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Abstract. The synchronization of stochastic differential equations (SDEs) driven by symmetric α-stable
process and Brownian Motion is investigated in pathwise sense. This coupled dynamical system is a new
mathematical model, where one of the systems is driven by Gaussian noise, another one is driven by non-
Gaussian noise. In this paper, we prove that the synchronization still persists for this coupled dynamical
system. Examples and simulations are given.

1. Introduction

A stochastic dynamical system is a dynamical system subjected to the effects of noise where the effect
of noise in dynamical systems is a very important area of research. Such effects of fluctuations have been
of interest for over a century since the seminar work of Einstein. Synchronization of coupled dynamical
systems is a wildly-known phenomenon that has been observed in many sciences like biology, physics
and other areas, In general, these systems are subjected to different types of noise, and deal with coupled
dynamical systems that have common dynamical features in an asymptotic sense. A readable descriptive
account of its diversity of occurrence can be found in the Strogatz book [33], which contains an extensive list
of references. The synchronization of coupled dissipative systems in the case of autonomous systems has
been investigated mathematically in [10] both for asymptotically stable equilibria and general attractors,
such as chaotic attractors. Analogous results also hold for nonautonomous systems, but require a new
concept of a nonautonomous attractor. Recently, The authors in [8, 13] provided that appropriate concepts
of random attractors and stochastic stationary solutions are used instead of their deterministic counterparts.

Gaussian and non-Gaussian processes have been widely used to model fluctuations in engineering and
science. Brownian motion is one example of Gaussian processes, where the particle driven by Brownian
motion has continuous sample paths in time almost surely and the probability density function decays
exponentially in space [26], the mean square displacement increases linearly in time. Lévy processes arise
as models for fluctuations in many systems, for example, a passive tracer particle may subjected to a series
of ”pauses”, when the particle is trapped by a vortex for a random time period, and ”jumps” or ” flights”.
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In [7] (or see [2]), Caraballo and Kloeden showed that synchronization persists under additive noise,
provided asymptotically stable stochastic stationary solutions are considered rather than asymptotically
stable steady state solutions. Specifically, they considered two Itô stochastic differential equations in Rd

dXt = f (Xt)dt + αdW(1)
t ,

dYt = 1(Yt)dt + βdW(2)
t ,

(1)

whereα, β ∈ Rd
+ are constant vectors with no components equal to zero, W(1)

t ,W
(2)
t are independent two-sided

scalar Wiener processes, and the functions f , 1 satisfy the one-sided dissipative Lipschitz conditions

〈x1 − x2, f (x1) − f (x2)〉 6 −L|x1 − x2|
2,

〈y1 − y2, 1(y1) − 1(y2)〉 6 −L|y1 − y2|
2.

(2)

The synchronized system corresponding to SDEs (1)

dXt = f (Xt)dt + ν(Yt − Xt)dt + αdW(1)
t ,

dYt = 1(Yt)dt + ν(Xt − Yt)dt + βdW(2)
t ,

has a unique stationary solution (X̄ν
◦ θt, Ȳν

◦ θt), which is pathwise globally asymptotically stable with

(X̄ν(θtω), Ȳν(θtω))→ (Z̄∞(θtω), Z̄∞(θtω)), as ν→∞,

pathwise on finite time intervals [T1,T2] of R, where Z̄∞t is the unique pathwise globally asymptotically
stable stationary solution of the ”averaged” SDEs

dZt =
1
2

[ f (Zt) + 1(Zt)]dt +
1
2
αdW(1)

t +
1
2
βdW(2)

t .

In [23], Liu et al. showed that synchronization persists for coupled dynamical systems driven by α-stable
multiplicative noises, provided asymptotically stable stochastic stationary solutions are considered rather
than asymptotically stable steady state solution. They considered two Marcus canonical equations in Rd

dXt = f (Xt)dt + aXt � dL(1)
t ,

dYt = 1(Yt)dt + bYt � dL(2)
t ,

(3)

where a, b are constants inR, L(1)
t and L(2)

t are independent two-sided scalar α-stable processes as in Lemma
2 in [23], and the vector fields f and 1 are sufficiently regular to ensure the existence and uniqueness of local
solution, and additionally satisfy one-sided dissipative Lipschitz conditions (2). The synchronized system
corresponding to SDEs (3) is

dXt = f (Xt)dt + ν(e2ηt Y − X)dt + aXt � dL(1)
t ,

dYt = 1(Yt)dt + ν(e−2ηt X − Y)dt + bYt � dL(2)
t ,

where 2ηt = O(1)
t − O(2)

t and O(1)
t ,O

(2)
t are two Ornstein-Uhlenbeck processes with respect to aL(1)

t and bL(2)
t

respectively. The coupled random system has a unique stationary solution (X̄ν
t , Ȳ

ν
t ). It is pathwise globally

asymptotically stable with (X̄ν
t , Ȳ

ν
t )→ (Z̄∞t e−O(1)

t , Z̄∞t e−O(2)
t ) as ν→∞, pathwise on finite time-intervals [T1,T2].

Note that Z̄∞t is the unique pathwise global asymptotically stable stationary solution of the “averaged”
RODE in Rd

dz
dt

=
1
2

[e−ηt f (eηt zt) + e−ηt1(e−ηt zt) + aXt � dL(1)
t + bYt � dL(2)

t ].

In this paper, we will consider two coupled stochastic equations in Rd

dXt = f (Xt)dt + (a1Xt + b1) � dLαt ,
dYt = 1(Yt)dt + (a2Yt + b2) ◦ dWt.

(4)
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Here Lαt is a two sided scalar α-stable process and Wt is a two-sided scalar Wiener process independent
of Lαt . b1 and b2 are constant vectors in Rd, a1 and a2 are constants in R, � and ◦ denote the Marcus
integral and Stratonovich integral respectively. The functions f and 1 are sufficiently regular to ensure the
existence and uniqueness of local solution, and additionally satisfy one-side dissipative Lipschitz condition
(2). The aim of this paper is to test the synchronization phenomenon for coupled dynamical systems (4).
We will transform the SDEs to random ordinary differential equations (RODEs) and prove that the system
is asymptotical stable. When α1, α2 , 0, finally, we obtain

dXt = [ f (Xt) + ν(e2ηt Yt − Xt) + ν( b2
a2

e2ηt −
b1
a1

)]dt + (a1Xt + b1) � dLαt ,
dYt = [1(Yt) + ν(e−2ηt Xt − Yt) + ν( b1

a1
e−2ηt −

b2
a2

)]dt + (a2Yt + b2) ◦ dWt.

The above system has a unique stationary stochastic solution (X̄ν
t , Ȳ

ν
t ), which is pathwise globally asymp-

totically stable with

(X̄ν
t (ω), Ȳν

t (ω))→ (Z̄t(ω)eηt −
b1

α1
, Z̄t(ω)e−ηt −

b2

a2
), as ν→∞,

where Z̄t(ω) is the stationary solution of

dZt = 1
2 [e−ηt f (eηt Zt −

b1
a1

) + eηt1(e−ηt Zt −
b2
a2

)]dt + 1
2 a1Zt � dLαt + 1

2 a2Zt ◦ dWt,

with

ηt =
1
2

(a1O(1)
t − a2O(2)

t ).

When α2 = 0, equation (4) becomes

dXt = f (Xt)dt + (a1Xt + b1) � dLαt ,
dYt = 1(Yt)dt + b2dWt.

(5)

The other aim of this paper is to test the synchronization phenomenon for coupled dynamical systems
(5). By using another transformation which is different from the transformation that is used in(4),we
will transform the SDEs to random ordinary differential equations (RODEs)and prove that the system is
asymptotical stable. Finally, we obtain

dXt = [ f (Xt) + ν(ea1O(1)
t Yt − Xt) − ν( b1

a1
− b2O(2)

t ea1O(1)
t )]dt + (a1Xt + b1) � dLαt ,

dYt = [1(Yt) + ν(e−a1O(1) Xt − Yt) + ν(b2O(2)
t −

b1
a1

e−a1O(1)
t )]dt + b2dWt.

Then this system has a unique stationary stochastic solution (X̄ν
t , Ȳ

ν
t ), which is pathwise globally asymptot-

ically stable with

(X̄ν
t (ω), Ȳν

t (ω))→ (z̄t(ω)ea1O(1)
t −

b1

a1
, z̄t(ω) + b2O(2)

t ), as ν→∞,

with

z̄t = e−
1
2 a1O(1)

t (Z̄t +
b1

a1
) −

1
2

b2O(2)
t ,

where Z̄t(ω) is the stationary solution of

dZt = 1
2 [ f (Zt −

1
2 b2O(2)

t ea1O(1)
t ) + ea1O(1)

t 1(e−
1
2 a1O(1)

t (Zt + b1
a1

) + 1
2 b2O(2)

t )]dt
+ 1

2 [(a1Zt− + b1) � dL(α)
t + b2ea1O(1)

t dWt].

The main contributions of this paper are two aspects: firstly, we consider a new model, which may be
considered as a combination of those in [2], [7], [8], [22] and [23], our result means that the synchronization
still persists under two different kinds of environmental noises. On the other hand, our noises are general
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linear noises, whereas all the noises in references mentioned above are pure additive, or pure multiplicative
noise. Different methods are adapted to two kinds of noises. Hence their methods could not directly apply
to general linear noises. Moreover, we found that our first result can directly apply to the pure multiplicative
noise, but can also not directly apply to the pure additive case, because the same transformation does not
work. In view of this reason, It is necessary to consider the synchronization of systems, where one of
systems is driven by pure multiplicative noise, another one is driven by pure additive noise. This leads to
our second result. In addition, we also give an examples with simulation for two results, respectively.

The structure of the paper is as follows: in Section 2, we will recall some basic facts about Lévy process
and Brownian process. In Section 3, we will review some concepts in random dynamical systems. In
Section 4, we will explain the method of the transformation from SDEs to RODEs. In Section 5, we will
prove that the uncoupled system has a unique stationary solution, which is globally asymptotically stable.
In Section 6, we will show that the asymptotic behaviours of the coupled synchronized system is uniformly
boundedness. In Section 7, synchronization persists for coupled system, that is,the stationary solutions of
coupled synchronized system converge to the unique pathwise globally asymptotically stable stationary
solution of the ”averaged” system. We will test our theory by an example and simulations. In Section 8,
we will prove the synchronization persists under two different noises where each stochastic differential
equations is subjected to a noise which differs from the other. We will test our theory by an example and
simulations.

2. Brownian motion and symmetric α-stable process

Lévy process Lt, taking values inRd, is characterized by a drift parameter b ∈ Rd, an n× n non-negative
covariance matrix A and a Borel measure γ, defined on (Rd,B(Rd)) and concentrated onRd

\{0}, that satisfies∫
Rd\{0}

(y2
∧ 1)γ(dy) < ∞,

or equivalently∫
Rd\{0}

y2

1 + y2γ(dy) < ∞.

This measure γ is the so called Lévy jump measure of the Lévy process. A Lévy process Lt has the following
Lévy-Itô decomposition [3, 10]

Lt = bt + Bt +
∫
‖x‖<1 xÑ(t, dx) +

∫
‖x‖>1 xN(t, dx) (6)

where N(dt, dx) is Poisson random measure, Ñ(dt, dx) = N(dt, dx) − γ(dx)dt is the compensated Poisson ran-
dom measure, and Bt is an independent Brownian motion d-dimensional Brownian motion with covariance
matrix A. A Lévy process with the generating triplet (b,A, γ).

Lévy process has independent and stationary increments, and is thought to be appropriate models for
non-Gaussian processes fluctuations [5, 28]. Moreover, its sample paths are only continuous in probability,
namely, P(|Lt − Lt0 | > δ)→ 0 as t→ t0 for any positive δ. With a suitable modification [26], these paths may
be taken as càdlà1, that is, paths are continuous on the right and have limits on the left. This continuity
is weaker than the usual continuity in time. In fact, a càdlà1 function has finite or at most countable
discontinuities on any time interval.

Brownian motion Bt is a special case of Lévy process, being a Gaussian process, is characterized by
its mean vector (taken to be the zero vector) and its covariance matrix (taken to be the identity matrix).
Additionally, (i) almost every sample path is continuous in time in the usual sense, and (ii) the increments
are Gaussian distributed.

As another special case of Lévy process, the symmetric α-stable process plays an important role among
stable processes like Brownian motion among Gaussian processes. For the definition of symmetric α-stable
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process with 0 < α < 2, see [29, 30]. Its jump measure in Rd is γ(dy)= dy
‖y‖d+α . When α = 2, we have the

standard Brownian motion.
Marcus canonical stochastic differential equations were introduced by Marcus [24] with semimartingales

as the driving processes. For a Lévy process Lt it can be written as

dx(t) = b(x(t))dt + σ(x(t−)) � dLt, (7)

where � denotes the Marcus integral, which for a scalar Lévy process is given by

dx(t) = b(x(t))dt + σ(x(t−)) ◦ dLc(t) + σ(x(t−))dLd(t)

+
∑

06s6t

[ϕ(x(s−)),4L(s) − x(s−) − σ(x(s−))4L(s)],

where Lc and Ld are the usual continuous and discontinuous parts of L, ◦ denotes the Stratonovich stochastic
integral, and ϕ(u, υ) is the solution or flow of the ordinary differential equation

dϕ(u, υ)
dυ

= σ(ϕ), (u, 0) = u.

With the help of Lévy-Itô decomposition of Lévy processes, the Marcus canonical equation also admits
an Itô interpretation, see [3, 19]. The solution of Marcus canonical SDE (7) defines a stochastic flow, or
actually a cocycle, of homeomorphisms or diffeomorphisms [12, 19], when the coefficients b and σ satisfy
appropriate conditions. For more details about the Marcus integral and canonical equation, see [11, 20, 25].

3. Random Dynamical Systems

Let (Ω,F,P) be a probability space. Following Arnold [4], a random dynamical system (RDS) (θ, φ) on
Ω×Rd consists of a metric dynamical system θ on Ω and a cocycle mapping Φ:R+

×Ω×Rd
→ Rd, namely,

ϕ satisfies the conditions

ϕ(0, ω) = idRd , ϕ(t + s, ω) = ϕ(t, θsω) ◦ ϕ(s, ω)

for allω ∈ Ω and all s, t ∈ R. This cocycle is required to be at least measurable from theσ-fieldB(R)×F×B(Rd)
to the σ-field B(Rd).

For random dynamical systems driven by noise process, we take Ω = (R,Rd) with the Skorohod metric
as the canonical sample space and denote by F := B(D(R,Rd)) the associated Borel σ-field.

A family Â = {A(ω), ω ∈ Ω} of nonempty measurable compact subset A(ω) of Rd is called φ-invariant
if φ(t, ω,A(ω))= A(θtω) for all t > 0 and is called a random attractor if in addition it is pathwise pullback
attracting in the sense that

H∗d(φ(t, θ−tω,D(θ−tω)),A(ω))→ 0, as t→ +∞

for all suitable (i.e. in a given attracting universe, for instance, in [5, 25]) families D̂ = {D(ω), ω ∈ Ω} of
nonempty measurable bounded subsets D(ω) of Rd. Here H∗d is the Hausdorff semi-distance on Rd.

Theorem 3.1. Let (θ, φ) be an RDS on Ω ×Rd. If there exists a family B̂ ={B(ω), ω ∈ Ω} of nonempty measurable
compact subsets B(ω) of Rd and a TD̂,ω > 0 such that

φ(t, θ−tω,D(θ−tω)) ⊂ B(ω), ∀t > TD̂,ω

for all families D̂ ={D(ω), ω ∈ Ω} in the given attracting universe, then the RDS (θ, φ) has a random attractor Â
={A(ω), ω ∈ Ω} with the component subsets defined for each ω ∈ Ω by

A(ω) =
⋂
s>o

⋃
t>s

φ(t, θ−tω,B(θ−tω)).
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If the random attractor consists of singleton sets, i.e. A(ω) = X∗(ω) for some random variable X∗, then
X∗t (ω) := X∗(θtω) is a stationary stochastic process, if the driving system θt is a stationary process the prove
of this theorem can be found in [6, 18]. We will need the following lemmas (see [7, 9, 22]).

Lemma 3.2. Let {xn} be a sequence in a complete metric space (X, d) such that every subsequence {xni } has a
subsequence {xni } converging to a common limit x∗. Then the sequence {xn} converges to x∗.

Lemma 3.3. There exists a {θt}t∈R invariant subset Ω̄ ∈ F of Ω = C0(R,Rm) of full measure such that

lim
t→±∞

1
t
‖ ω(t) ‖= 0 for ω ∈ Ω̄,

and there exist random variable Ō(1) and Ō(2) such that

Ō(1)(θtω) = Ō(1)
t (ω) and Ō(2)(θtω) = Ō(2)

t (ω) for ω ∈ Ω̄.

Moreover, we have

lim
t→±∞

1
t

∫ t

0
Ō(1)(θτω)dτ = lim

t→±∞

1
t

∫ t

0
Ō(2)(θτω)dτ = 0 for ω ∈ Ω̄.

In what follows, we consider θ defined on Ω̄ instead of Ω. This mapping has the same properties as the
original one if we choose for F the trace σ-algebra with respect to Ω̄.

4. Transformation of Systems to Random Differential Equation

Now consider a Marcus stochastic differential equation with linear noise

dXt = f (Xt)dt + (a1Xt + b1) � dLαt ,
dYt = 1(Yt)dt + (a2Yt + b2) ◦ dWt.

(8)

Here Lαt is independent two sided scalar α-stable processes and Wt is independent two-sided scalar Wiener
processes, with b1, b2 is constant inRd and a1, a2 is constant inR. The functions f , 1 are sufficiently regular to
ensure the existence and uniqueness of local solution, and additionally satisfy one-side dissipative Lipschitz
conditions (2).

Using the transformation

x(t, ω) = e−a1O(1)
t (ω)

(
Xt(ω) +

b1

a1

)
and

y(t, ω) = e−a2O(2)
t (ω)

(
Yt(ω) +

b2

a2

)
,

where

O(1)
t = e−t

∫ t

−∞

eudLαu , O(2)
t = e−t

∫ t

−∞

eudWu, t ∈ R

are two stationary Ornstein-Uhlenbeck processes. By Itô’s formula, we get the pathwise random ordinary
differential equation (RODE)

dx
dt = F(x,O(1)

t ) := e−a1O(1)
t f (ea1O(1)

t x − b1
a1

) + a1O(1)
t x,

dy
dt = G(y,O(2)

t ) := e−a2O(2)
t 1(ea2O(2)

t y − b2
a2

) + a2O(2)
t y.

(9)

We will show in the next section that each of the stochastic systems in (8) a pathwise asymptotically stable
and has random attractor which consists of a single stationary stochastic process. Therefor, the use of the
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stationary Ornstein-Uhlenbeck process in the transformation will be essential. Then we will study their
behavior after synchronization by linear cross coupling, i.e, we will consider the coupled RODE

dx
dt

= F(x,O(1)
t (ω)) + ν(y − x),

dy
dt

= G(y,O(2)
t (ω)) + ν(x − y),

we will also show above system has a pathwise asymptotically stable and has random attractor consist of a
single stationary stochastic process (x̄ν(ω), ȳν(ω)). In particular, (x̄ν(ω), ȳν(ω))→ (z̄(ω), z̄(ω)) as ν→∞where
z̄(ω) is the pathwise asymptotically stable solution of the averaged RODE

dz
dt

=
1
2

[F(z,O(1)
t ) + G(z,O(2)

t )],

that is

dz
dt = 1

2 [e−a1O(1)
t f (ea1O(1)

t z − b1
a1

) + e−a2O(2)
t 1(ea2O(2)

t z − b2
a2

) + (a1O(1)
t + a2O(2)

t )z].

The equivalent stochastic differential equation is given by

dZt = 1
2 [e−ηt f (eηt Zt −

b1
a1

) + eηt1(e−ηt Zt −
b2
a2

)]dt + 1
2 a1Zt � dLαt + 1

2 a2Zt ◦ dWt, (10)

where

Zt = e
1
2 (a1O(1)

t +a2O(2)
t )zt

and

ηt =
1
2

(a1O(1)
t − a2O(2)

t ).

In terms of the original system of Marcus stochastic differential equations (8), the coupled random equations
take the form

dXt = [ f (Xt) + ν(e2ηt Yt − Xt) + ν( b2
a2

e2ηt −
b1
a1

)]dt + (a1Xt + b1) � dLαt ,
dYt = [1(Yt) + ν(e−2ηt Xt − Yt) + ν( b1

a1
e−2ηt −

b2
a2

)]dt + (a2Yt + b2) ◦ dWt.
(11)

Then this system has a unique stationary stochastic solution (X̄ν
t , Ȳ

ν
t ),which is pathwise globally asymptot-

ically stable with

(X̄ν
t (ω), Ȳν

t (ω))→ (Z̄t(ω)eηt −
b1

α1
, Z̄t(ω)e−ηt −

b2

a2
), as ν→∞,

where Z̄t(ω) is the stationary solution of (10).

5. The Uncoupled System with α-Stable Noise and Wiener Noise

In this section, we will prove the uncoupled equations SDE (8) has unique stochastic stationary solutions,
which are

dXt = f (Xt)dt + (a1Xt + b1) � dLαt ,
dYt = 1(Yt)dt + (a2Yt + b2) ◦ dWt,

(12)

where f , 1 are continuously differential, satisfy the one-sided dissipative Lipschitz conditions (2). Its
solution paths are generally not differentiable. Thus we rewrite the above equations as

dXt = [ f (Xt) + O(1)
t (a1Xt + b1)]dt + (a1Xt + b1) � dO(1)

t ,

dYt = [1(Yt) + O(2)
t (a2Xt + b2)]dt + (a2Xt + b2) ◦ dO(2)

t ,
(13)
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where O(1)
t and O(2)

t , t ∈ R, is the stationary solution of

dO(1)
t = −O(1)

t dt + dLαt

and

dO(2)
t = −O(2)

t dt + dWt.

That is

O(1)
t = e−t

∫ t

−∞

eudLαu , O(2)
t = e−t

∫ t

−∞

eudWu, t ∈ R.

Then we transform (13) to the pathwise random ordinary differential equation

dx
dt = F(x,O(1)

t ) := e−a1O(1)
t f (ea1O(1)

t x − b1
a1

) + a1O(1)
t x,

dy
dt = G(y,O(2)

t ) := e−a2O(2)
t 1(ea2O(2)

t y − b2
a2

) + a2O(2)
t y.

(14)

The vector-field function

f̃ (x, z) = e−a1z f (ea1zx −
b1

a1
)

and

1̃(x, z) = e−a2z1(ea2zy −
b2

a2
)

in the system (14) satisfies a one-sided Lipschitz condition in its first variable uniformly in the second with
the same constant as the original drift coefficient f , 1, since we have

〈x1 − x2, f̃ (x1, z) − f̃ (x2, z)〉 6 −L ‖ x1 − x2 ‖
2

and

〈y1 − y2, 1̃(y1, z) − 1̃(y2, z)〉 6 −L ‖ y1 − y2 ‖
2 .

We obtain that any of the two solutions of the RODE (14) satisfy pathwise the differential inequality

d
dt
‖ x1(t) − x2(t) ‖26 (−2L + 2a1O(1)

t ) ‖ x1(t) − x2(t) ‖2 (15)

and

d
dt
‖ y1(t) − y2(t) ‖26 (−2L + 2a2O(2)

t ) ‖ y1(t) − y2(t) ‖2, (16)

and hence we have

‖ x1(t) − x2(t) ‖26 e−2t(L− 1
t

∫ t
0 O(1)

τ dτ)
‖ x1(0) − x2(0) ‖2

and

‖ y1(t) − y2(t) ‖26 e−2t(L− 1
t

∫ t
0 O(2)

τ dτ)
‖ y1(0) − y2(0) ‖2 .

Thus it follows by Lemma 3.3 that

lim
t→∞
‖ x1(t) − x2(t) ‖2= 0

and

lim
t→∞
‖ y1(t) − y2(t) ‖2= 0,
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which means all solutions converge pathwise to each other.
In order to see what they converge to, we first observe that the RODEs (14) generates a random dynamical

system with φ(t, ω, x0) := x(t, ω), the solution of the RODEs (14) with (deterministic) initial value x0 at time
t = 0.Then we need to show that the RODEs (14) is asymptotically dissipative and has a pullback attractor.
Omitting ω for brevity, we have pathwise

d
dt
‖ x ‖2 = 2〈x,F(x,O(1)

t )〉

= 2〈x, e−a1O(1)
t f (ea1O(1)

t x −
b1

a1
) + a1O(1)

t x〉

= 2e−2a1O(1)
t 〈ea1O(1)

t x, f (ea1O(1)
t x −

b1

a1
) − f (−

b1

a1
)〉

+ 2〈x, e−a1O(1)
t f (−

b1

a1
)〉 + 2a1O(1)

t ‖ x ‖2

6 (−L + 2a1O(1)
t ) ‖ x ‖2 +

e−2a1O(1)
t

L
‖ f (−

b1

a1
) ‖2 . (17)

Integration yields

‖ x(t) ‖2 6 ‖ x(t0) ‖2 e−L(t−t0)+2
∫ t

t0
a1O(1)

τ dτ
+
‖ f (− b1

a1
) ‖2

L

∫ t

t0

e−2a1O(1)
u e−L(t−u)e2

∫ t
t0

a1O(1)
τ dτdu.

Moreover, by Lemma 3.3 we have pathwise

lim
s→−∞

1
s

∫ 0

s
O(1)
τ dτ = lim

t→∞

1
t

∫ t

0
O(1)
τ dτ = 0.

Thus we obtain

e2
∫ t

s O(1)
τ dτ 6 e

L
2 (t−s)

for s 6 0, t > 0 with | t |, | t0 |> Tω.
Now we can use pathwise pullback convergence (i.e. with t0 → −∞) to show that the closed ball

centered at the origin with random radius.

R2(ω) := 1 +
‖ f (− b1

a1
) ‖2

L

∫ 0

−∞

e−2a1O(1)
u eLu e2

∫ 0
u a1O(1)

τ dτdu.

Similarly, we also have

d
dt
‖ y ‖26 (−L + 2a2O(2)

t ) ‖ y ‖2 +
e−2a2O(2)

t

L
‖ 1(−

b2

a2
) ‖2 . (18)

Integration yields

‖ y(t) ‖2 6 ‖ y(t0) ‖2 e−L(t−t0)+2
∫ t

t0
a2O(2)

τ dτ
+
‖ 1(− b2

a2
) ‖2

L

∫ t

t0

e−2a2O(2)
u e−L(t−u)e2

∫ t
a2

a2O(2)
τ dτdu.

Moreover, by Lemma 3.3 we have pathwise

lim
s→−∞

1
s

∫ 0

s
O(2)
τ dτ = lim

t→∞

1
t

∫ t

0
O(2)
τ dτ = 0.

Thus we obtain

e2
∫ t

s O(2)
τ dτ 6 e

L
2 (t−s)
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for s 6 0, t > 0 with | t |, | t0 |> Tω.
Now we can use pathwise pullback convergence (i.e. with t0 → −∞) to show that the closed ball

centered at the origin with random radius.

R2(ω) := 1 +
‖ 1(− b2

a2
) ‖2

L

∫ 0

−∞

e−2a2O(2)
u eLu e2

∫ 0
u a2O(2)

τ dτdu

is a pullback absorbing set for t > Tω. Theorem 3.1 of RDS then gives us a random attractor {A(ω), ω ∈ Ω}.
The fact that all trajectories converge to each other forwards in time. The sets in this random attractor
are singleton sets, i.e. A(ω) = {a(ω)}. When we transform back to the SDEs have the pathwise singleton
set attractor a(θt(ω)), which is a stationary solution the SDEs, since the Ornstein-Uhlenbeck process is
stationary.

6. The Asymptotic Behaviour Of the Coupled System

Now, we will show that the stationary solution of coupled synchronized system converges when the
parameter ν is large enough. We consider the coupled RODEs system

dx
dt

= F(x,O(1)
t (ω)) + ν(y − x),

dy
dt

= G(y,O(2)
t (ω)) + ν(x − y),

with

F(x,O(1)
t ) = e−a1O(1)

t f (ea1O(1)
t x − b1

a1
) + a1O(1)

t x,
G(y,O(2)

t ) = e−a2O(2)
t 1(ea2O(2)

t y − b2
a2

) + a2O(2)
t y.

(19)

Using the one-sided Lipschitz conditions on f and 1, we obtain similarly to (15) and (16) that

d
dt
‖x1(t) − x2(t)‖2 6 [−2L − ν + 2a1O(1)

t ]‖x1(t) − x2(t)‖2 + ν‖y1(t) − y2(t)‖2

and

d
dt
‖y1(t) − y2(t)‖2 6 [−2L − ν + 2a2O(2)

t ]‖y1(t) − y2(t)‖2 + ν‖x1(t) − x2(t)‖2,

and similarly to (17) and (18) we obtain

d
dt
‖x‖2 6 (−L − ν + 2a1O(1)

t )‖x‖2 + ν‖y‖2 +
1
L

e−2a1O(1)
t ‖ f (−

b1

a1
)‖2

and

d
dt
‖y‖2 6 (−L − ν + 2a2O(2)

t )‖y‖2 + ν‖x‖2 +
1
L

e−2a2O(2)
t ‖1(−

b2

a2
)‖2.

Defining

Aν(t) =

(
−2L − ν + 2a1O(1)

t ν

ν −2L − ν + 2a2O(2)
t

)
, t ∈ R,

x(t) =

(
‖x1(t) − x2(t)‖2

‖y1(t) − y2(t)‖2

)
, t ∈ R.
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Thus we can write the above inequalities as

d
dt

x 6 Aν(t)x

Due to a Gronwall-like inequality, we have

x(x) 6 e
∫ t

t0
Aν(s)dsx(t0).

Let

Ãν(t) =

(
−L − ν + 2a1O(1)

t ν

ν −L − ν + 2a2O(2)
t

)
, t ∈ R,

x(t) =

(
‖x(t)‖2

‖y(t)‖2

)
, t ∈ R

and

H(t) =
1
L

 e(−2a1O(1)
t )
‖ f (− b1

a1
)‖2

e(−2a1O(2)
t )
‖1(− b2

a2
)‖2

 ,
we can write the above inequalities as

d
dt

x 6 Ãν(t)x + H(t).

Due to a Gronwall-like inequality, we have

x(x) 6 e
∫ t

t0
Ãν(s)dsx(t0) +

∫ t

t0

e
∫ t

s Ãν(τ)dτH(s)ds

component wise. Now, we need the following simple lemma.

Lemma 6.1. We have

‖e
∫ t

0 Aν(τ)dτx‖ 6 e−Lt
‖x‖, x ∈ R2

for t > Tw and all ν > 1.

Proof. First note that the matrix
∫ t

0 Aν(τ)dτ is symmetric. Thus, the exists of a orthonormal basis of eigenvectors
u(1)
ν,t ,u

(2)
ν,t with eigenvalues λ(1)

ν,t , λ
(2)
ν,t , and we have

e
∫ t

0 Aν(τ)dτx = eλ
(1)
ν,t c(1)

x,ν,tu
(1)
ν,t + eλ

(2)
ν,t c(2)

x,ν,tu
(2)
ν,t ,

where

c(1)
x,ν,tu

(1)
ν,t + c(2)

x,ν,tu
(2)
ν,t = x.

Since u(1)
ν,t and u(2)

ν,t are orthogonal, we obtain

‖e
∫ t

0 Aν(τ)dτx‖2 = e2λ(1)
ν,t ‖c(1)

x,ν,tu
(1)
ν,t ‖

2 + e2λ(2)
ν,t ‖c(2)

x,ν,tu
(2)
ν,t ‖

2 6 e2max{λ(1)
ν,t +λ(2)

ν,t }‖x‖2. (20)
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The eigenvalues of
∫ t

0 Aν(τ)dτ are given by

λ(1/2)
ν,t = −(2L + ν)t +

∫ t

0
(a1O(1)

τ + a2O(2)
τ )dτ ±

√
(
∫ t

0
(a1O(1)

τ − a2O(2)
τ )dτ)2 + ν2t2,

hence it follows by Lemma 3.3 that

λ(1/2)
ν,t 6 −Lt (21)

for |t| > Tw and all ν > 1.

Analogously to Lemma 6.1 we can show

Lemma 6.2. Let t0 6 0 and t > 0. We have

‖e
∫ t

t0
Ãν(τ)dτx‖ 6 e−

L
2 (t−t0)

‖x‖, x ∈ R2,

for |t0| , |t| > Tw and all ν > 1.
Now set

Cν(w) :=
1
L

∫ 0

−∞

e
∫ 0

u Ãν(τ)dτ

 e(−2a1O(1)
t )
‖ f (− b1

a1
)‖2

e(−2a2O(2)
t )
‖1(− b2

a2
)‖2

 du

and define

R2
ν(w) = 1 + ‖Cν(w)‖2.

Then by pullback techniques and Lemma 6.2, we see that the random balls Bν(w) in R2d centered on the origin and
with radius Rν(w) are pullback absorbing. Moreover note that

d
dν
‖Cν(w)‖2 = 2

〈
d
dνCν(w),Cν(w)

〉
= 2

〈 (
−1 1
1 −1

)
Cν(w),Cν(w)

〉
6 0

and consequently Rν(w) 6 R1(w) for ν > 1. Hence the random dynamical system generated by the coupled RODE
(9) has a random attractor Aν(w) in Bν(w) for each w. But we know that all solutions converge to each other pathwise
forwards in time. Thus the Aν(w) are singleton sets, say Aν(w) = (x̄ν(w), ȳν(w)).

Let us now estimate the difference of the components of the coupled system. We have pathwise

d
dt
|x − y|2 = 2〈x − y,

dx
dt
−

dy
dt
〉

= 2〈x − y, e−a1O(1)
t f (ea1O(1)

t x −
b1

a1
) − e−a2O(2)

t 1(ea2O(2)
t y −

b2

a2
)〉

+2〈x − y, a1xO(1)
t − a2yO(2)

t 〉 + 2〈x − y, 2ν(y − x)〉

6 −4ν‖x − y‖2 + 2‖x − y‖(e−a1O(1)
t ‖ f (ea1O(1)

t x −
b1

a1
)‖

+e−a2O(2)
t ‖1(ea2O(2)

t x −
b2

a2
)‖ + ‖a1xO(1)

t − a2yO(2)
t ‖)

6 −ν‖x − y‖2 +
1
ν

e−α1O(1)
t ‖ f (ea1O(1)

t x −
b1

a1
)‖2

+
1
ν

e−α2O(2)
t ‖1(ea2O(2)

t y −
b2

a2
)‖2 +

1
ν
|a1O(1)

t |
2
‖x‖2

+
1
ν
|a2O(2)

t |
2
‖y‖2.
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Hence labelling the solutions now with ν to indicate this dependence, we have

d
dt
‖xν − yν‖2 6 −ν‖xν − yν‖2 +

1
ν

Mν
T1,T2,w

with

Mν
T1,T2,w = sup

t∈[T1,T2]
(e−a1O(1)

t ‖ f (ea1O(1)
t x −

b1

a1
)‖2 + |a1O(1)

t |
2
‖x‖2)

+ sup
t∈[T1,T2]

(e−a2O(2)
t ‖1(ea2O(2)

t y −
b2

a2
)‖2 + |a2O(2)

t |
2
‖y‖2)

We can restrict ourselves without loss of generality to solutions in the compact absorbing balls Bν(w), which are all
contained in the common compact ball B1(w) for ν > 1. Hence Mν

T1,T2,w
is uniformly bounded in ν and we have

d
dt
‖xν − yν‖2 6 −ν‖xν − yν‖2 +

1
ν

Mν
T1,T2,w

with

MT1,T2,w = sup
ν>1

Mν
T1,T2,w,

from which we conclude that

‖xν(t) − yν(t)‖2 → 0, ν→∞,

uniformly in t ∈ [T1,T2] for any bounded T1 and T2.

7. The Synchronized Solution as ν → ∞

Now we can prove the solution of ”averaged” RODEs is the attracting stationary solution.

Theorem 7.1. (x̄νn (t, ω), ȳνn (t, ω)) → (z̄(t, ω), z̄(t, ω)) pathwise uniformly on bounded time intervals [T1,T2] of R
for any sequence νn →∞, where z̄ is the attracting stationary solution of the ”averaged” RODEs

dz
dt = 1

2 [e−a1O(1)
t f (ea1O(1)

t z − b1
a1

) + e−a2O(2)
t 1(ea2O(2)

t z − b2
a2

) + (a1O(1)
t + a2O(2)

t )z]. (22)

The equivalent stochastic differential equation is given by

dZt = 1
2 [e−ηt f (eηt Zt −

b1
a1

) + eηt1(e−ηt Zt −
b2
a2

)]dt + 1
2 a1Zt � dLαt + 1

2 a2Zt ◦ dWt (23)

with

ηt =
1
2

(a1O(1)
t − a2O(2)

t ).

Proof. Define

z̄ν(ω) :=
1
2

(x̄ν(ω) + ȳν(ω))

and observe that z̄ν(t, ω) = z̄ν(θtω) satisfies the RODEs

dz̄
dt = 1

2 [e−a1O(1)
t f (ea1O(1)

t z̄ − b1
a1

+ e−a2O(2)
t 1(ea2O(2)

t z̄ − b2
a2

) + a1z̄O(1)
t + a2z̄O(2)

t ].

Thus

sup
t∈[T1,T2]

|
d
dt

z̄ν(t, ω)| 6MT1,T2,ω < ∞,
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by continuity and the fact that these solutions belong to the common compact ball B1(ω). We can use the
Ascoli theorem to conclude that there is a subsequence νn j → ∞ such that z̄n j (t, ω) → z̄(t, ω) as n j → ∞.
Now

z̄νnj
(t, ω) − ȳνnj

(t, ω) =
1
2

(x̄νnj
(t, ω) − ȳνnj

(t, ω))→ 0,

z̄νnj
(t, ω) − x̄νnj

(t, ω) =
1
2

(ȳνnj
(t, ω) − x̄νnj

(t, ω))→ 0,

as νn j →∞, see the previous section, so

x̄νnj
(t, ω) = 2z̄νnj

(t, ω) − ȳn j (t, ω)→ z̄(t, ω),

ȳνnj
(t, ω) = 2z̄νnj

(t, ω) − x̄n j (t, ω)→ z̄(t, ω),

as ν̄n j →∞. Moreover, using the integral equation representation

z̄ν(t, ω) = z̄(T1, ω) +
1
2

∫ t

T1

e−a1O(1)
s (ω) f (ea1O(1)

s x̄ν(s, ω) −
b1

a1
)ds

+
1
2

∫ t

T1

e−a2O(2)
s (ω)1(ea2O(2)

s ȳν(s, ω) −
b2

a2
)ds +

1
2

∫ t

T1

a1x̄ν(s, ω)O(1)
s + a2 ȳν(s, ω)O(2)

s ds.

It follows that the νn j subsequence converges pathwise to

z̄(t, ω) = z̄(T1, ω) +
1
2

∫ t

T1

e−a1O(1)
s (ω) f (ea1O(1)

s z̄(s, ω) −
b1

a1
)ds

+
1
2

∫ t

T1

e−a2O(2)
s (ω)1(ea2O(2)

s z̄(s, ω) −
b2

a2
)ds +

1
2

∫ t

T1

(a1O(1)
s + a2O(2)

s )z̄(s, ω)ds

on the interval [T1,T2], so z̄(t, ω) is a solution of the RODEs (22) for all t ∈ R. By the same techniques
as in the previous sections, it has a random attractor consisting of a singleton set formed by a single
stationary stochastic process which thus must be equal to z̄(t, ω). Finally, we note that pathwise all possible
subsequences here have the same limit, so by Lemma 3.2, every full sequence z̄ν(t, ω) actually converges to
z̄(t, ω) for the whole sequence νn →∞.

Corollary 7.2. (x̄ν(t, ω), ȳν(t, ω)) → (z̄(t, ω), z̄(t, ω)) as ν → ∞ pathwise on any bounded time interval [T1,T2] of
R.

Example 7.3 (Example and simulation of synchronization). Now, we will consider two stochastic differential
equations

dXt = −Xtdt + (0.95Xt + 0.05) � dL0.75
t

and

dYt = −2Ytdt + (0.25Yt + 0.5) ◦ dWt.

The corresponding RODE are

dx
dt

= −(x −
0.05
0.95

e−0.95O(1)
t ) + 0.95xO(1)

t

and

dy
dt

= −2(y −
0.5
0.25

e−0.25O(2)
t ) + 0.25yO(2)

t ,
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where

O(1)
t = e−t

∫ t

−∞

eudL0.75
u , O(2)

t = e−t
∫ t

−∞

eudWu.

The averaged RODE is

dz
dt

= z(−
3
2

+
1
2

(0.95O(1)
t + 0.25O(2)

t )) +
1
2

(
0.05
0.95

e−0.95O(1)
t +

0.5
0.25

e−0.25O(2)
t )

and the equivalent stochastic differential equation is

dZt = −
3
2

Ztdt +
3
2

(
0.05
0.95

e−ηt +
0.5
0.25

eηt )dt +
1
2

0.95Zt � dL0.75
t +

1
2

0.25Zt ◦ dWt

with the explicit solution

z(t) = e−
3
2 (t−t0)+ 1

2

∫ t
t0

(0.95O(1)
τ +0.25O(2)

τ ))dτz0

+
1
2

∫ t

t0

e−
3
2 (t−t0)+

∫ t
t0

(0.95O(1)
τ +0.25O(2)

τ ))dτ(
0.05
0.95

e−0.95O(1)
u +

0.5
0.25

e−0.25O(2)
u )du.

The pullback limit as t0 → −∞ gives a stationary solution

z̃(t) =
1
2

∫ t

−∞

e−
3
2 (t−s)+

∫ t
−∞

(0.95O(1)
τ +0.25O(2)

τ ))dτ(
0.05
0.95

e−0.95O(1)
u +

0.5
0.25

e−0.25O(2)
u )du

and attracts all other solutions pathwise.
Figure 1 shows the trajectories of the numerical solution of the system with different values of ν. It shows that as ν
increases the trajectories approach to each other faster.
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Figure 1: A trajectories of the coupled system dXt = −Xtdt + ν(Yt −Xt)dt + (0.95Xt + 0.05) � dL(0.75)
t , dYt = −2Ytdt + ν(Xt −Yt)dt + (0.25Yt + 0.5) ◦ dWt and

the corresponding trajectories of the averaged system dZt = −3/2(Zt) + (0.95Zt + 0.05) � dL(0.75)
t + (0.25Zt + 0.5) ◦ dWt for four values of ν

In [2, 7, 8, 22, 23] the noises that had been used are of the same type, while in reality no one can control
the type of the noises which will affect the system, for that reason our paper is dealing with the effect of
different types of noise which is closest to reality
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8. SYNCHRONIZATION WHEN a1 , 0 and a2 = 0

We consider Stochastic differential equations in Rd

dXt = f (Xt)dt + (a1Xt + b1) � dL(α)
t ,

dYt = 1(Yt)dt + b2dWt.
(24)

Here Lαt is a two sided scalar α-stable process and Wt is a two-sided scalar Wiener process independent of
Lαt . b1 and b2 are constant vectors in Rd, a1 constants in R . The functions f and 1 are sufficiently regular to
ensure the existence and uniqueness of local solution, and additionally satisfy one-side dissipative Lipschitz
condition (2). Using the transformation

x(t, ω) = e(−a1O(1)
t (ω))(Xt(ω) +

b1

a1
)

and

y(t, ω) = Yt(ω) − b2O(2)
t ,

where

O(1)
t = e−t

∫ t

−∞

eudL(α)
u , O(2)

t = e−t
∫ t

−∞

eudWu, t ∈ R

are two stationary Ornstein-Uhlenbeck processes.
We will start to transform it to the pathwise random ordinary differential equation (RODE)

dx
dt = F(x,O(1)

t ) := e(−a1O(1)
t ) f (e(a1O(1)

t )x − b1
a1

) + a1O(1)
t x,

dy
dt = G(y,O(2)

t ) := 1(y + b2O(2)
t ) + b2O(2)

t .
(25)

We will show in the next section that each of the stochastic systems in (24) a pathwise asymptotically stable
and has random attractor which consists of a single stationary stochastic process. Then we will study their
behavior after synchronization by linear cross coupling, i.e. we will consider the coupled RODE

dx
dt

= F(x,O(1)
t (w)) + ν(y − x),

dy
dt

= G(y,O(2)
t (w)) + ν(x − y),

we will also show above system has a pathwise asymptotically stable and has random attractor consist of a
single stationary stochastic process (x̄ν(ω), ȳν(ω)). In particular, (x̄ν(ω), ȳν(ω))→ (z̄(ω), z̄(ω)) as ν→∞where
z̄(ω) is the pathwise asymptotically stable solution of the averaged RODE

dz
dt

=
1
2

[F(z,O(1)
t ) + G(z,O(2)

t )],

that is

dz
dt

=
1
2

[e−a1O(1)
t f (ea1O(1)

t z −
b1

a1
) + 1(z + b2O(2)

t ) + a1O(1)
t z + b2O(2)

t ]. (26)

The equivalent SDE is given by

dZt = 1
2 [ f (Zt −

1
2 b2O(2)

t ea1O(1)
t ) + ea1O(1)

t 1(e−
1
2 a1O(1)

t (Zt + b1
a1

) + 1
2 b2O(2)

t )]dt
+ 1

2 [(a1Zt− + b1) � dL(α)
t + b2ea1O(1)

t dWt],

where

zt = e−
1
2 a1O(1)

t (Zt +
b1

a1
) −

1
2

b2O(2)
t .



S. Al-Azzawi, J. Liu, X. Liu / Filomat 32:6 (2018), 2219–2245 2236

In terms of the original system of the SDE (24), the coupled SDE have the form

dXt = [ f (Xt) + ν(ea1O(1)
t Yt − Xt) + ν( b1

a1
− b2O(2)

t ea1O(1)
t )]dt + (a1Xt + b1) � dLαt ,

dYt = [1(Yt) + ν(e−a1O(1) Xt − Yt) + ν(b2O(2)
t −

b1
a1

e−a1O(1)
t )]dt + b2dWt.

(27)

Then this system has a unique stationary stochastic solution (X̄ν
t , Ȳ

ν
t ),which is pathwise globally asymptot-

ically stable with

(X̄ν
t (ω), Ȳν

t (ω))→ (z̄t(ω)ea1O(1)
t −

b1

a1
, z̄t(ω) + b2O(2)

t ), as ν→∞,

where z̄t(ω) stationary solution of (26).

8.1. The uncoupled system when a1 , 0 and a2 = 0

In this section, we will prove the uncoupled equations SDE(24) has unique stochastic stationary solutions,
which are

dXt = f (Xt)dt + (a1Xt + b1) � dLαt ,
dYt = 1(Yt)dt + b2dWt,

(28)

where f , 1 are continuously differential, satisfy the one-sided dissipative Lipschitz conditions (2). Its
solution paths are generally not differentiable. Thus we rewrite

dXt = [ f (Xt) + (a1Xt + b1)O(1)
t ]dt + (a1Xt + b1) � dO(1)

t ,

dYt = [1(Yt) + b2O(2)
t ]dt + b2dO(2)

t ,
(29)

where O(1) and O(2), t ∈ R, is the stationary solution of

dO(1)
t = −O(1)

t dt + dLαt ,

and

dO(2)
t = −O(2)

t dt + dWt.

That is

O(1)
t = e−t

∫ t

−∞

eudLαu , O(2)
t = e−t

∫ t

−∞

eudWu, t ∈ R.

Then we transform (29) to the pathwise random ordinary differential equation

dx
dt = F(x,O(1)

t ) := e(−a1O(1)
t ) f (e(a1O(1)

t )x − b1
a1

) + a1O(1)
t x,

dy
dt = G(y,O(2)

t ) := 1(y + b2O(2)
t ) + b2O(2)

t .
(30)

The vector-field function

f̃ (x, z) = e−a1z f (ea1zx −
b1

a1
),

and

1̃(x, z) = 1(y + z)

in the system (30) satisfies a one-sided Lipschitz condition in its first variable uniformly in the second with
the same constant as the original drift coefficient f , 1, since we have

〈x1 − x2, f̃ (x1, z) − f̃ (x2, z)〉 6 −L ‖ x1 − x2 ‖
2
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and

〈y1 − y2, 1̃(y1, z) − 1̃(y2, z)〉 6 −L ‖ y1 − y2 ‖
2 .

we obtain that any of the two solutions of the RODE (30) satisfy pathwise the differential inequality

d
dt
‖ x1(t) − x2(t) ‖26 (−2L + 2O(1)

t ) ‖ x1(t) − x2(t) ‖2 (31)

and

d
dt
‖ y1(t) − y2(t) ‖26 −2L ‖ y1(t) − y2(t) ‖2, (32)

and hence we have

‖ x1(t) − x2(t) ‖26 e−2t(L− 1
t

∫ t
0 O(1)

τ dτ)
‖ x1(0) − x2(0) ‖2

and

‖ y1(t) − y2(t) ‖26 e−2tL
‖ y1(0) − y2(0) ‖2 .

Thus it follows by Lemma 3.3 that

lim
t→∞
‖ x1(t) − x2(t) ‖2= 0

and

lim
t→∞
‖ y1(t) − y2(t) ‖2= 0,

which means all solutions converge pathwise to each other.
In order to see what they converge to, we first observe that the RODEs (30) generates a random dynamical

system with φ(t, ω, x0) := x(t, ω), the solution of the RODEs (30) with (deterministic) initial value x0 at time
t = 0.Then we need to show that the RODEs (30) is asymptotically dissipative and has a pullback attractor.
Omitting ω for brevity, we have pathwise.

d
dt
‖ x ‖2 = 2〈x,F(x,O(1)

t )〉

= 2〈x, e−a1O(1)
t f (ea1O(1)

t x −
b1

a1
) + a1O(1)

t x〉

= 2e−2a1O(1)
t 〈ea1O(1)

t x, f (ea1O(1)
t )x −

b1

a1
) − f (−

b1

a1
)〉

+ 2〈x, e−a1O(1)
t f (−

b1

a1
)〉 + 2a1 ‖ x ‖2 O(1)

t 〉

6 (−L + 2a1O(1)
t ) ‖ x ‖2 +

1
L

e−2a1O(1)
t ‖ f (−

b1

a1
) ‖2 . (33)

Integration yields

‖ x(t) ‖2 6 ‖ x(t0) ‖2 e−L(t−t0)+2
∫ t

t0
a1O(1)

τ dτ

+
‖ f (− b1

a1
) ‖2

L

∫ t

t0

e−2a1O(1)
u e−L(t−u)e2

∫ t
t0

a1O(1)
τ dτdu.

Moreover, by Lemma 3.3 we have pathwise

lim
s→−∞

1
s

∫ 0

s
O(1)
τ dτ = lim

t→∞

1
t

∫ t

0
O(1)
τ dτ = 0.
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Thus we obtain

e2
∫ t

s O(1)
τ dτ 6 e

L
2 (t−s)

for s 6 0, t > 0 with | t |, | t0 |> Tω.
Now we can use pathwise pullback convergence (i.e. with t0 → −∞) to show that the closed ball

centered at the origin with random radius.

R2(ω) := 1 +
‖ f (− b1

a1
) ‖2

L

∫ 0

−∞

e−2a1O(1)
u eLue2

∫ 0
u a1O(1)

τ dτdu.

and

d
dt
‖ y ‖2 = 2〈y,G(y,O(2)

t )〉

= 2〈y, 1(y + b2O(2)
t ) + b2O(2)

t 〉

6 −L ‖ y ‖2 +
1
L
‖ 1(b2O(2)

t ) + b2O(2)
t ) ‖2 . (34)

Integration yields

‖ y(t) ‖2 6 ‖ y(t0) ‖2 e−L(t−t0) +
1
L

∫ t

t0

e−L(t−u)
‖ 1(b2O(2)

u ) + b2O(2)
u ‖

2 du.

Now we can use pathwise pullback can vergence (i.e. with t0 → −∞) to show that the closed ball centered
at the origin with random radius

R2(ω) := 1 +
1
L

∫ 0

∞

e−L(t−u)
‖ 1(b2O(2)

u ) + b2O(2)
u ‖

2 du,

is a pullback absorbing set for t > Tω. The Theorem 3.1 of RDS then gives us a random attractor {A(ω), ω ∈ Ω}.
The fact that all trajectories converge to each other forwards in time says. The sets in this random attractor
are singleton sets, i.e. A(ω) = {a(ω)}. When we transform back to the SDEs have the pathwise singleton set
attractor a(θtω), which is a stationary solution the SDEs, since the Ornstein-Uhlenbeck process is stationary.

8.2. Asymptotic behaviour of coupled synchronized system
Now, we will show that the stationary solution of coupled synchronized system converge when the

parameter ν is large enough. Now we consider the coupled RODEs system

dx
dt

= F(x,O(1)
t (ω)) + ν(y − x),

dy
dt

= G(y,O(2)
t (ω)) + ν(x − y),

with

F(x,O(1)
t (ω)) = e−a1O(1)

t f (ea1O(1)
t x −

b1

a1
) + ν(y − x) + a1O(1)

t x,

G(y,O(2)
t (ω)) = 1(y + b2O(2)

t (ω)) + ν(x − y) + b2O(2)
t .

Using the one-sided Lipschitz conditions on f and 1, we obtain similarly to (31) and(32) that

d
dt
‖x1(t) − x2(t)‖2 6 [−2L − ν + 2a1O(1)

t ]‖x1(t) − x2(t)‖2 + ν‖y1(t) − y2(t)‖2,
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and

d
dt
‖y1(t) − y2(t)‖2 6 [−2L − ν]‖y1(t) − y2(t)‖2 + ν‖x1(t) − x2(t)‖2.

and similarly to (33), (34) we obtain

d
dt
‖x(t)‖2 6 (−2L − ν + 2a1O(1)

t )‖x(t)‖2 + ν‖y(t)‖2 +
1
L

e(−2a1O(1)
t )
‖ f (−

b1

a1
)‖2,

and

d
dt
‖ y(t) ‖26 (−L − v) ‖ y(t) ‖2 +ν ‖ x(t) ‖2 +

1
L

(‖ 1(b2) ‖2 +|b2O(2)
t |

2)

Defining

Aν(t) =

(
−2L − ν + 2a1O(1)

t ν
ν −2L − ν

)
, t ∈ R

and

x(t) =

(
‖x1(t) − x2(t)‖2

‖y1(t) − y2(t)‖2

)
, t ∈ R.

Thus we can write the above inequalities as

d
dt

x 6 Aν(t)x

Due to a Gronwall-like inequality, we have

x(x) 6 e
∫ t

t0
Aν(s)dsx(t0).

Let

Ãν(t) =

(
−L − ν + 2a1O(1)

t ν
ν −L − ν

)
, t ∈ R,

x(t) =

(
‖x(t)‖2

‖y(t)‖2

)
, t ∈ R

and

H(t) =
1
L

 1
L e(−2O(1)

t )
‖ f (− b1

a1
)‖2

‖1(b2)‖2 + |b2O(2)
t |

2

 ,
we can write the above inequalities as

d
dt

x 6 Ãν(t)x + H(t).

Due to a Gronwall-like inequality, we have

x(x) 6 e
∫ t

t0
Ãν(s)dsx(t0) +

∫ t

t0

e
∫ t

s Ãν(τ)dτH(s)ds

component wise. Now, we need the following simple lemma.
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Lemma 8.1. We have

‖e
∫ t

0 Aν(τ)dτx‖ 6 e−Lt
‖x‖, x ∈ R2

for t > Tw and all ν > 1.

Proof. First note that the matrix
∫ t

0 Aν(τ)dτ is symmetric. Thus, the exists of a orthonormal basis of eigenvectors
u(1)
ν,t ,u

(2)
ν,t with eigenvalues λ(1)

ν,t , λ
(2)
ν,t , and we have

e
∫ t

0 Aν(τ)dτx = eλ
(1)
ν,t c(1)

x,ν,tu
(1)
ν,t + eλ

(2)
ν,t c(2)

x,ν,tu
(2)
ν,t ,

where

c(1)
x,ν,tu

(1)
ν,t + c(2)

x,ν,tu
(2)
ν,t = x.

Since u(1)
ν,t and u(2)

ν,t are orthogonal, we obtain

‖e
∫ t

0 Aν(τ)dτx‖2 = e2λ(1)
ν,t ‖c(1)

x,ν,tu
(1)
ν,t ‖

2 + e2λ(2)
ν,t ‖c(2)

x,ν,tu
(2)
ν,t ‖

2

6 e2max{λ(1)
ν,t +λ(2)

ν,t }‖x‖2.
(35)

The eigenvalues of
∫ t

0 Aν(τ)dτ are given by

λ(1/2)
ν,t = −(2L + ν)t +

∫ t

0
a1O(1)dτ ±

√
(
∫ t

0
a1O(1)

τ dτ)2 + ν2t2,

hence it follows by Lemma 3.3 that

λ(1/2)
ν,t 6 −Lt (36)

for |t| > Tw and all ν > 1.

Analogously to Lemma 8.1 we can show

Lemma 8.2. Let t0 6 0 and t > 0. We have

‖e
∫ t

t0
Ãν(τ)dτx‖ 6 e−

L
2 (t−t0)

‖x‖, x ∈ R2,

for |t0| , |t| > Tw and all ν > 1.

Now set

Cν(w) :=
1
L

∫ 0

−∞

e
∫ 0

u Ãν(τ)dτ

 e(−2O(1)
t )
‖ f (−b1

a1
)‖2

‖1(b2O(2)
t )‖2 + |b2O(2)

t |
2

 du

and define

R2
ν(w) = 1 + ‖Cν(w)‖2.

Then by pullback techniques and Lemma 8.2, we see that the random balls Bν(w) in R2d centered on the origin and
with radius Rν(w) are pullback absorbing. Moreover note that

d
dν
‖Cν(w)‖2 = 2

〈
d
dνCν(w),Cν(w)

〉
= 2

〈 (
−1 1
1 −1

)
Cν(w),Cν(w)

〉
6 0
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and consequently Rν(w) 6 R1(w) for ν > 1. Hence the random dynamical system generated by the coupled RODE
(24) has a random attractor Aν(w) in Bν(w) for each w. But we know that all solutions converge to each other pathwise
forwards in time. Thus the Aν(w) are singleton sets, say Aν(w) = (x̄ν(w), ȳν(w)).

Let us now estimate the difference of the components of the coupled system. We have pathwise

d
dt
|x − y|2 = 2〈x − y,

dx
dt
−

dy
dt
〉

= 2〈x − y, e−a1O(1)
t f (ea1O(1)

t x −
b1 − 1)

a1
) − 1(y + b2O(2)

t )〉

+2〈x − y, a1xO(1)
t 〉 + 2〈x − y,−b2O(2)

t 〉 + 2〈x − y, 2ν(y − x)〉

6 −4ν‖x − y‖2 + 2‖x − y‖(e−a1O(1)
t ‖ f (ea1O(1)

t x −
b1

a1
)‖ + ‖1(y + b2O(2)

t )‖

+‖a1xO(1)
t ‖ + ‖b2O(2)

t ‖)

6 −ν‖x − y‖2 +
1
ν

e−α1O(1)
t ‖ f (ea1O(1)

t x −
b1

a1
)‖2 +

1
ν
‖1(y + b2O(2)

t )‖2

+
1
ν
|b2O(2)

t |
2 +

1
ν
|a1O(1)

t |
2
‖x‖2

Hence labelling the solutions now with ν to indicate this dependence, we have

d
dt
‖xν − yν‖2 6 −ν‖xν − yν‖2 +

1
ν

Mν
T1,T2,w

with

Mν
T1,T2,w = sup

t∈[T1,T2]
(e−a1O(1)

t ‖ f (ea1O(1)
t x −

b1

a1
)‖2 + |a1O(1)

t |
2
‖x‖2)

+ sup
t∈[T1,T2]

‖1(y + b2O(2)
t )‖2 + sup

t∈[T1,T2]
(|b2O(2)

t |
2).

We can restrict ourselves without loss of generality to solutions in the compact absorbing balls Bν(w), which are all
contained in the common compact ball B1(w) for ν > 1. Hence Mν

T1,T2,w
is uniformly bounded in ν and we have

d
dt
‖xν − yν‖2 6 −ν‖xν − yν‖2 +

1
ν

Mν
T1,T2,w

with

MT1,T2,w = sup
ν>1

Mν
T1,T2,w,

from which we conclude that

‖xν(t) − yν(t)‖2 → 0, ν→∞,

uniformly in t ∈ [T1,T2] for any bounded T1 and T2.

8.3. The synchronized solution as ν→∞
Now we can prove the solution of ”averaged” RODEs is the attracting stationary solution.

Theorem 8.3. (x̄νn (t, ω), ȳνn (t, ω)) → (z̄(t, ω), z̄(t, ω)) pathwise uniformly on bounded time intervals [T1,T2] of R
for any sequence νn →∞, where z̄t(ω) is the attracting stationary solution of the ”averaged” RODEs

dz
dt = 1

2 [e−a1O(1)
t f (ea1O(1)

t z − b1
a1

) + 1(z + b2O(2)
t ) + a1O(1)

t z + b2O(2)
t ]. (37)

The equivalent SDEs is given by

dZt = 1
2 [ f (Zt −

1
2 b2O(2)

t ea1O(1)
t ) + ea1O(1)

t 1(e−
1
2 a1O(1)

t (Zt + b1
a1

) + 1
2 b2O(2)

t )]dt
+ 1

2 [(a1Zt− + b1) � dL(α)
t + b2ea1O(1)

t dWt].
(38)
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Proof. Define

z̄ν(ω) :=
1
2

(x̄ν(ω) + ȳν(ω))

and obseve that z̄ν(t, ω) = z̄ν(θtω) satisfies the RODEs

dz̄
dt

=
1
2

[e(−a1O(1)
t ) f (e(a1O(1)

t )z̄ −
b1

a1
) + 1(z̄t + b2O(2)

t ) + a1O(1)
t z̄ + b2O(2)

t ].

Thus

sup
t∈[T1,T2]

|
d
dt

z̄ν(t, ω)| 6MT1,T2,ω < ∞,

by continuity and the fact that these solutions belong to the common compact ball B1(ω). We can use the
Ascoli theorem to conclude that there is a subsequence νn j → ∞ such that z̄n j (t, ω) → z̄(t, ω) as n j → ∞.
Now

z̄νnj
(t, ω) − ȳνnj

(t, ω) =
1
2

(x̄νnj
(t, ω) − ȳνnj

(t, ω))→ 0,

z̄νnj
(t, ω) − x̄νnj

(t, ω) =
1
2

(ȳνnj
(t, ω) − x̄νnj

(t, ω))→ 0,

as νn j →∞, see the previous section, so

x̄νnj
(t, ω) = 2z̄νnj

(t, ω) − ȳn j (t, ω)→ z̄(t, ω),

ȳνnj
(t, ω) = 2z̄νnj

(t, ω) − x̄n j (t, ω)→ z̄(t, ω),

as ν̄n j →∞. Moreover, using the integral equation representation

z̄ν(t, ω) = z̄(T1, ω) +
1
2

∫ t

T1

e−a1O(1)
s (ω) f (ea1O(1)

s x̄ν(s, ω) −
b1

a1
)ds + 1(ȳν(s, ω) + b2O(2)

t )ds

+
1
2

∫ t

T1

a1x̄ν(s, ω)O(1)
s ds +

1
2

∫ t

T1

b2O(2)
s ds.

It follows that the νn j subsequence converges pathwise to

z̄ν(t, ω) = z̄(T1, ω) +
1
2

∫ t

T1

e−a1O(1)
s (ω) f (ea1O(1)

s z̄ν(s, ω) −
b1

a1
)ds + 1(z̄ν(s, ω) + b2O(2)

t )ds

+
1
2

∫ t

T1

a1z̄ν(s, ω)O(1)
s ds +

1
2

∫ t

T1

b2O(2)
s ds.

on the interval [T1,T2], so z̄(t, ω) is a solution of the RODEs(37) for all t ∈ R. By the same techniques
as in the previous sections, it has a random attractor consisting of a singleton set formed by a single
stationary stochastic process which thus must be equal to z̄(t, ω). Finally, we note that pathwise all possible
subsequences here have the same limit, so by Lemma 3.2, every full sequence z̄ν(t, ω) actually converges to
z̄(t, ω) for the whole sequence νn →∞.

Corollary 8.4. (x̄ν(t, ω), ȳν(t, ω)) → (z̄(t, ω), z̄(t, ω)) as ν → ∞ pathwise on any bounded time interval [T1,T2] of
R.
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8.4. Example and simulation of synchronization

Example 8.5. Now, we will consider two stochastic differential equations

dXt = −Xtdt + (0.95Xt + 0.05) � dL0.75
t

and

dYt = −2Ytdt + 0.5dWt.

The corresponding RODE are

dx
dt

= −(x −
0.05
0.95

e−0.95O(1)
t ) + 0.95xO(1)

t

and

dy
dt

= −2y − 0.5O(2)
t ,

where

O(1)
t = e−t

∫ t

−∞

eudL0.75
u , O(2)

t = e−t
∫ t

−∞

eudWu.

The averaged RODE is

dz
dt

= z(−
3
2

+
1
2

0.95O(1)
t ) −

1
2

0.5O(2)
t +

1
2

(
0.05
0.95

e−0.95O(1)
t )

and the equivalent stochastic differential equation is

dZt = −
1
2 (Zt + 0.05

0.95 −
1
2 eη

(1)
t 0.5η(2)

t )dt + 1
2 ( 0.05

0.95 e−η
(1)
t ) + 1

2 (0.95Zt + 0.05 − 1
2 0.24η(2)

t e−η
(1)
t ) � dL0.75

t

+ 1
2 eη

(1)
t 0.5dWt

with the explicit solution

z(t) = e−
3
2 (t−t0)+ 1

2

∫ t
t0

0.95O(1)
τ dτz0 +

1
2

∫ t

t0

e−
3
2 (t−t0)+ 1

2

∫ t
t0

0.95O(1)
τ dτ(−0.5O(2)

u +
0.05
0.95

e−0.95O(1)
u )du.

The pullback limit as t0 → −∞ gives a stationary solution

z̃(t) =
1
2

∫ t

−∞

e−
3
2 (t−t0)+ 1

2

∫ t
−∞

(0.95O(1)
τ dτ(−0.5O(2)

u +
0.05
0.95

e−0.95O(1)
u )du.

and attracts all other solutions pathwise.
Figure 2 shows the trajectories of the numerical solution of the system with different values of ν. It shows that as ν
increases the trajectories approach to each other faster.
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Figure 2: A trajectories of the coupled system dXt = −Xtdt + ν(Yt − Xt)dt + (0.95Xt + 0.05) � dL(0.75)
t , dYt = −2Ytdt + ν(Xt − Yt)dt + 0.5dWt and the

corresponding trajectories of the averaged system dZt = −3/2(Zt) + (0.95Zt + 0.05) � dL(0.75)
t + 0.5dWt for four values of ν
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