \alpha\in\mathbb{N}^{n}, \quad a_{\alpha}\in\mathbb{C}, \quad m\in\mathbb{N},$$

and *v* is an element of $S'_{k'}$ $k \in \mathbb{Z}$, k < 0.

Note that, since

$$P(\partial)u = (P(\partial)\delta) * u$$

equation (1) can be written as a convolution equation.

Having into account that

$$(\mathcal{F}[P(\partial)\delta])(y) = P(-iy), y \in \mathbb{R}^n,$$

and using Corollary 2.5 above, one has that when *P* has no zeros of type αi , where $\alpha \in \mathbb{R}^n$, then there exists a unique solution *u* in S'_k of (1).

Also, one obtains the next representation over S of the solution u of equation (1):

$$< u, \phi > = \lim_{a \to 0^+} \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{(\mathcal{F}v)(y)}{P(-iy)} e^{-ity} e^{-a^2 ||y||^2} dy \phi(t) dt,$$

for all $\phi \in S$.

Furthermore, observe that if in (1) we set $v = \delta$, then one obtains a representation over S of the fundamental solution *E* of equation (1). In fact, having into account that $\mathcal{F}\delta = 1$, then one has

$$\langle E, \phi \rangle = \lim_{a \to 0^+} \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{1}{P(-iy)} e^{-ity} e^{-a^2 ||y||^2} dy \phi(t) dt,$$

for all $\phi \in S$.

Observe that this fundamental solution *E* is the inverse by convolution of the member *h* of S'_k given by $h = P(\partial)\delta$.

References

- [1] S. Abdullah. Representation of the Fourier transform of distributions in $K'_{v,k'}k < 0$. *Filomat*, 30(6):1519–1524, 2016.
- [2] W. Fleming. *Functions of several variables*. Springer-Verlag, New York-Heidelberg, second edition, 1977. Undergraduate Texts in Mathematics.
- [3] B. J. González and E. R. Negrín. Convolution over the spaces S'_k . J. Math. Anal. Appl., 190(3):829–843, 1995.
- [4] B. J. González and E. R. Negrín. Fourier transform over the spaces S'_k . J. Math. Anal. Appl., 194(3):780–798, 1995.
- [5] B. J. González and E. R. Negrín. On the structure of invertible elements of the convolution algebra S'_k . J. Math. Anal. Appl., 195(2):506–516, 1995.
- [6] N. Hayek, B. J. González, and E. R. Negrín. Distributional representation of a Fourier inversion formula. *Integral Transforms Spec. Funct.*, 16(1):21–28, 2005.
- [7] N. Hayek, H. M. Srivastava, B. J. González, and E. R. Negrín. A family of Wiener transforms associated with a pair of operators on Hilbert space. *Integral Transforms Spec. Funct.*, 24(1):1–8, 2013.
- [8] L. Hörmander. The analysis of linear partial differential operators. I. Springer Study Edition. Springer-Verlag, Berlin, second edition, 1990. Distribution theory and Fourier analysis.
- [9] J. Horváth. Topological vector spaces and distributions. Vol. I. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966.
- [10] S. Lang. Analysis I. Addison-Wesley Pub. Co., Massachusetts, 1974.
- [11] L. Schwartz. Some Applications of the Theory of Distributions. Lectures on modern mathematics. Vol. I. Edited by T. L. Saaty. John Wiley & Sons, Inc., New York-London, 1963.
- [12] L. Schwartz. Théorie des distributions. Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée. Hermann, Paris, 1978.
- [13] H. M. Srivastava, B. J. González, and E. R. Negrín. A characterization of the second quantization by using the Segal duality transform. Appl. Math. Comput., 219(11):6236–6240, 2013.
- [14] H. M. Srivastava, B. J. González, and E. R. Negrín. New L^p-boundedness properties for the Kontorovich-Lebedev and Mehler-Fock transforms. *Integral Transforms Spec. Funct.*, 27(10):835–845, 2016.
- [15] H. M. Srivastava, B. J. González, and E. R. Negrín. A new class of Abelian theorems for the Mehler-Fock transforms. Russ. J. Math. Phys., 24(1):124–126, 2017; see also Errata, Russ. J. Math. Phys., 24(2):278–278, 2017.
- [16] K. V. Zhukovsky and H. M. Srivastava. Analytical solutions for heat diffusion beyond Fourier law. Appl. Math. Comput., 293:423–437, 2017.