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Abstract. In this paper, we introduce and study the essential approximate pseudospectrum of closed,
densely defined linear operators in the Banach space. We begin by the definition and we investigate
the characterization, the stability by means of quasi-compact operators and some properties of these
pseudospectrum.

1. Introduction

Instead of the spectra that is the traditional tool. The theory of the pseudospectra is a new method
for studying matrices and linear operators . It reveals information on the behavior of normal matrices or
operators. However, it is less informative as the matrix or the operator are non-normal. Pseudospectra
have nevertheless proved to be an efficient tool to study them. They provide an analytical and graphical
alternative to study this type of case. The definition of pseudospectra of a closed densely defined linear
operator T, for every ε > 0, is given by

σε(T) := σ(T) ∪
{
λ ∈ C such that ‖(λ − T)−1

‖ >
1
ε

}
.

The pseudospectrum is defined, sometimes as

Σε(T) := σ(T) ∪
{
λ ∈ C such that ‖(λ − T)−1

‖ ≥
1
ε

}
.

By convention, we write ‖(λ − T)−1
‖ = ∞ if λ ∈ σ(T), (spectrum of T). For ε > 0, it can be shown that σε(T)

is a larger set and is never empty. The pseudospectra of T are a family of strictly nested closed sets, which
grow to fill the whole complex plane as ε→∞ (see [3, 8, 18, 19]). From these definitions, it follows that the
pseudospectra associated with various ε are nested sets. Then for all 0 < ε1 < ε2, we have{

σ(T) ⊂ σε1 (T) ⊂ σε2 (T), and
σ(T) ⊂ Σε1 (T) ⊂ Σε2 (T),
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and that the intersections of all the pseudospectra are the spectra,⋂
ε>0

σε(T) = σ(T) and
⋂
ε>0

Σε(T) = Σ(T).

In Refs [1, 2, 4, 5, 10, 11], A. Ammar and A. Jeribi introduced the definition of Ammar-Jeribi pseudospectrum
of a closed densely defined linear operator on a Banach space X by

σw,ε(T) :=
⋂

K∈K (X)

σε(T + K),

:=
⋃
‖D‖<ε

σw(T + D) (see [1, Theorem 2.3]),

where
σw(T) :=

⋂
K∈K (X)

σ(T + K),

andK (X) is the subspace of compact operators from X into X.

One impetus for writing this paper is the issue of approximate pseudospectrum introduced by M. P.
H. Wolff in (2001). The latter study motivates us to investigate the essential approximate pseudospectrum
of closed, densely defined linear operators on a Banach space. We survey the historical development of
this subject. In 1967, J. M. Varah [22] introduced the first idea of pseudospectra. In 1986, J. H. Wilkinson
[23] came with the modern interpretation of pseudospectrum where he defined it for an arbitrary matrix
norm induced by a vector norm. Throughout the 1990s, L. N. Trefethen [17–19, 21] not only initiated the
study of pseudospectrum for matrices and operators, but also he talked of approximate eigenvalues and
pseudospectrum and used this notion to study interesting problems in mathematical physics. By the same
token, several authors worked on this field. For example, we may refer to E. B. Davies [7], A. Harrabi [8]
and M. P. H. Wolff [24] who has introduced the term approximate pseudospectrum for linear operators.

In this paper, the notion of essential approximate pseudospectrum can be extending our studies of this
process from the essential spectrum to the essential approximate spectrum. For ε > 0 and closed densely
defined operator T, we define

σeap,ε(T) =
⋂

K∈K (X)

σap,ε(T + K), (1)

Σeap,ε(T) =
⋂

K∈K (X)

Σap,ε(T + K),

where

σap,ε(T) := σap(T) ∪
{
λ ∈ C such that inf

‖x‖=1,x∈D(T)
‖(λ − T)x‖ < ε

}
,

Σap,ε(T) := σap(T) ∪
{
λ ∈ C such that inf

‖x‖=1,x∈D(T)
‖(λ − T)x‖ ≤ ε

}
,

and
σap(T) :=

{
λ ∈ C such that inf

‖x‖=1,x∈D(T)
‖(λ − T)x‖ = 0

}
.

In the following, we measure the sensitivity of the set σap(T) with respect to additive perturbations of T by
an bounded operator D of a norm less than ε. So we define the approximate pseudospectrum of T by

σap,ε(T) =
⋃
‖D‖<ε

σap(T + D), (see Theorem 3.3) (2)
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and we characterize the essential approximate pseudospectrum.

The essential approximate pseudospectrum σeap,ε(.) nicely blends these properties of the essential and
the approximate pseudospectrum, and accordingly we are interested by the following essential approximate
spectrum

σeap(T) :=
⋂

K∈K (X)

σap(T + K). (3)

We can now see that (1) inherits an ε-version from (3). We will also show that there is an essential version
of (2), that is

σeap,ε(T) =
⋃
‖D‖<ε

σeap(T + D) (see Theorem 4.3).

The paper is organized as follows. Section 2 contains preliminary and auxiliary properties that we will
need in order to prove the main results of the other sections. The main aim of section 3 is to characterize
the essential approximate pseudospectrum of closed, densely defined linear operators on a Banach space.
Then we give different definitions of approximate pseudospectrum and we establish relations between
approximate pseudospectrum and the union of the spectra approximate point of all perturbed operators
with perturbations that have norms strictly less than ε. Finally, we will prove the invariance of the essential
approximate pseudospectrum and establish some results of perturbation on the context of closed, densely
defined linear operators on a Banach space.

2. Preliminaries

The goal of this section consists in establishing some preliminary results which will be needed in the
sequel. Throughout the paper, we denote byL(X) (resp. C(X)) the set of all bounded (resp. closed, densely
defined) linear operators from X into X. For T ∈ C(X), we denote by ρ(T), N(T) and R(T), respectively, the
resolvent set, the null space and the range of T. The nullity of T, α(T), is defined as the dimension ofN(T)
and the deficiency of T, β(T), is defined as the codimension of R(T) in X. The set of upper semi-Fredholm
operators from X into X is defined by

Φ+(X) := {T ∈ C(X) : α(T) < ∞, R(T) is closed in X},

the set of all lower semi-Fredholm operators is defined by

Φ−(X) := {T ∈ C(X) : β(T) < ∞, R(T) is closed in X}.

The set of all semi-Fredholm operators is defined by

Φ±(X) := Φ+(X) ∪Φ−(X), and

the class Φ(X) of all Fredholm operators is defined by

Φ(X) := Φ+(X) ∩Φ−(X).

The set of bounded Fredholm operators from X into X is defined by

Φb(X) := Φ(X) ∩ L(X).

The set of bounded upper (resp. lower ) semi-Fredholm operators from X into X is defined by

Φb
+(X) := Φ+(X) ∩ L(X) (resp. Φb

−(X) := Φ−(X) ∩ L(X)).

The index of a semi-Fredholm operator T is defined by i(T) = α(T) − β(T). Clearly, i(T) is an integer or ±∞.
If T ∈ Φ(X), then i(T) < ∞. If T ∈ Φ+(X)\Φ(X) then i(T) = −∞; and if T ∈ Φ−(X)\Φ(X) then i(T) = +∞.
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Definition 2.1. Let X be a Banach space.

(i) An operator F ∈ L(X) is called an upper semi-Fredholm perturbation, if T + F ∈ Φ+(X), whenever, T ∈ Φ+(X).
The set of upper semi-Fredholm perturbations is denoted by F+(X).

(ii) An operator T ∈ C(X) is said to have a left Fredholm inverse if there are maps Rl ∈ L(X) and K ∈ K (X) such that
I + K extends RlT. The operator Rl is called left Fredholm inverse of T.

If we replace Φ+(X) by Φb
+(X) in Definition 2.1, we obtain the set F b

+(X).

Theorem 2.2. Let X a Banach space.

(i) [12, Lemma 2.1] Let T ∈ C(X) and K ∈ L(X). Then,

(i1) If T ∈ Φ+(X) and K ∈ F+(X), then T + K ∈ Φ+(X) and i(T + K) = i(T).

(i2) If T ∈ Φb
+(X) and K ∈ F b

+(X), then T + K ∈ Φb
+(X) and i(T + K) = i(T).

(ii) [10, Theorem 6.3.1] If the set Φb(X) is not empty, then

(ii1) F ∈ F b
+(X) and T ∈ L(X) imply that TF ∈ F b

+(X) and FT ∈ F b
+(X).

(iii)[12, Theorem 3.9] Let T ∈ Φ+(X). Then the following statements are equivalent:

(iii1) i(T) ≤ 0.

(iii2) T can be expressed in the form T = S + K where K ∈ K (X) and S ∈ C(X) is an operator with closed range

and α(S) = 0.

Definition 2.3. Let X be a Banach space.

(i) An operator T ∈ L(X) is called compact, written T ∈ K (X), if T(B) is relatively compact in X for every bounded
subset B ⊂ X.

(ii) An operator B is called T-bounded, ifD(T) ⊂ D(B) and there exists nonnegative constant c such that

‖Bx‖ ≤ c(‖x‖ + ‖Tx‖).

(iii) An operator T ∈ L(X) is said to be quasi-compact operator, written T ∈ QK (X), if there exists a compact operator
K and an integer m such that

‖Tm
− K‖ < 1.

For ε > 0 and closed densely defined operator T, we define the sets

Mε(X) =
{
K ∈ L(X) : ∀λ ∈ ρ(T + D + K), (λ − T − K −D)−1K ∈ QK (X)

for all D ∈ L(X) such that ‖D‖ < ε
}
,

and

Tε(X) =
{
K ∈ L(X) : ∀λ ∈ ρ(T + D + K), K(λ − T − K −D)−1

∈ QK (X)

for all D ∈ L(X) such that ‖D‖ < ε
}
.

The following Lemma is developed by P. H. Wolff in [24, Lemma 2.1].

Lemma 2.4. If T ∈ C(X) and ε > 0, then Σap,ε(T) is closed.
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Example 2.5. The following example introduced by P. H. Wolff [24] also shows that: Σap,ε(T) , Σε(T), for ε > 0.
Let

l2(N) :=

(x j) j≥1 such that x j ∈ C and
+∞∑
j=1

|x j|
2 < ∞


be equipped with the following norm

‖x‖ :=
∞∑
j=1

|x j|
2

and let T be the right shift on X given by

{
T : l2(N) −→ l2(N),

x −→ Tx := (0, x1, x2, ..., xn, ...).

Since T is an isometry on X, it is easily checked that

inf
‖x‖=1,x∈D(T)

‖(λ − T)x‖ ≥ 1 − |λ|

holds for all λ with 0 ≤ |λ| ≤ 1. Moreover

Σap(T) =
{
λ ∈ C such that |λ| = 1

}
and

Σap,ε(T) =
{
λ ∈ C such that |λ| ≥ 1 − ε

}
.

It is proved in [24] that for all 0 < ε < 1,{
λ ∈ C such that |λ| ≤ ε

}
⊂ Σε(T)\Σap,ε(T).

Now, we present the following simple and useful result:

Proposition 2.6. Let T ∈ C(X) and ε > 0.

(i) σap,ε(T) ⊂ σε(T).

(ii) σap(T) =
⋂
ε>0

σap,ε(T).

(iii) If ε1 < ε2, then σap(T) ⊂ σap,ε1 (T) ⊂ σap,ε2 (T).

(iv) If T ∈ L(X) and λ ∈ σap,ε(T), then |λ| < ε + ‖T‖.

(v) If α ∈ C and ε > 0, then σap,ε(T + αI) = α + σap,ε(T).

(vi) If α ∈ C\{0} and ε > 0, then σap,|α|ε(αT) = ασap,ε(T).

Remark 2.7. (i) Let T ∈ C(X) and ε > 0, then the set Σap,ε(T) is obtained from the set σap,ε(T) by taking a non-strict
inequality instead of a strict inequality. This set makes the approximate pseudospectrum an open set.

(ii) It follows from the set Σap,ε(T) and the set σap,ε(T) that the boundary of Σap,ε(T), ∂Σap,ε(T) satisfies

∂Σap,ε(T) =

{
λ ∈ C such that inf

‖x‖=1,x∈D(T)
‖(λ − T)x‖ = ε

}
,

and ∂Σap,ε(T) depends continuously on ε.

(iii) σap,ε(T) and Σap,ε(T) are related as follows

Σap,ε(T) = σap,ε(T) ∪
{
λ ∈ C such that inf

‖x‖=1,x∈D(T)
‖(λ − T)x‖ = ε

}
.
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3. The approximate pseudospectrum.

In this section, we turn to the problem when the closure of σap,ε(T) is equal to Σap,ε(T) holds. We
define the following condition for T :

(H) :


There is no open set in ρap(T) := C\σap(T) on which the

λ −→ f (λ) = inf
‖x‖=1,x∈D(T)

‖(λ − T)x‖ is constant.

Our first result is the following.

Theorem 3.1. Let T ∈ C(X) and ε > 0. Then, lim inf
ε→ε0

Σap,ε(T) = Σap,ε0 (T).

Proof. The approximate pseudospectrum is a family increase in function ε. Then for 0 < ε0 < ε, we have
σap(T) ⊆ Σap,ε0 (T) ⊆ Σap,ε(T). Hence

lim inf
ε→ε0

Σap,ε(T) =
⋂
ε>ε0

Σap,ε(T).

Proposition 2.6-(ii) justifies the equality
⋂
ε>ε0

Σap,ε(T) = Σap,ε0 (T).

Theorem 3.2. Let T ∈ C(X) and ε > 0. If (H) is satisfied, then σap,ε(T) = Σap,ε(T).

Proof. Since σap,ε(T) ⊂ Σap,ε(T) and Σap,ε(T) is closed, then

σap,ε(T) ⊂ Σap,ε(T).

In order to prove the inverse inclusion, we take λ ∈ Σap,ε(T). We notice the existence of two cases:

1stcase : If λ ∈ σap,ε(T), then λ ∈ σap,ε(T).

2ndcase : If λ ∈ Σap,ε(T) \ σap,ε(T), then inf‖x‖=1,x∈D(T) ‖(λ − T)x‖ = ε.
By using Hypothesis (H), then there exists a sequence λn ∈ ρap(T) such that λn → λ, and

inf
‖x‖=1,x∈D(T)

‖(λn − T)x‖ < inf
‖x‖=1,x∈D(T)

‖(λ − T)x‖ = ε.

We deduce that λn ∈ σap,ε(T) and also that λn → λ, which implies that λ ∈ σap,ε(T). Then,

Σap,ε(T) ⊂ σap,ε(T).

Theorem 3.3. Let T ∈ C(X) and ε > 0. The following conditions are equivalent:

(i) λ ∈ σap,ε(T).

(ii) There exists a bounded operator D ∈ L(X) such that ‖D‖ < ε and λ ∈ σap(T + D).

Proof. (i)⇒ (ii) Let λ ∈ σap,ε(T). There are two possible cases:
1stcase : If λ ∈ σap(T), then it is sufficient to take D = 0.

2ndcase : If λ < σap(T), then there exists x0 ∈ X such that ‖x0‖ = 1 and ‖(λ − T)x0‖ < ε. By the Hahn Banach
Theorem, (see [15]) there exists x′ ∈ X′ (dual of X) such that ‖x′‖ = 1 and x′(x0) = ‖x0‖.Consider the operator
D defined by the formula {

D : X −→ X,
x −→ Dx := x′(x)(λ − T)x0,
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then D is a linear operator everywhere defined on X. It is bounded, since

‖Dx‖ = ‖x′(x)(λ − T)x0‖ ≤ ‖x′‖‖x‖‖(λ − T)x0‖, for x , 0.

Therefore,
‖Dx‖
‖x‖

≤ ‖(λ − T)x0‖.

Hence ‖D‖ < ε. We claim that
inf

‖x‖=1,x∈D(T)
‖(λ − T −D)x‖ = 0.

Let x0 ∈ X, then

inf
‖x‖=1,x∈D(T)

‖(λ − T −D)x‖ ≤ ‖(λ − T −D)x0‖ ≤ ‖(λ − T)x0 − x′(x0)(λ − T)x0‖ = 0.

(ii) ⇒ (i) We assume that there exists a bounded operator D ∈ L(X) such that ‖D‖ < ε and λ ∈ σap(T + D),
which means that

inf
‖x‖=1,x∈D(T)

‖(λ − T −D)x‖ = 0.

In order to prove that
inf

‖x‖=1,x∈D(T)
‖(λ − T)x‖ < ε,

we can write,
‖(λ − T)x0‖ = ‖(λ − T −D + D)x0‖ ≤ ‖(λ − T −D)x0‖ + ‖Dx0‖.

Then,
inf

‖x‖=1,x∈D(T)
‖(λ − T)x‖ < ε.

We can derive from Theorem 3.3 the following result:

Corollary 3.4. Let T ∈ C(X) and ε > 0. Then, σap,ε(T) =
⋃
‖D‖<ε

σap(T + D).

Theorem 3.5. Let T ∈ C(X) and ε > 0. Let E ∈ L(X) such that ‖E‖ < ε. Then,

σap,ε−‖E‖(T) ⊆ σap,ε(T + E) ⊆ σap,ε+‖E‖(T).

Proof. Let λ ∈ σap,ε−‖E‖(T). Then by Theorem 3.3 there exists a bounded operator D ∈ L(X) with ‖D‖ < ε−‖E‖
such that

λ ∈ σap(T + D) = σap

(
(T + E) + (D − E)

)
.

The fact that ‖D − E‖ ≤ ‖D‖ + ‖E‖ < ε allows us to deduce that λ ∈ σap,ε(T + E). Using a similar reasoning to
the first inclusion, we deduce that

λ ∈ σap,ε+‖E‖(T).

The closure of σap,ε(T) is always contained in Σap,ε(T), but equality holds if, and only if, T does not have
constant infimum norm on any open set. The present part addresses the question on whether or not a
similar equality holds in the case of non-strict inequalities:

Σap,ε(T) =?
⋃
‖D‖≤ε

σap(T + D).
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Theorem 3.6. Let T ∈ C(X) and ε > 0. Then,⋃
‖D‖≤ε

σap(T + D) ⊂ Σap,ε(T). (4)

Proof. Let λ < Σap,ε(T), then inf
‖x‖=1,x∈D(T)

‖(λ − T)x‖ > ε. In order to prove that

λ <
⋃
‖D‖≤ε

σap(T + D),

which means that, inf
‖x‖=1,x∈D(T)

‖(λ − T −D)x‖ > 0 for all D ∈ L(X) such that ‖D‖ ≤ ε, we have

inf
‖x‖=1,x∈D(T)

‖(λ − T −D)x‖ ≥ inf
‖x‖=1,x∈D(T)

∣∣∣∣‖(λ − T)x‖ − ‖Dx‖
∣∣∣∣

≥ inf
‖x‖=1,x∈D(T)

∣∣∣∣‖(λ − T)x‖ − ε‖x‖
∣∣∣∣ > 0.

We first consider the following example:

Example 3.7. Let l1(N) =

(x j) j≥1 such that x j ∈ C and
+∞∑
j=1

|x j| < ∞

 be equipped with the following norm

‖x‖ :=
∞∑
j=1

|x j|

and we define the operator T by 

{
T : l1(N) −→ l1(N),

x −→ Tx,

where Tx :=

(1 + 2ε)x1 −

∞∑
j=2

x j,−ε2x2, ...,−εnxn, ...

 ,
x = (x1, x2, ..., xn, ...) ∈ l1(N) and εn, where n = 2, 3... is a sequence of positive numbers monotonically decreasing to
0. It was proved by E. Shargorodsky in [16], that inf

‖x‖=1,x∈D(T)
‖(2εI − T)x‖ = ε,

and for all D ∈ L(X), ‖D‖ ≤ ε, we have 2ε ∈ ρ(T + D).
(5)

It follows from (5) that 2ε ∈ Σap,ε(T) and 2ε < σap(T + D) for all ‖D‖ ≤ ε. Then

2ε <
⋃
‖D‖≤ε

σap(T + D).

Hence ⋃
‖D‖≤ε

σap(T + D)  Σap,ε(T).

Theorem 3.8. Let T ∈ C(X) and ε > 0. If (H) is satisfied, then

Σap,ε(T) =
⋃
‖D‖≤ε

σap(T + D). (6)
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Proof. It follows from inclusion (4) and Theorem 3.3 that

σap,ε(T) ⊆
⋃
‖D‖≤ε

σap(T + D) ⊆ Σap,ε(T).

If (H) is satisfied, then σap,ε(T) = Σap,ε(T), hence⋃
‖D‖≤ε

σap(T + D) = Σap,ε(T).

It follows from inclusion (4) and Theorem 3.3 that (6) is an equality if, and only if, the level set{
λ ∈ C such that inf

‖x‖=1, x∈D(T)
‖(λ − T)x‖ = ε

}
is a subset of

⋃
‖D‖=ε

σap(T + D).

4. Essential approximate pseudospectrum.

In this section, we have the following useful stability result for the essential approximate pseu-
dospectrum.

Definition 4.1. Let T ∈ C(X). We define the essential approximate spectrum of the operator T by

σeap(T) :=
⋂

K∈ K (X)

σap(T + K).

In what follows, we will bring a new definition of the essential approximate pseudospectrum.

Definition 4.2. Let T ∈ C(X) and ε > 0. We define the essential approximate pseudospectrum of the operator T by

σeap,ε(T) =
⋂

K∈K (X)

σap,ε(T + K).

In what follows, Theorem 4.3 gives a characterization of the essential approximate pseudospectrum by
means of semi-Fredholm operators.

Theorem 4.3. Let T ∈ C(X) and ε > 0. Then the following properties are equivalent:

(i) λ < σeap,ε(T).

(ii) For all D ∈ L(X) such that ‖D‖ < ε, we have

λ − T −D ∈ Φ+(X) and i(λ − T −D) ≤ 0.

Proof. (i)⇒ (ii) Let λ < σeap,ε(T). It follows that there exists a compact operator K on X such that

λ < σap,ε(T + K).

By using Theorem 3.3, we notice that λ < σap(T + D + K), for all D ∈ L(X) such that ‖D‖ < ε. So,

λ − T −D − K ∈ Φ+(X) and i(λ − T −D − K) ≤ 0,

for all D ∈ L(X) such that ‖D‖ < ε. Using Theorem 2.2, we get, for all D ∈ L(X) such that ‖D‖ < ε,

λ − T −D ∈ Φ+(X) and i(λ − T −D) ≤ 0.
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(ii)⇒ (i) We assume that for all D ∈ L(X) such that ‖D‖ < ε we have

λ − T −D ∈ Φ+(X) and i(λ − T −D) ≤ 0.

Based on Lemma 2.2, λ−T−D can be expressed in the form λ−T−D = S+K,where K ∈ K (X) and S ∈ C(X)
is an operator with closed range and α(S) = 0. So

λ − T −D − K = S and α(λ − T −D − K) = 0.

By using [15, Theorem 3.12] there exists a constant c > 0 such that

‖(λ − T −D − K)x‖ ≥ c‖x‖, for all x ∈ D(T).

This proves that inf
x∈D(T), ‖x‖=1

‖(λ−T−D−K)x‖ ≥ c > 0. Thus λ < σap(T+D+K), and therefore λ < σeap,ε(T).

Remark 4.4. It follows immediately from Theorem 4.3 that λ < σeap,ε(T) if, and only if, for all D ∈ L(X) such that
‖D‖ < ε we obtain

λ − T −D ∈ Φ+(X) and i(λ − T −D) ≤ 0.

This is equivalent to

σeap,ε(T) =
⋃
‖D‖<ε

σeap(T + D).

Proposition 4.5. Let T ∈ C(X) and ε > 0. Then,

(i)
⋂
ε>0

σeap,ε(T) = σeap(T).

(ii) If ε1 < ε2, then σeap(T) ⊂ σeap,ε1 (T) ⊂ σeap,ε2 (T).
(iii) σeap,ε(T + F) = σeap,ε(T) for all F ∈ K (X).

Proof. (i) σeap(T) ⊂ σeap,ε(T). Indeed, Let λ < σeap,ε(T). Then, there exists K ∈ K (X), such that

inf
x∈D(X),‖x‖=1

‖(λ − T − K)x‖ > ε > 0.

Hence λ < σeap(T), and so

σeap(T) ⊂
⋂
ε>0

σeap,ε(T).

Conversely, let λ ∈
⋂
ε>0

σeap,ε(T). Hence, for all ε > 0, we have λ ∈ σeap,ε(T). Then, for every K ∈ K (X) we

obtain λ ∈ σap,ε(T + K). This implies that

inf
x∈D(X), ‖x‖=1

‖(λ − T − K)x‖ < ε.

Taking limits as ε→ 0+, we infer that λ ∈ σeap(T).

(ii) Let λ ∈ σeap,ε1 (T), then there exists K ∈ K (X), such that

inf
x∈D(X), ‖x‖=1

‖(λ − T − K)x‖ < ε1 < ε2.

So, λ ∈ σeap,ε2 (T).

(iii) It is clear from Definition of the essential approximate pseudospectrum .
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Theorem 4.6. Let T ∈ C(X) and ε > 0. Then, for all E ∈ L(X), we have

(i) σeap,ε−‖E‖(T) ⊆ σeap,ε(T + E) ⊆ σeap,ε+‖E‖(T).

(ii) For every α, β ∈ C with β , 0
σeap,ε(αI + βT) = α + βσeap,ε|β|(T).

Proof. The proof of this theorem is inspired from the proof of Theorem 3.5 and Propositions 2.6 .

The following result gives the essential approximate spectrum of the operator T in terms of quasi-compact
operators.

Theorem 4.7. Let T ∈ C(X) with nonempty resolvent set. Then,

σeap,ε(T) =
⋂

K∈ Mε(X)

σap,ε(T + K).

Proof. Letλ <
⋂

K∈ Mε(X)

σap,ε(T+K), then there exists K ∈ Mε(X) such that for every ‖D‖ < ε andλ ∈ ρ(T+D+K),

we have (λ − T −D − K)−1K ∈ QK (X) and λ < σap,ε(T + K). Using [6, Theorem 1.6] we obtain that

I + (λ − T −D − K)−1K ∈ Φ(X) and i(I + (λ − T −D − K)−1K) = 0.

Since we can write
λ − T −D = (λ − T −D − K)(I + (λ − T −D − K)−1K).

We conclude that for all D ∈ L(X) such that ‖D‖ < ε

λ − T −D ∈ Φ+(X) and i(λ − T −D) = i(λ − T −D −M) ≤ 0.

By using Theorem 4.3, we obtain λ < σeap,ε(T). The opposite inclusion follows fromK (X) ⊆ Mε(X). Then,⋂
K∈ Mε(X)

σap,ε(T + K) ⊆
⋂

K∈K (X)

σap,ε(T + K).

Corollary 4.8. Let T ∈ L(X) with nonempty resolvent set. Then,

σeap,ε(T) =
⋂

K∈ Tε(X)

σap,ε(T + K).

It follows immediately, from Theorem 4.7, that

Remark 4.9. Let T ∈ C(X) and ε > 0.

(i) Using Theorem 4.7, we infer that σeap,ε(T + F) = σeap,ε(T) for all F ∈ Mε(X).

(ii) Let I(X) be a subset of L(X). IfK (X) ⊂ I(X) ⊂ Mε(X), then

σeap,ε(T) =
⋂

M∈I(X)

σap,ε(T + M).

We have σeap,ε(T + J) = σeap,ε(T) for all J ∈ I(X).

Theorem 4.10. Let T,B ∈ C(X) and ε > 0 and λ−T −D ∈ Φ+(X) for every ‖D‖ < ε. If, there exists a left Fredholm
inverse Tλ,ε of λ − T −D such that BTλ,ε is a quasi-compact operator, then σeap,ε(T + B) ⊆ σeap,ε(T).
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Proof. (i) Let λ < σeap,ε(T), then for all D ∈ L(X) such that ‖D‖ < ε we have

λ − T −D ∈ Φ+(X) and i(λ − T −D) ≤ 0.

Let Tλ,ε be the left Fredholm inverse of λ − T −D, then there exists K ∈ K (X) such that

Tλ,ε(λ − T −D) = I − K on X. (7)

We infer from Eq. (7) that the operator λ − T − B −D can be written in the form

λ − T − B −D = λ − T −D − (BTλ,ε(λ − T −D) + BK)
= (I − BTλ,ε)(λ − T −D) − BK. (8)

Since BTλ,ε ∈ QK (X) and applying [6, Theorem 1.6] we obtain that

I − BTλ,ε ∈ Φ(X) and i(I − BTλ,ε) = 0.

Consequently, I − BTλ,ε ∈ Φ+(X). It follows from Eq. (8) and [10, Lemma 2.1]

(I − BTλ,ε)(λ − T −D) ∈ Φ+(X),
and, i((I − BTλ,ε)(λ − T −D)) = i(I − BTλ,ε) + i(λ − T −D)

= i(λ − T −D) ≤ 0.

Hence,

λ − T − B −D ∈ Φ+(X) and i(λ − T − B −D) ≤ 0.

Then, λ < σeap,ε(T + B). Thus, σeap,ε(T + B) ⊆ σeap,ε(T).

By using a similar reasoning as Theorem 4.7, we will give a fine characterization of σeap,ε(.) by means of
T + D-bounded perturbations. For this way we define the set

Rε(X) =
{
K ∈ C(X) : for all D ∈ L(X) such that ‖D‖ < ε, K is (T + D)-bounded

and K(λ − T −D − K)−1
∈ QK (X) for some λ ∈ ρ(T + D + K)

}
.

Theorem 4.11. Let T ∈ C(X) and ε > 0. Then,

σeap,ε(T) =
⋂

K∈Rε(X)

σap,ε(T + K).

Proof. (i) BecauseK (X) ⊆ Rε(X), then⋂
K∈Rε(X)

σap,ε(T + K) ⊆
⋂

K∈K (X)

σap,ε(T + K) := σeap,ε(T).

Conversely, let λ <
⋂

K∈Rε(X)

σap,ε(T + K) then there exists K ∈ Rε(X) such that λ < σap,ε(T + K), which means

that for all D ∈ L(X) such that ‖D‖ < εwe have λ− T −D−K is injective. Using [6, Theorem 1.6] we obtain
that

I + (λ − T −D − K)−1K ∈ Φ(X) and i(I + (λ − T −D − K)−1K) = 0.

In the same manner, we can write λ − T −D in the form

λ − T −D = (I + K(λ − T −D − K)−1)(λ − T −D − K).

And also by using the Atkinson’s theorem we obtain that

λ − T −D ∈ Φ+(X) and i(λ − T −D) = i(λ − T −D −M) ≤ 0.

This means that λ < σeap,ε(T).
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Remark 4.12. Let T ∈ C(X), ε > 0. and let Γ(X) be a subset of X containing QK (X). If Γ(X) ⊆ Rε(X), then

σeap,ε(T) =
⋂

K∈Γ(X)

σap,ε(T + K).
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