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Abstract. In this article, we consider two proper double splittings satisfying certain conditions, of a
semi-monotone rectangular matrix A and derive new comparison results for the spectral radii of the
corresponding iteration matrices. These comparison results are useful to analyse the rate of convergence of
the iterative methods (formulated from the double splittings) for solving rectangular linear system Ax = b.

1. Introduction

Consider the following linear system,

Ax = b, (1)

where A ∈ Rn×n is a nonsingular matrix, b ∈ Rn×1 is a given vector and x ∈ Rn×1 is an unknown vector. In
order to solve (1), iterative methods of the form

xi+1 = Hxi + c, i = 1, 2, 3... (2)

are often employed. The iterative formula (2) is obtained by splitting A into the form A = U − V, where U
is nonsingular and then setting H = U−1V and c = U−1b. Such a splitting is called a single splitting (see,
[19]) of A and the matrix H is called an iteration matrix [18]. It is well known (see chapter 7, [6]) that the
iterative method (2) converges to the unique solution of (1) (irrespective of the choice of initial vector x◦)
if and only if ρ(H) < 1, where ρ(H) denotes the spectral radius of H, viz., the maximum of the moduli of
the eigenvalues of H. Note that standard iterative methods like the Jacobi, Gauss-Seidel and successive
over-relaxation methods arise from different choices of real square matrices U and V. A decomposition
A = U − V of A ∈ Rn×n is called a regular splitting if U−1 exists, U−1

≥ 0 and V ≥ 0, where the matrix
B ≥ 0 means all the entries of B are nonnegative. The notion of regular splitting was proposed by Varga
[18] and it was shown that ρ(H) < 1 if and only if A is monotone. Here, matrix A monotone [7] means A−1

exists and A−1
≥ 0. A decomposition A = U − V of A ∈ Rn×n is called a weak regular splitting if U−1

≥ 0
and U−1V ≥ 0. This was proposed by Ortega and Rheinboldt [14] and again it was shown that ρ(H) < 1
if and only if A is monotone. These results show the importance of monotone matrices and the spectral
radius ρ(H) of an iteration matrix, in the study of convergence of the iterative methods of form (2). It is well
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known that the convergence of the iterative method (2) is faster whenever ρ(H) is smaller and ρ(H) < 1. This
leads to the problem of comparison between the spectral radii of the iteration matrices of corresponding
iterative methods which are derived from two different splittings A = U1 − V1 and A = U2 − V2 of the
same matrix A. Results related to this problem are called comparison results for splittings of matrices. So
far, various comparison theorems for different kinds of single splittings of matrices have been derived by
several authors. For details of these results one could refer to ([3] to [6], [8], [16], [18], [20] and [21]).

Berman and Plemmons [4] then extended the notion of splitting to rectangular matrices and called it
as a proper splitting. A decomposition A = U − V of A ∈ Rm×n is called a proper splitting if R(A) = R(U)
andN(A) = N(U), where R(A) andN(A) denote the range space of A and the null space of A, respectively.
Analogous to the invertible case, with such a splitting one associates an iterative sequence xi+1 = Hxi + c,
where (this time) H = U†V (again) called iteration matrix, c = U†b and U† denotes the Moore-Penrose
inverse of U (see next section for definition). Once again it is well known that this sequence converges to
A†b, the least squares solution of minimum norm, of the system Ax = b (irrespective of the initial vector x◦)
if and only if ρ(H) < 1. For details, refer to [6].

Recently, Jena et al. [10] extended the notion of regular and weak regular splittings to rectangular
matrices and the respective definitions are given next. A decomposition A = U − V of A ∈ Rm×n is called a
proper regular splitting if it is proper splitting such that U† ≥ 0 and V ≥ 0. It is called proper weak regular
splitting if it is proper splitting such that U† ≥ 0 and U†V ≥ 0. Note that Berman and Plemmons [4] proved
a convergence theorem for these splittings without specifying the types of matrix decomposition. A matrix
A ∈ Rm×n is called semi-monotone if A† ≥ 0. The authors of [10] have considered proper regular splitting of
semi monotone matrix A and obtained some comparison results.

Now, we turn our focus on to the comparison results for double splittings that are available in the
literature. A decomposition A = P − R + S, where P is nonsingular, is called a double splitting of A ∈ Rn×n.
This notion was introduced by Woźnicki [19]. With such a splitting, the following iterative scheme was
formulated for solving (1):

xi+1 = P−1Rxi
− P−1Sxi−1 + P−lb, i = 1, 2, 3... (3)

Following the idea of Golub and Varga [9] , Woźnicki wrote equation (3) in the following equivalent form:(
xi+1

xi

)
=

(
P−1R −P−1S

I 0

) (
xi

xi−1

)
+

(
P−1b

0

)
,

where I is the identity matrix. Then, it was shown that the iterative method (3) converges to the unique
solution of (1) for all initial vectors x0 , x1 if and only if the spectral radius of the iteration matrix

W =

(
P−1R −P−1S

I 0

)
is less than one, that is p(W) < 1.

Based on this idea, in recent years, several comparison theorems have been proved for double splittings
of matrices. We briefly review few of them here. First, let us recall the definitions of regular and weak regular
double splittings. A decomposition A = P − R + S is called regular double splitting if P−1

≥ 0, R ≥ 0 and
−S ≥ 0; it is called weak regular double splitting if P−1

≥ 0, P−1R ≥ 0 and −P−1S ≥ 0 [15]. Shen and Huang
[15] have considered regular and weak regular double splittings of a monotone matrix or Hermitian positive
definite matrix and obtained some comparison theorems. Miao and Zheng [12] have obtained comparison
theorem for the spectral radii of matrices arising from double splitting of different monotone matrices. Song
and Song [17] have studied convergence and comparison theorems for nonnegative double splittings of
a real square nonsingular matrices. Li and Wu [11] have obtained some comparison theorems for double
splittings of a matrix. Jena et al. [10] and Mishra [13] have introduced the notions of double proper regular
splittings and double proper weak regular splittings and derived some comparison theorems. Recently,
Alekha kumar and Mishra [1] have considered proper nonnegative double splittings of nonnegative matrix
and derived certain comparison theorems.
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The main need to study theory of double splittings is due to the fact that some times we cannot ensure
the convergence of single splittings using the known results. This problem can be partially settled by
studying convergence theory of double splittings. It is important to note that Theorem 2.8 which says
that convergent double splitting is also convergent single splitting. Study of convergence theory of proper
double splittings further extends the case of double splittings for nonsingular matrix introduced by Woźnicki
[19]. Standard iterative methods like Jacobi, Gauss-Seidel and SOR etc. can also be obtained by choosing
particular matrices in the double splitting of A, and is shown in Woźnicki [19].

In this article we generalize the comparison results of Shen and Huang [15] from square nonsingular
matrices to rectangular matrices and from classical inverses to Moore-Penrose inverses. Infact, we consider
two double splittings A = P1−R1 + S1 and A = P2−R2 + S2 of a semi-monotone matrix A ∈ Rm×n and derive
two comparison theorems for the spectral radii of the corresponding iteration matrices. In section 2, we
introduce notations and preliminary results. We present main results in section 3.

2. Notations, Definitions and Preliminaries

In this section, we fix notations and collect basic definitions and preliminary results which will be used
in the sequel. Let Rm×n denote the set of all real matrices with m rows and n columns. For A ∈ Rm×n, the
transpose of A is denoted by At; and the matrix X ∈ Rn×m satisfying AXA = A, XAX = X, (AX)t = AX and
(XA)t = XA is called the Moore-Penrose inverse of A. It always exists and unique, and is denoted by A†.
If A is invertible then A† = A−1. Let L and M be complementary subspaces of a real Euclidean space Rn.
Then the projection of Rn on L along M is denoted by PL,M. If, in addition, L and M are orthogonal then
it is called an orthogonal projection and it is denoted simply by PL. The following well known properties
(see, [2]) of A†, will be used in this manuscript: R(At) = R(A†), N(At) = N(A†), AA† = PR(A), A†A = PR(At).
In particular, if x ∈ R(At) then x = A†Ax.

A matrix A ∈ Rm×n is nonnegative, if all the entries of A are nonnegative, this is denoted A ≥ 0. The
same notation and nomenclature are also used for vectors. For A,B ∈ Rm×n, we write B ≥ A if B − A ≥ 0.

We now present some results connecting nonnegativity of a matrix and its spectral radius.

Lemma 2.1. (Theorem 2.1.11, [6]) Let A ∈ Rn×n and A ≥ 0. Then αx ≤ Ax, x ≥ 0 ⇒ α ≤ ρ(A) and Ax ≤ βx,
x > 0⇒ ρ(A) ≤ β.

Theorem 2.2. (Theorem 3.16, [18]) Let B ∈ Rn×n and B ≥ 0. Then ρ(B) < 1 if and only if (I − B)−1 exists and
(I − B)−1 =

∑
∞

k=0 Bk
≥ 0.

The next theorem is a part of the Perron-Frobenius theorem.

Theorem 2.3. (Theorem 2.20, [18]) Let A ∈ Rn×n and A ≥ 0 . Then
(i) A has a nonnegative real eigenvalue equal to the spectral radius.
(ii) There exists a nonnegative real eigenvector for its spectral radius.
(iii) If A is irreducible there exists a positive real eigenvector for its spectral radius.

Lemma 2.4. (Lemma 2.2, [15]) Let A =

(
B C
I 0

)
≥ 0 and ρ(B + C) < 1. Then, ρ(A) < 1.

As we mentioned in the introduction, a decomposition A = U −V of A ∈ Rm×n is called a proper splitting if
R(A) = R(U) andN(A) = N(U). The next two results are on proper splittings. The first one was used in the
proof of Theorem 3 in [4]. However, its proof is easy.

Theorem 2.5. Let A = U − V be a proper splitting of A ∈ Rm×n. Then AA† = UU† and A†A = U†U.

Proof. Since AA† = PR(A) = PR(U) = UU†, we get AA† = UU†. Similarly other part can be proved.
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Theorem 2.6. ( Theorem 3, [4]) Let A = U − V be a proper splitting of A ∈ Rm×n such that U† ≥ 0 and U†V ≥ 0.
Then the following are equivalent:
(i) A† ≥ 0.
(ii) A†V ≥ 0.
(iii) ρ(U†V) < 1.

Note that, a proper splitting A = U−V of A ∈ Rm×n, satisfying the conditions U† ≥ 0 and U†V ≥ 0 is named
as proper weak regular splitting by Jena et al. [10].

We now turn to results on double splittings. For A ∈ Rm×n, a decomposition A = P − R + S is called
a double splittin1 of A. A double splitting A = P − R + S of A ∈ Rm×n is called a proper double splittin1 if
R(A) = R(P) andN(A) = N(P). Again, consider the following rectangular linear system

Ax = b, (4)

where A ∈ Rm×n (this time A need not be nonsingular), b ∈ Rm×1 is a given vector and x ∈ Rn×1 is an
unknown vector. Similar to the nonsingular case, if we use proper double splitting A = P − R + S to solve
(4), it leads to the following iterative scheme:

xk+1 = P†Rxk
− P†Sxk−1 + P†b, where k = 1, 2, ... (5)

Motivated by Woźnicki′s [19] idea, equation (5) can be written as(
xk+1

xk

)
=

(
P†R −P†S

I 0

) (
xk

xk−1

)
+

(
P†b
0

)
.

If we denote, Xk+1 =

(
xk+1

xk

)
, W =

(
P†R −P†S

I 0

)
, Xk =

(
xk

xk−1

)
and B =

(
P†b
0

)
, then we get

Xk+1 = WXk + B, k = 1, 2... (6)

Then, it can be shown that the iterative method (6) converges to to the unique least squares solution of
minimum norm, of (4) if and only if ρ(W) < 1.

Next, we introduce some subclasses of proper double splittings.

Definition 2.7. Let A ∈ Rm×n. A proper double splitting A = P − R + S is called
(i) regular proper double splitting if P† ≥ 0, R ≥ 0 and −S ≥ 0.
(ii) weak regular proper double splitting if P† ≥ 0, P†R ≥ 0 and −P†S ≥ 0.

Note that the authors of [10] called regular proper double splittings and weak regular proper double
splittings as double proper regular splittings and double proper weak regular splittings, respectively.
However, we feel that the present usage is more appropriate and hence we continue the same nomenclature
throughout this manuscript.

The next result gives the relation between the spectral radius of the iteration matrices associated with a
single splitting and a double splitting.

Theorem 2.8. (Theorem 4.3, [13] ) Let A = P − R + S be a weak regular proper double splitting of A ∈ Rm×n. Then
ρ(W) < 1 if and only if ρ(U†V) < 1, where U = P and V = R − S.

We conclude this section with a convergence theorem for a proper double splitting of a monotone matrix.

Theorem 2.9. (Theorem 3.6, [10] ) Let A ∈ Rm×n such that A† ≥ 0. Let A = P − R + S be a weak regular proper
double splitting. Then, ρ(W) < 1.



K. Appi Reddy, T. Kurmayya / Filomat 32:6 (2018), 2273–2281 2277

3. Main Results

In this section, the main results of this article are presented. These results extend the results of Shen and
Huang [15] from nonsingular matrices to rectangular matrices and from classical inverses to Moore-Penrose
inverses.

Let A ∈ Rm×n. Let A = P1 − R1 + S1 = P2 − R2 + S2 be two double proper splittings of A. Set

W1 =

(
P†1R1 −P†1S1

I 0

)
and W2 =

(
P†2R2 −P†2S2

I 0

)
.

The next result gives the comparison between ρ(W1) and ρ(W2). As mentioned earlier, this comparison
is useful to analyse the rate of convergence of the iterative methods formulated from these double splittings,
for solving linear system Ax = b.

Theorem 3.1. Let A ∈ Rm×n be such that A† ≥ 0. Let A = P1 − R1 + S1 be a regular proper double splitting such
that P1P†1 ≥ 0 and let A = P2 − R2 + S2 be a weak regular proper double splitting. If P†1 ≥ P†2 and any one of the
following conditions,
(i) P†1R1 ≥ P†2R2

(ii) P†1S1 ≥ P†2S2
holds, then ρ(W1) ≤ ρ(W2) < 1.

Proof. Since A = P1 − R1 + S1 is a regular proper double splitting of A, by Theorem 2.9, we get ρ(W1) < 1.
Similarly, ρ(W2) < 1. It remains to show that ρ(W1) ≤ ρ(W2).

Assume that ρ(W1) = 0. Then the conclusion follows, obviously. So, without loss of generality assume

that ρ(W1) , 0. Since A = P1−R1 +S1 is a regular proper double splitting, we have W1 =

(
P†1R1 −P†1S1

I 0

)
≥ 0.

Then, by the Perron-Frobenius theorem, there exists a vector x =

(
x1
x2

)
∈ R2n, x ≥ 0 and x , 0 such that

W1x = ρ(W1)x. This implies that

P†1R1x1 − P†1S1x2 = ρ(W1)x1. (7)
x1 = ρ(W1)x2. (8)

Upon pre multiplying equation (7) by P1 and using equation (8), we get

[ρ(W1)]2P1x1 = ρ(W1)P1P†1R1x1 − P1P†1S1x1. (9)

We have P1P†1 ≥ 0, R1 ≥ 0, −S1 ≥ 0 and x1 ≥ 0. Therefore, by (9), [ρ(W1)]2P1x1 ≥ 0. Now, again from (9),

0 = [ρ(W1)]2P1x1 − ρ(W1)P1P†1R1x1 + P1P†1S1x1

≤ ρ(W1)P1x1 − ρ(W1)P1P†1R1x1 + ρ(W1)P1P†1S1x1

= ρ(W1)[P1x1 − P1P†1(R1 − S1)x1]
= ρ(W1)[P1x1 − R1x1 + S1x1]
= ρ(W1)Ax1,

where we have used the facts that 0 < ρ(W1) < 1 and R(R1 − S1) ⊆ R(P1). This proves that Ax1 ≥ 0.
Also, by using equations (7) and (8), we get

W2x−ρ(W1)x =

(
P†2R2x1 − P†2S2x2 − ρ(W1)x1

x1 − ρ(W1)x2

)
=

(
(P†2R2 − P†1R1)x1 + 1

ρ(W1) (P
†

1S1 − P†2S2)x1

0

)
=

(
∇

0

)
,
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where ∇ = (P†2R2 − P†1R1)x1 + 1
ρ(W1) (P

†

1S1 − P†2S2)x1.

Case(i) Let us assume that P†1R1 ≥ P†2R2. Since 0 < ρ(W1) < 1,we get (P†2R2 −P†1R1)x1 ≥
1

ρ(W1) (P
†

2R2 −P†1R1)x1.
Then

∇ =(P†2R2 − P†1R1)x1 +
1

ρ(W1)
(P†1S1 − P†2S2)x1

≥
1

ρ(W1)
(P†2R2 − P†1R1)x1 +

1
ρ(W1)

(P†1S1 − P†2S2)x1

=
1

ρ(W1)
[(P†2(R2 − S2)x1 − P†1(R1 − S1)x1]

=
1

ρ(W1)
[P†2P2 − P†2A − P†1P1 + P†1A]x1

=
1

ρ(W1)
(P†1 − P†2)Ax1, (10)

where we have used the fact that P†1P1 = P†2P2. Since Ax1 ≥ 0 and P†1 ≥ P†2, from the above inequality, we get

∇ ≥ 0. Then, W2x − ρ(W1)x =

(
∇

0

)
≥ 0. This implies that ρ(W1)x ≤ W2x. So, by Lemma 2.1, ρ(W1) ≤ ρ(W2).

This proves that ρ(W1) ≤ ρ(W2) < 1.
Case(ii) Assume that P†1S1 ≥ P†2S2. Since 0 < ρ(W1) < 1 and Ax1 ≥ 0, again we get

∇ =(P†2R2 − P†1R1)x1 +
1

ρ(W1)
(P†1S1 − P†2S2)x1

≥ (P†2R2 − P†1R1)x1 + (P†1S1 − P†2S2)x1

= (P†1 − P†2)Ax1 ≥ 0.

This implies that W2x − ρ(W1)x =

(
∇

0

)
≥ 0. So, again by Lemma 2.1, we get ρ(W1) ≤ ρ(W2). This proves that

ρ(W1) ≤ ρ(W2) < 1.

The following example shows that the converse of Theorem 3.1 is not true.

Example 3.2. Let A =

(
1 1 0
0 0 1

)
. Let P1 =

(
2 2 0
0 0 2

)
, R1 =

(
1 0 0
0 0 1

)
, S1 =

(
0 −1 0
0 0 0

)
, P2 =

(
2 2 0
0 0 1

)
,

R2 =

(
0 1 0
0 0 0

)
and S2 =

(
−1 0 0
0 0 0

)
. Then P†1 = 1

4

1 0
1 0
0 2

 , P†1R1 = 1
4

1 0 0
1 0 0
0 0 2

 , P†1S1 = 1
4

0 −1 0
0 −1 0
0 0 0

 ,
P†2 = 1

4

1 0
1 0
0 4

 , P†2R2 = 1
4

0 1 0
0 1 0
0 0 0

 and P†2S2 = 1
2

−1 0 0
−1 0 0
0 0 0

. It is easy to verify that A = P1−R1 +S1 is a regular

proper double splitting and A = P2 − R2 + S2 is a weak regular proper double splitting. Also, 0.5000 = ρ(W1) ≤
ρ(W2) = 0.5000 < 1. However, the conditions P†1 ≥ P†2, P†1R1 ≥ P†2R2 and P†1S1 ≥ P†2S2 do not hold.

Corollary 3.3. (Theorem 3.1, [15]) Let A−1
≥ 0. Let A = P1−R1+S1 be a regular double splitting and A = P2−R2+S2

be a weak regular double splitting. If P−1
1 ≥ P−1

2 and any one of the following conditions,
(i) P−1

1 R1 ≥ P−1
2 R2

(ii) P−1
1 S1 ≥ P−1

2 S2

holds, then ρ(W1) ≤ ρ(W2) < 1, where W1 =

(
P−1

1 R1 −P−1
1 S1

I 0

)
and W2 =

(
P−1

2 R2 −P−1
2 S2

I 0

)
.



K. Appi Reddy, T. Kurmayya / Filomat 32:6 (2018), 2273–2281 2279

Corollary 3.4. Let A−1
≥ 0. Let A = P1 − R1 + S1 be a regular double splitting and A = P2 − R2 + S2 be a weak

regular double splitting. If P−1
1 ≥ P−1

2 and R1 ≥ R2 hold, then ρ(W1) ≤ ρ(W2) < 1.

The conclusion of Theorem 3.1 can also be achieved by replacing a regular proper double splitting A =
P1 − R1 + S1 with a weak regular proper double splitting; and a weak regular proper double splitting
A = P2−R2 +S2 with a regular proper double splitting, in Theorem 3.1. The following is the exact statement
of this result.

Theorem 3.5. Let A ∈ Rm×n such that e = (1, 1, ..., 1)t
∈ R(A) and A† ≥ 0. Let A = P1 − R1 + S1 be a weak regular

proper double splitting and let A = P2 − R2 + S2 be a regular proper double splitting such that P†2 has no zero row
and P2P†2 ≥ 0. If P†1 ≥ P†2 and any one of the following conditions,
(i) P†1R1 ≥ P†2R2

(ii) P†1S1 ≥ P†2S2
holds, then ρ(W1) ≤ ρ(W2) < 1.

Proof. Since A = P1−R1+S1 is a weak regular proper double splitting of A, by Theorem 2.9, we get ρ(W1) < 1.
Similarly, ρ(W2) < 1. It remains to show that ρ(W1) ≤ ρ(W2).

Let J be an m × n matrix in which each entry is equal to 1. For given ε > 0, set Aε = A − εJ,

R1(ε) = R1 + 1
2εJ, S1(ε) = S1 −

1
2εJ, R2(ε) = R2 + 1

2εJ, S2(ε) = S2 −
1
2εJ, W1(ε) =

(
P†1R1(ε) −P†1S1(ε)

I 0

)
and

W2(ε) =

(
P†2R2(ε) −P†2S2(ε)

I 0

)
. We have, e = (1, 1, ..., 1)t

∈ R(A). So, there exists a matrix B ∈ Rn×n such that

J = AB. Then Aε = A− εJ = (A− εAB) = (A− εAA†AB) = (A− εAA† J) = A(I − εA† J).Now, choose the above
ε such that ρ(εA† J) < 1 andN(Aε) = N(A). Since ρ(εA† J) < 1, I − εA† J is invertible and hence R(Aε) = R(A).
Then Aε = A− εJ becomes a proper splitting and thus we can conclude that Aε = P1 −R1(ε) + S1(ε) is a weak
regular proper double splitting and Aε = P2 − R2(ε) + S2(ε) is a regular proper double splitting.

For the same ε, define X = (I − εA† J)−1A†, we shall prove that X is the Moore-Penrose inverse of Aε. Let
x ∈ R(At

ε). Then

XAεx = (I − εA† J)−1A†(A − εAA† J)x

= (I − εA† J)−1(A†Ax − εA†AA† Jx)

= (I − εA† J)−1(x − εA† Jx)
= x

and for y ∈ N(At
ε), we get

Xy = (I − εA† J)−1A†y = 0

Hence, by the definition, A†ε = X = (I − εA† J)−1A†. Also, A†ε = (I + εA† J + ε(A† J)2 + ...)A† ≥ 0. Then
ρ(P†2(R2(ε) − S2(ε))) < 1. So, by Lemma 2.4, ρ(W2(ε)) < 1.

Clearly, P†2R2(ε) > 0 and −P†2S2(ε) > 0. So, W2(ε) ≥ 0 and irreducible. Then, by the Perron-Frobenius

theorem, there exists a vector x(ε) =

(
x1(ε)
x2(ε)

)
∈ R2n, x(ε) > 0 such that W2(ε)x(ε) = ρ(W2(ε))x(ε). This implies,

P†2R2(ε)x1(ε) − P†2S2(ε)x2(ε) = ρ(W2(ε))x1(ε) (11)
x1(ε) = ρ(W2(ε))x2(ε). (12)

If ρ(W2(ε)) = 0 then from equations (11) and (12), x(ε) = 0. This is a contradiction. So, 0 < ρ(W2(ε)) < 1. Then
by using equations (11) and (12), as in the proof of the Theorem 3.1, we can show that ρ(W2(ε))Aεx1(ε) ≥ 0.
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This implies that Aεx1(ε) ≥ 0. Also, from equations (11) and (12), we get

W1(ε)x(ε) − ρ(W2(ε))x(ε)

=

(
P†1R1(ε)x1(ε) − P†1S1(ε)x2(ε) − ρ(W2(ε))x1(ε)

x1(ε) − ρ(W2(ε))x2(ε)

)
=

(
(P†1R1(ε) − P†2R2(ε))x1(ε) + 1

ρ(W2(ε)) (P
†

2S2(ε) − P†1S1(ε))x1(ε)
0

)
=

(
∇

0

)
,

where ∇ = (P†1R1(ε) − P†2R2(ε))x1(ε) + 1
ρ(W2(ε)) (P

†

2S2(ε) − P†1S1(ε))x1(ε).
Case(i) Assume that P†1R1 ≥ P†2R2. Since 0 < ρ(W2(ε)) < 1, we get that (P†1R1(ε) − P†2R2(ε))x1(ε) ≤

1
ρ(W2(ε)) (P

†

1R1(ε) − P†2R2(ε))x1(ε). Therefore,

∇ ≤
1

ρ(W2(ε))
(P†1R1(ε) − P†2R2(ε))x1(ε) +

1
ρ(W2(ε))

(P†2S2(ε) − P†1S1(ε))x1(ε)

=
1

ρ(W2(ε))
[(P†1(R1(ε) − S1(ε))x1(ε) − P†2(R2(ε) − S2(ε))x1(ε)]

=
1

ρ(W2(ε))
[P†1P1 − P†1Aε − P†2P2 + P†2Aε]x1(ε)

=
1

ρ(W2(ε))
(P†2 − P†1)Aεx1(ε),

where we have used the fact that P†1P1 = P†2P2. Since Aεx1(ε) ≥ 0 and P†1 ≥ P†2, we get that ∇ ≤ 0.

Thus, W1(ε)x(ε) − ρ(W2(ε))x(ε) =

(
∇

0

)
≤ 0. This implies, W1(ε)x(ε) ≤ ρ(W2(ε))x(ε). So, by Lemma 2.1,

ρ(W1(ε)) ≤ ρ(W2(ε)).
Now, from the continuity of eigenvalues, we have

ρ(W1) = lim
ε→0

ρ(W1(ε)) ≤ lim
ε→0

ρ(W2(ε)) = ρ(W2).

Case(ii) Assume that P†1S1 ≥ P†2S2. We have ρ(εA† J) < 1. Choose the above ε small enough such that

P†1S1 − P†2S2 ≥
ε
2

(P†1 − P†2)J.

Since, P†1S1(ε) ≥ P†2S2(ε), A†ε ≥ 0 and 0 < ρ(W2) < 1, we get

∇ ≤ (P†1R1(ε) − P†2R2(ε))x1(ε) + (P†2S2(ε) − P†1S1(ε))x1(ε)

= (P†2 − P†1)Aεx1(ε) ≤ 0.

This implies that W1(ε)x(ε) − ρ(W2(ε))x(ε) =

(
∇

0

)
≤ 0.

So, W1(ε)x(ε) ≤ ρ(W2(ε))x(ε). Then, by Lemma 2.1, ρ(W1(ε)) ≤ ρ(W2(ε)). Similar to the proof of case(i), this
implies that ρ(W1) ≤ ρ(W2).

The following example illustrates Theorem 3.5.

Example 3.6. Let A =

(
1 0 1
0 1 0

)
then A† = 1

2

1 0
0 2
1 0

 ≥ 0. Set P1 =

(
3 0 3
0 3 0

)
, R1 =

(
2 0 2
0 1 0

)
and

S1 =

(
0 0 0
0 −1 0

)
. P2 =

(
4 0 4
0 4 0

)
, R2 =

(
2 0 2
0 0 0

)
and S2 =

(
−1 0 −1
0 −3 0

)
. Then P†1 = 1

6

1 0
0 2
1 0

 ,
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P†1R1 = 1
6

2 0 2
0 2 0
2 0 2

 and P†1S1 = 1
6

0 0 0
0 −2 0
0 0 0

. P†2 = 1
8

1 0
0 2
1 0

 ,P†2R2 = 1
8

2 0 2
0 0 0
2 0 2

 and P†2S2 = 1
8

−1 0 −1
0 −6 0
−1 0 −1

.

Note that A = P1 −R1 + S1 is a weak regular proper double splitting and A = P2 −R2 + S2 is a regular proper double
splitting. Also, e ∈ R(A), P†2 has no zero row and P2P†2 ≥ 0. We can verify that P†1 ≥ P†2, and P†1R1 ≥ P†2R2. Hence
0.7676 = ρ(W1) ≤ ρ(W2) = 0.8660 < 1.

The following result is an obvious consequence of Theorem 3.5

Corollary 3.7. (Theorem 3.2, [15]) Let A−1
≥ 0. Let A = P1 − R1 + S1 be a weak regular double splitting and

A = P2 − R2 + S2 be a regular double splitting. If P−1
1 ≥ P−1

2 and any one of the following conditions,
(i) P−1

1 R1 ≥ P−1
2 R2

(ii) P−1
1 S1 ≥ P−1

2 S2
holds, then ρ(W1) ≤ ρ(W2) < 1.

The next result proof is similar to the proof of Theorem 3.1. Thus we skip the proof.

Theorem 3.8. Let A ∈ Rm×n and A† ≥ 0. Let A = P1 − R1 + S1 be a weak regular proper double splitting and
A = P2 − R2 + S2 be a weak regular proper double splitting. If P†1A ≥ P†2A and any of the following conditions,
(i) P†1R1 ≥ P†2R2

(ii) P†1S1 ≥ P†2S2
holds, then ρ(W1) ≤ ρ(W2) < 1.
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