Note on the Uniqueness Holomorphic Function on the Unit Disk

Tuğba Akyel ${ }^{\text {a }}$, Tahir Aliyev Azeroğlu ${ }^{\text {b }}$
${ }^{a}$ Department of Computer Engineering, Maltepe University, Maltepe - Istanbul 34857, Turkey
${ }^{b}$ Department of Mathematics, Gebze Technical University, Gebze-Kocaeli 41400, Turkey

Abstract

Let f be an holomorphic function the unit disk to itself. We provide conditions on the local behavior of f along boundary near a finite set of the boundary points that requires f to be a finite Blaschke product.

1. Introduction

In 1994, Daniel M. Burns and Steven G. Krantz ([1]) proved that if the holomorphic function $f: D \rightarrow D$ satisfies the condition

$$
\begin{equation*}
f(z)=z+O\left((z-1)^{4}\right) \quad z \rightarrow 1, z \in D \tag{1.1}
\end{equation*}
$$

then $f(z) \equiv z$ on the unit disk.
The example

$$
f(z)=z+\frac{1}{10}(z-1)^{3}
$$

shows that the exponent 4 in (1.1) can not be replaced by 3. In fact, the proof shows that $O\left((z-1)^{4}\right)$ can be replaced by $o\left((z-1)^{3}\right)$.

In 2001, Dov Chelst ([2]), in turn, established the following generalization of this result.
Theorem 1.1. Let $f: D \rightarrow D$ be a holomorphic function from the disk to itself. In addition, let $\phi: D \rightarrow D$ be a finite Blaschke product which equals $\tau \in \partial D$ on a finite set $A_{f} \subset \partial D$. If
(i) for a given $\gamma_{0} \in A_{f}$,

$$
f(z)=\phi(z)+o\left(\left(z-\gamma_{0}\right)^{3}\right), \text { as } z \rightarrow \gamma_{0}
$$

(ii) for all $\gamma \in A_{f}-\left\{\gamma_{0}\right\}$,

$$
f(z)=\phi(z)+O\left((z-\gamma)^{k_{\gamma}}\right), \text { for some } k_{\gamma} \geq 2 \text { as } z \rightarrow \gamma,
$$

then $f(z) \equiv \phi(z)$ on the disk.

[^0]It was shown that the above condition $k_{\gamma} \geq 2$ can not be replaced by $k_{\gamma} \geq 1$.
In ([3]) and ([4]), this problem was generalized in the following aspects:
a) more general majorant was taken instead of the usual power majorant in (i) and (ii);
b) in (i) and (ii), the conditions $z \rightarrow \gamma$, which usually stated approaching from inside of the disk before, were taken as the behavior of the function f along the boundary.

In 2015, M.Mateljević proved Theorem 1 in ([5]), where instead of Blaschke product was taken inner function and in (i) and (ii), the behavior of the function f along the boundary was considered.

Recently similar problems were investigated in ([6]) and ([7]). For more detail literature and the other types of the results, we refer to ([8]), ([9]), ([5]), ([10]) and references therein.

In the present study, we refined the results in ([4]). In particular, from our proofs it is followed that $O(z-\gamma)^{k_{\gamma}}$ in Theorem 1.1 can be replaced by $o(z-\gamma)$.

We propose the following assertion for the proofs of our results.
(A) Let $u=u(z)$ be a positive harmonic function on the open disk $\mathbb{U}\left(z, r_{0}\right), r_{0}>0$. Suppose that for $\theta_{0} \in[0,2 \pi), \lim _{r \rightarrow r_{0}} u\left(r e^{i \theta_{0}}\right)=0$ is satisfied. Then

$$
\liminf _{r \rightarrow r_{0}} \frac{u\left(r e^{i \theta_{0}}\right)}{r_{0}-r}>0
$$

This assertion follows from Harnack inequality. For more general results and related estimates, see also ([11, Theorem 1.1]), ([12]), ([13]).
(B) Let the function u be a subharmonic function in the unit disk, E is the finite subset of the unit circle ∂D such that

$$
\limsup _{z \rightarrow \zeta, z \in D} u(z) \leq 0, \quad \forall \varsigma \in \partial D \backslash E
$$

and

$$
u(z)=o\left(|\varsigma-z|^{-1}\right) \text { as } z \rightarrow \varsigma \text { for each } \varsigma \in E,
$$

then $u(z) \leq 0$ for all $z \in D$.
The basic exposition for this version of Phragmen-Lindelöf Princible can be found in ([14, pp. 79-90]), ($[15$, pp. 176-186]) and ($[16$, Chapter 4 , section 8 and Chapter 5 , section 9$]$).

Let \mathfrak{M} be a class of functions $\mu:(0,+\infty) \rightarrow(0,+\infty)$ for each of which $\log \mu(x)$ is concave with respect to $\log x$. For each function $\mu \in \mathfrak{M}$ the limit

$$
\mu_{0}=\lim _{x \rightarrow 0} \frac{\log \mu(x)}{\log x}
$$

exists, and $-\infty<\mu_{0} \leq+\infty$. Here, the function $\mu \in \mathfrak{M}$ is called bilogaritmic concave majorant ([17]).
\mathfrak{N} be the class of sets with zero inner capacity ([18, p.210]).

2. Main Results

Let $d(z, A)$ be the distance from the point z to the set A.
Theorem 2.1. Let $\phi: D \rightarrow D$ be a finite Blaschke product which equals $\tau \in \partial D$ on a finite set $A_{f} \subset \partial D$ and f $: D \rightarrow D$ be a holomorphic function that is continuous on $\bar{D} \cap\left\{z: d\left(z, A_{f}\right)<\delta_{0}\right\}$ for some $\delta_{0}, \mu^{1}, \mu^{2} \in \mathfrak{M}, \mu_{0}^{1}>3$, $\mu_{0}^{2}>1$. Suppose that the following conditions are satisfied
(i) for a given $\gamma_{0} \in A_{f}$

$$
f(z)=\phi(z)+O\left(\mu^{1}\left(\left|z-\gamma_{0}\right|\right)\right), z \in \partial D, z \rightarrow \gamma_{0}
$$

(ii) for all $\gamma \in A_{f} \backslash\left\{\gamma_{0}\right\}$,

$$
f(z)=\phi(z)+O\left(\mu^{2}(|z-\gamma|)\right), z \in \partial D, z \rightarrow \gamma
$$

Then $f(z) \equiv \phi(z)$ on D.
Following result is generalization of Theorem 2.1.
Theorem 2.2. Let $\phi: D \rightarrow D$ be a finite Blaschke product which equals $\tau \in \partial D$ on a finite set $A_{f} \subset \partial D$ and $f: D \rightarrow D$ be a holomorphic function, $Q \in \mathfrak{M}, \mu^{1}, \mu^{2} \in \mathfrak{M}, \mu_{0}^{1}>3, \mu_{0}^{2}>1$. Let the following conditions are satisfied (i) for a given $\gamma_{0} \in A_{f}$,

$$
\begin{equation*}
\limsup _{z \rightarrow \zeta, z \in D}|f(z)-\phi(z)|=O\left(\mu^{1}\left(\left|\zeta-\gamma_{0}\right|\right)\right), \zeta \in \partial D \backslash Q, \zeta \rightarrow \gamma_{0} \tag{2.1}
\end{equation*}
$$

(ii) for all $\gamma \in A_{f} \backslash\left\{\gamma_{0}\right\}$,

$$
\begin{equation*}
\limsup _{z \rightarrow \zeta, z \in D}|f(z)-\phi(z)|=O\left(\mu^{2}(|\zeta-\gamma|)\right), \zeta \in \partial D \backslash Q, \zeta \rightarrow \gamma \tag{2.2}
\end{equation*}
$$

Then $f(z) \equiv \phi(z)$ on D.
Proof. Let the assumptions of Theorem 2.1 are satisfied. By the condition (2.1), there exist a number $C_{1}>0$ and $\delta_{0} \in(0,1)$ such that

$$
\left.\limsup _{z \rightarrow \zeta, z \in D}|f(z)-\phi(z)|=C_{1} \mu^{1}\left(\left|\zeta-\gamma_{0}\right|\right)\right), \zeta \in \partial D \backslash Q,\left|\zeta-\gamma_{0}\right| \leq \delta_{0}
$$

Let us denote k and C_{2} as follows

$$
\begin{aligned}
& k:=\sup _{\left|z-\gamma_{0}\right|=\delta_{0}, z \in D}|f(z)-\phi(z)|, \\
& C_{2}:=\max \left\{\frac{k}{\mu^{1}\left(\delta_{0}\right)}, C_{1}\right\} .
\end{aligned}
$$

It can be easily seen that for all points of the set $\partial\left(D \cap U\left(\gamma_{0}, \delta_{0}\right)\right) \backslash Q$, the inequality

$$
\left.\limsup _{z \rightarrow \zeta, z \in D}|f(z)-\phi(z)|=C_{2} \mu^{1}\left(\left|\zeta-\gamma_{0}\right|\right)\right)
$$

is satisfied.
Applying Theorem 3 in ([17]) (see also ([19]), ([20])) to the set $D \cap U\left(\gamma_{0}, \delta_{0}\right)$ and to the function $f(z)-\phi(z)$, we get

$$
\begin{equation*}
\left.\mid f(z)-\phi(z)) \mid \leq C_{2} \mu^{1}\left(\left|z-\gamma_{0}\right|\right)\right), \forall z \in D \cap U\left(\gamma_{0}, \delta_{0}\right) \tag{2.3}
\end{equation*}
$$

From $\mu_{0}^{1}>3$ there are some positive constants ε and $\sigma<\min \left(\delta_{0}, 1\right)$ such that

$$
\frac{\log \mu^{1}(x)}{\log x} \geq 3+\varepsilon \quad \forall x \in(0, \sigma)
$$

and

$$
\log \mu^{1}(x) \leq(3+\varepsilon) \log x, \quad \forall x \in(0, \sigma)
$$

In other words,

$$
\begin{equation*}
\mu^{1}(x) \leq x^{3+\varepsilon}, \quad \forall x \in(0, \sigma) \tag{2.4}
\end{equation*}
$$

From the inequalities (2.3) and (2.4) we take the inequality

$$
\begin{equation*}
\mid f(z)-\phi(z))\left|\leq C_{2}\right| z-\left.\gamma_{0}\right|^{3+\varepsilon}, \forall z \in D \cap U\left(\gamma_{0}, \sigma\right) \tag{2.5}
\end{equation*}
$$

Similarly, for any point $\gamma \in A_{f} \backslash\left\{\gamma_{0}\right\}$, from the condition $\mu_{0}^{2}>1$ and (2.2) we have

$$
\begin{equation*}
\mid f(z)-\phi(z))\left|\leq C_{3}\right| z-\left.\gamma\right|^{1+\varepsilon}, \forall z \in D \cap U\left(\gamma, \sigma_{1}\right) \tag{2.6}
\end{equation*}
$$

with some constants C_{3} and σ_{1}.
Consider the following harmonic function in the unit disk

$$
\psi(z)=\mathfrak{R}\left(\frac{1+f(z)}{1-f(z)}\right)-\mathfrak{R}\left(\frac{1+\phi(z)}{1-\phi(z)}\right)
$$

Since a finite Blaschke Product ϕ is holomorphic on \bar{D} and and $|\phi(z)|=1$ on ∂D, we have the second term of ψ is zero on $\partial D \backslash A_{f}$ and also the first term of ψ is nonnegative. Consequently, after taking limitinfs to any boundary point in ($\partial D \backslash Q) \backslash A_{f}$, one always reaches the nonnegative value (infinity is also possible).

Now, let us examine the behaviour of the function ψ at points of set A_{f}. Let us represent $\psi(z)$ in the form

$$
\psi(z)=\Re\left(\frac{2(f(z)-\phi(z))}{(1-f(z))(1-\phi(z))}\right)
$$

Now, let us take any point $\gamma \in A_{f} \backslash\left\{\gamma_{0}\right\}$. It can be easily seen that for any $z,|z|=1,\left|\phi^{\prime}(z)\right|>0$. If $\left|\phi^{\prime}(\gamma)\right|=c_{\gamma}$, then there exists a constant $\sigma_{\gamma} \in\left(0, \sigma_{1}\right)$ such that

$$
\begin{equation*}
|1-\phi(z)| \geq \frac{c_{\gamma}}{2}|\gamma-z|, \quad \forall z \in D \cap \mathbb{U}\left(\gamma, \sigma_{\gamma}\right) \tag{2.7}
\end{equation*}
$$

From (2.6)

$$
\lim _{z \rightarrow \gamma} \frac{1-f(z)}{\gamma-z}=c_{\gamma}
$$

and there exists $\sigma_{\gamma}^{\prime} \in\left(0, \sigma_{\gamma}\right)$ such that

$$
\begin{equation*}
|1-f(z)| \geq \frac{c_{\gamma}}{2}|\gamma-z|, \forall z \in D \cap \mathbb{U}\left(\gamma, \sigma_{\gamma}^{\prime}\right) \tag{2.8}
\end{equation*}
$$

Then, from (2.6) , (2.7) and (2.8)

$$
\left|\frac{2(f(z)-\phi(z))}{(1-f(z))(1-\phi(z))}\right| \leq \frac{8 C_{3}}{c_{\gamma}^{2}} \frac{1}{|\gamma-z|^{1-\varepsilon}} \quad \forall z \in D \cap \mathbb{U}\left(\gamma, \sigma_{\gamma}^{\prime}\right)
$$

Thus, the function $\psi(z)$ satisfies the following relation

$$
\begin{equation*}
\lim _{z \rightarrow \gamma}|z-\gamma| \psi(z)=0 \tag{2.9}
\end{equation*}
$$

on every point $\gamma \in A_{f} \backslash\left\{\gamma_{0}\right\}$.
Similarly, for the point γ_{0}, using (2.5), we have

$$
\begin{equation*}
|\psi(z)| \leq C_{4}\left|z-\gamma_{0}\right|^{1+\varepsilon} \quad \forall z \in D \cap \mathbb{U}\left(\gamma_{0}, \sigma_{\gamma}^{\prime}\right) \tag{2.10}
\end{equation*}
$$

for some positive constants C_{4} and σ^{\prime}. In particular,

$$
\begin{equation*}
\lim _{z \rightarrow \gamma_{0}} \psi(z)=0 \tag{2.11}
\end{equation*}
$$

From also here

$$
\lim _{z \rightarrow \gamma_{0}}\left|z-\gamma_{0}\right| \psi(z)=0
$$

So, the function $\psi(z)$ satisfies the relation (2.9) on every point of finite set A_{f}. From the assertion (B) we have either $\psi(z)>0, z \in D$ or $\psi(z) \equiv 0$. If $\psi(z) \equiv 0$, then the proof is finished. Assume that the relation $\psi(z) \equiv 0$ is not satisfied. If we take $z=r \gamma_{0}$ in (2.10), we obtain

$$
\begin{equation*}
\lim _{r \rightarrow 1} \frac{\psi\left(r \gamma_{0}\right)}{1-r}=0 \tag{2.12}
\end{equation*}
$$

If ψ is not constant, (2.11) and (2.12) contradict with assertion (A) statement. Hence, $\psi \equiv 0$. This implies that $f(z)=\phi(z)$ on the disk.

Theorem 2.2 and Theorem 2.3 generalize the results in ([4]), where instead of the condition $\mu_{0}^{2}>1$ were taken $\mu_{0}^{2}>2$. Moreover, the part of the proof of Theorem 2.3 which is after (2.4) shows that $O(z-\gamma)^{k_{\gamma}}, k_{\gamma} \geq 2$ in Theorem 1.1 can be replaced by $o(z-\gamma)$.

References

[1] D.M. Burns and S.G. Krantz, Rigidity of holomorphic mappings and a new Schwarz Lemma at the boundary, J. Amer. Math. Soc. 7 (1994), 661-676 .
[2] D. Chelts, A generalized Schwarz lemma at the boundary, Proceedings of the American Math. Society, 129 (2001), No.11, 3275-3278 .
[3] T. Aliyev and B.N. Örnek, A generalized Schwarz lemma on the boundary, Ukrainian Mathematics Congress-2001, National Akad. Nauk Ukraini, Inst. Mat. Kiev, (2003), 5-9.
[4] T. Aliyev Azeroğlu, B. N. Örnek, A generalized Schwartz lemma at the boundary, Complex Analysis and Potential theory, World Sci. Publ. Hackensack, NJ, (2007), 125-130.
[5] M. Mateljević, Note on Rigidity of Holomorphic Mappings \& Schwarz and Jack Lemma (in preparation), ResearchGate, Sep 2015.
[6] B. N. Örnek and T. Akyel, Representation with majorant of the Schwarz lemma at the boundary, Publ. Inst. Math., Nouv. Sér., 101(115) (2017), 191-196.
[7] B. N. Örnek and T. Akyel, Uniqueness part of the Schwarz lemma at the boundary, Filomat, In press.
[8] H.P. Boas, "Julius and Julia: mastering the art of the Schwarz lemma", Amer. Math. Monthly, 117:9 (2010), 770-785.
[9] V. N. Dubinin, Boundary values of the Schwarzian derivative of a regular function, Mat. Sb., 2011, Volume 202, Number 5, 29-44.
[10] T. Aliyev Azeroğlu and B. N. Örnek, A refined Schwarz inequality on the boundary, Complex Variables and Elliptic Equations, 58 (2013), 571-577.
[11] M. Mateljević, The Lower Bound for the Modulus of the Derivatives and Jacobian of Harmonic Injective Mappings, Filomat 29:2 (2015), 221-244.
[12] M. Mateljević, Distortion of harmonic functions and harmonic quasiconformal quasi-isometry, Revue Roum. Math. Pures Appl. Vol. 51 (2006) 56, 711-722.
[13] M. Mateljević, Ahlfors-Schwarz lemma and curvature, Kragujevac J. Math. 25 (2003), 155-164.
[14] I.I. Privalov, Subharmonic Functions, 1st Ed., Moscow-Leningrad, 1937.
[15] E.C. Titchmarsh, The theory of Functions, 2 nd Ed., Oxford University Press, Fair Lawn, New Jersey, 1939.
[16] M. Heins, Selected Topics in the Classical Theory of Functions of a Complex Variable, Holt, Rinehart, and Winston, New York, 1962.
[17] P. M. Tamrazov, Holomorphic functions and mappings in the contour-solid problem, Dokl. Akad. Nauk SSSR 279 (1984), No.1, 38-43 .
[18] W.K. Hayman and P.B. Kennedy, Subharmonic Function, Vol.1, Academic Press, London, 1976.
[19] P.M. Tamrazov and T.G. Aliyev, A contour-solid problem for meromorphic functions, taking into account zeros and nonunivalence, Dokl. Akad. Nauk SSSR 228 (1986), No. 2.
[20] T.G. Aliyev and P.M. Tamrazov, A contour-solid problem for meromorphic functions, taking into account nonunivalence, Ukrainian Math. Zh. 39 (1987), 683-690.

[^0]: 2010 Mathematics Subject Classification. Primary 30C80; Secondary 32A10
 Keywords. Holomorphic function, Harnack inequality, Phragmen-Lindelöf princible.
 Received: 22 May 2017; Accepted: 31 October 2017
 Communicated by Miodrag Mateljević
 Email address: aliyev@gtu.edu.tr (Tahir Aliyev Azeroğlu)

