Generalized Hyers-Ulam Stability for General Additive Functional Equations on Non-Archimedean Random Lie C*-Algebras

Zhihua Wang ${ }^{\text {a }}$, Prasanna K. Sahoo ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Science, Hubei University of Technology, Wuhan, Hubei 430068, P.R. China
${ }^{b}$ Department of Mathematics, University of Louisville, Louisville, KY 40292, USA

Abstract

In this paper, using the fixed point method, we prove some results related to the generalized Hyers-Ulam stability of homomorphisms and derivations in non-Archimedean random C^{*}-algebras and non-Archimedean random Lie C^{*}-algebras for the generalized additive functional equation $$
\sum_{1 \leq i<j \leq n} f\left(\frac{x_{i}+x_{j}}{2}+\sum_{l=1, k_{l} \neq i, j}^{n-2} x_{k_{l}}\right)=\frac{(n-1)^{2}}{2} \sum_{i=1}^{n} f\left(x_{i}\right)
$$

where $n \in \mathbb{N}$ is a fixed integer with $n \geq 3$.

1. Introduction

The study of the stability problem for functional equations is related to a question of Ulam [39] in 1940 concerning the stability of group homomorphisms. In 1941, Hyers [10] affirmatively answered Ulam's question for Banach spaces. Subsequently, Hyers' result was generalized by Aoki [1] for additive mappings and by Rassias [30] for linear mappings by considering an unbounded Cauchy difference. The paper [30] of Rassias has provided a lot of influence in the development of what we now call the generalized Hyers-Ulam stability (or Hyers-Ulam-Rassias stability) of functional equations. In 1994, Găvruţă [7] obtained a generalized result of Rassias' theorem which allow the Cauchy difference to be controlled by a general unbounded function. We refer the interested reader to $[9,11,13,15,21,22,31,35]$ for more information.

In [34], Rassias and Kim introduced and investigated the following functional equation:

$$
\begin{equation*}
\sum_{1 \leq i<j \leq n} f\left(\frac{x_{i}+x_{j}}{2}+\sum_{l=1, k_{l} \neq i, j}^{n-2} x_{k_{l}}\right)=\frac{(n-1)^{2}}{2} \sum_{i=1}^{n} f\left(x_{i}\right) \tag{1}
\end{equation*}
$$

where n is a fixed integer with $n \geq 2$. We observe that in the case $n=2$, the functional equation (1) yields the Jensen functional equation $2 f((x+y) / 2)=f(x)+f(y)$ and there are many interesting results concerning the

[^0]stability problems of the Jensen equation [19,32,33]. In [12], Jang and Saadati proved the generalized HyersUlam stability of homomorphisms and derivations in non-Archimedean C^{*}-algebras and non-Archimedean Lie C^{*}-algebras for the Jensen type functional equation $f((x+y) / 2)+f((x-y) / 2)=f(x)$. For the case $n=3$, Najati and Ranjbari [25] investigated homomorphisms between C^{*}-ternary algebras, and derivations on C^{*}-ternary algebras. In fact, in [34], the authors established the general solution of the functional equation (1) and investigated the generalized Hyers-Ulam stability problem of the functional equation (1) with $n \geq 3$ in quasi- β-normed spaces. In 2013, Kim et al. [18] proved some new Hyers-Ulam-Rassias stability results of n-Lie homomorphisms and Jordan n-Lie homomorphisms on n-Lie Banach algebras associated to the functional equation (1) using the fixed point method.

In this paper, using the fixed point method, we will investigate the generalized Hyers-Ulam stability results of homomorphisms and derivations in non-Archimedean random C^{*}-algebras and on nonArchimedean random Lie C^{*}-algebras for the additive functional equation (1) with $n \geq 3$.

2. Preliminaries

In this section, we adopt the usual terminology, notions and conventions of the theory of nonArchimedean random normed space as in $[3-5,16,17,20,27,29,36,37]$. Throughout this paper, Δ^{+}is the space of all probability distribution functions, i.e., the space of all mappings $F: \mathbb{R} \cup\{-\infty, \infty\} \rightarrow[0,1]$ such that F is left-continuous and non-decreasing on $\mathbb{R}, F(0)=0$ and $F(+\infty)=1 . D^{+}$is a subset of Δ^{+}consisting of all functions $F \in \Delta^{+}$for which $l^{-} F(+\infty)=1$, where $l^{-} f(x)$ denotes the left limit of the function f at the point x, that is, $l^{-} f(x)=\lim _{t \rightarrow x^{-}} f(t)$. The space Δ^{+}is partially ordered by the usual point-wise ordered of functions, i.e., $F \leq G$ if and only if $F(t) \leq G(t)$ for all $t \in \mathbb{R}$. The maximal element for Δ^{+}in this order is the distribution function ε_{0} given by

$$
\varepsilon_{0}(t)= \begin{cases}0, & \text { if } t \leq 0 \\ 1, & \text { if } t>0\end{cases}
$$

Definition 2.1. (cf. [36]). A mapping $T:[0,1] \times[0,1] \rightarrow[0,1]$ is a continuous triangular norm (briefly, a continuous t-norm) if T satisfies the following conditions:
(1) T is commutative and associative;
(2) T is continuous;
(3) $T(a, 1)=a$ for all $a \in[0,1]$;
(4) $T(a, b) \leq T(c, d)$ whenever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in[0,1]$.

Typical examples of continuous t-norms are the Lukasiewicz t-norm T_{L}, where $T_{L}(a, b)=\max (a+b-$ $1,0), \forall a, b \in[0,1]$ and the t-norms T_{P}, T_{M}, T_{D}, where $T_{P}(a, b):=a b, T_{M}(a, b):=\min (a, b)$,

$$
T_{D}(a, b):= \begin{cases}\min (a, b), & \text { if } \max (a, b)=1 \\ 0, & \text { otherwise }\end{cases}
$$

By a non-Archimedean field we mean a field \mathbb{K} equipped with a function (valuation) $|\cdot|$ from \mathbb{K} into $[0, \infty)$ such that $|r|=0$ if and only if $r=0,|r s|=|r||s|$, and $|r+s| \leq \max \{|r|,|s|\}$ for $r, s \in \mathbb{K}$. Clearly $|1|=|-1|=1$ and $|n| \leq 1$ for all $n \in \mathbb{N}$. By the trivial valuation we mean the function $|\cdot|$ taking everything but 0 into 1 and $|0|=0$ (i.e., the function $|\cdot|$ is called the trivial valuation if $|r|=1, \forall r \in \mathbb{K}, r \neq 0$, and $|0|=0$).

Let X be a vector space over a field \mathbb{K} with a non-Archimedean non-trivial valuation $|\cdot|$. A function $\|\cdot\|: X \rightarrow[0, \infty)$ is called a non-Archimedean norm if it satisfies the following conditions:
(i) $\|x\|=0$ if and only if $x=0$;
(ii) For any $r \in \mathbb{K}$ and $x \in X,\|r x\|=|r\|\mid x\|$;
(iii) For all $x, y \in X,\|x+y\| \leq \max \{\|x\|,\|y\|\}$ (the strong triangle inequality).

Then $(X,\|\cdot\|)$ is called a non-Archimedean normed space. Due to the fact that

$$
\left\|x_{n}-x_{m}\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}\right\|: m \leq j \leq n-1\right\}, \quad(n>m),
$$

a sequence $\left\{x_{n}\right\}$ is Cauchy if and only if $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in a non-Archimedean normed space. By a complete non-Archimedean normed space we mean one in which every Cauchy sequence is convergent.

Example 2.2. (cf. [14]). For any non-zero rational number x, there exists a unique integer $n_{x} \in \mathbb{Z}$ such that $x=\frac{a}{b} p^{n_{x}}$, where a and b are integers not divisible by p. Then $|x|_{p}:=p^{-n_{x}}$ defines a non-Archimedean norm on \mathbb{Q}. The completion of \mathbb{Q} with respect to the metric $d(x, y)=|x-y|_{p}$ is denoted by \mathbb{Q}_{p}, which is called the p-adic number field.

A non-Archimedean Banach algebra is a complete non-Archimedean algebra \mathcal{A} which satisfies $\|a b\| \leq$ $\|a\|\|\mid b\|$ for all $a, b \in \mathcal{A}$. For more detailed definitions of non-Archimedean Banach algebras, we refer the reader to $[8,38]$.

If \mathcal{U} is a non-Archimedean Banach algebra, then an involution on \mathcal{U} is a mapping $t \rightarrow t^{*}$ from \mathcal{U} into \mathcal{U} which satisfies
(I) $t^{* *}=t$ for $t \in \mathcal{U}$;
(II) $(\alpha s+\beta t)^{*}=\bar{\alpha} s^{*}+\bar{\beta} t^{*}$;
(III) $(s t)^{*}=t^{*} s^{*}$ for $s, t \in \mathcal{U}$.

If, in addition, $\left\|t^{*} t\right\|=\|t\|^{2}$ for $t \in \mathcal{U}$, then \mathcal{U} is a non-Archimedean C^{*}-algebra.
Definition 2.3. (cf. $[14,37]$). A non-Archimedean random normed space (briefly, $N A-R N$-space) is a triple (X, μ, T), where X is a linear space over a non-Archimedean field \mathbb{K}, T is a continuous t-norm, and μ is a mapping from X into D^{+}such that the following conditions hold:
(NA-RN1) $\mu_{x}(t)=\varepsilon_{0}(t)$ for all $t>0$ if and only if $x=0$;
(NA-RN2) $\mu_{\alpha x}(t)=\mu_{x}\left(\frac{t}{|\alpha|}\right)$ for all $x \in X, t>0$, and $\alpha \neq 0$;
(NA-RN3) $\mu_{x+y}(\max (t, s)) \geq T\left(\mu_{x}(t), \mu_{y}(s)\right)$ for all $x, y \in X$ and $t, s \geq 0$;
It is easy to see that if (NA-RN3) holds, then
(RN3) $\mu_{x+y}(t+s) \geq T\left(\mu_{x}(t), \mu_{y}(s)\right)$.
Example 2.4. (cf. [26]). Let $(X,\|\cdot\|)$ be a non-Archimedean normed linear space, and $\alpha, \beta>0$. Define

$$
\mu_{x}(t)=\frac{\alpha t}{\alpha t+\beta\|x\|}
$$

for all $x \in X$ and $t>0$. Then $\left(X, \mu, T_{M}\right)$ is a non-Archimedean $R N$-space.
Proof. (NA - RN1) is obviously true. Notice that for any $t \in \mathbb{R}, t>0$ and $c \neq 0$

$$
\mu_{c x}(t)=\frac{\alpha t}{\alpha t+\beta\|c x\|}=\frac{\alpha t}{\alpha t+\beta|c|\|x\|}=\frac{\alpha \cdot \frac{t}{|c|}}{\alpha \cdot \frac{t}{|c|}+\beta\|x\|}=\mu_{x}\left(\frac{t}{|c|}\right)
$$

which implies that (NA - RN2) holds.
To prove (NA - RN3). We assume that $\mu_{x}(t) \leq \mu_{y}(s)$, thus we have

$$
\frac{\|y\|}{s} \leq \frac{\|x\|}{t}
$$

Now, if $\|x\| \geq\|y\|$ for all $x, y \in X$, then we have by the strong triangle inequality

$$
t\|x+y\| \leq t\|x\| \leq(\max (t, s))\|x\|
$$

Therefore,

$$
\frac{\beta\|x+y\|}{\alpha(\max (t, s))} \leq \frac{\beta\|x\|}{\alpha t}
$$

and so

$$
1+\frac{\beta\|x+y\|}{\alpha(\max (t, s))} \leq 1+\frac{\beta\|x\|}{\alpha t}
$$

which implies that $\mu_{x+y}(\max (t, s)) \geq \mu_{x}(t)$.
if $\|x\| \leq\|y\|$ for all $x, y \in X$, then we also have

$$
t\|x+y\| \leq t\|y\| \leq t \cdot \frac{s}{t}\|x\| \leq(\max (t, s))\|x\|
$$

By the same way to the above, we can also get $\mu_{x+y}(\max (t, s)) \geq \mu_{x}(t)$. Hence, $\mu_{x+y}(\max (t, s)) \geq T_{M}\left(\mu_{x}(t), \mu_{y}(s)\right)$ for all $x, y \in X$ and $t, s \geq 0$. Then $\left(X, \mu, T_{M}\right)$ is a non-Archimedean RN -space.
Example 2.5. (cf. [26]). Let $(X,\|\cdot\|)$ be a non-Archimedean normed linear space, let $\beta>\alpha>0$ and

$$
\mu_{x}(t)= \begin{cases}0, & t \leq \alpha\|x\| \\ \frac{t}{t+(\beta-\alpha)\|x\|}, & \alpha\|x\|<t \leq \beta\|x\| \\ 1, & t>\beta\|x\|\end{cases}
$$

Then $\left(X, \mu, T_{M}\right)$ is a non-Archimedean RN-space.
Proof. (NA - RN1) is obviously true. Notice that for $c \neq 0$, if $\mu_{c x}(t)=1$, then $t>\beta\|c x\|$, i.e. $\frac{t}{|c|}>\beta\|x\|$ $\Rightarrow \mu_{x}\left(\frac{t}{|c|}\right)=1$
thus $\mu_{c x}(t)=\mu_{x}\left(\frac{t}{|c|}\right)$.
Again if $\mu_{c x}(t)=\frac{t}{t+(\beta-\alpha)\|c x\|}$, then $\alpha\|c x\|<t \leq \beta\|c x\|$, i.e. $\alpha\|x\|<\frac{t}{|c|} \leq \beta\|x\|$, so we have

$$
\mu_{x}\left(\frac{t}{|c|}\right)=\frac{t}{t+(\beta-\alpha)\|c x\|^{\prime}}
$$

therefore, $\mu_{c x}(t)=\mu_{x}\left(\frac{t}{|c|}\right)$. Similarly, when $\mu_{c x}(t)=0$, then $\mu_{c x}(t)=\mu_{x}\left(\frac{t}{|c|}\right)=0$. Thus for $c \neq 0, \mu_{c x}(t)=\mu_{x}\left(\frac{t}{|c|}\right)$ which implies that (NA - RN2) holds.

Next, we have to show that

$$
\mu_{x+y}(\max (t, s)) \geq T_{M}\left(\mu_{x}(t), \mu_{y}(s)\right)
$$

If $s=t=0$, then in this case the relation is obvious. So we consider the case when $t>0, s>0$.
If $t>\beta\|x\|, s>\beta\|y\|$, then $\max (t, s)>\beta\|x\|, \max (t, s)>\beta\|y\|$, and $\mu_{x}(t)=1, \mu_{y}(s)=1$. Now, we have $\max (t, s) \geq \beta\|x\|($ or $\beta\|y\|)=\max (\beta\|x\|, \beta\|y\|) \geq \beta(\|x+y\|)$
Hence, we get

$$
\mu_{x+y}(\max (t, s))=1 \Rightarrow \mu_{x+y}(\max (t, s)) \geq T_{M}\left(\mu_{x}(t), \mu_{y}(s)\right)
$$

If $t>\beta\|x\|$, and $\alpha\|y\|<s \leq \beta\|y\|$, then $\mu_{x}(t)=1, \mu_{y}(s)=\frac{s}{s+(\beta-\alpha)\|y\|}$. Now, if $\|x\| \geq\|y\|$, then we obtain

$$
\max (t, s) \geq \beta\|x\|=\max (\beta\|x\|, \beta\|y\|) \geq \beta(\|x+y\|)
$$

Hence, we have

$$
\mu_{x+y}(\max (t, s))=1 \Rightarrow \mu_{x+y}(\max (t, s)) \geq T_{M}\left(\mu_{x}(t), \mu_{y}(s)\right)
$$

Next, if $\|y\| \geq\|x\|$. So we get

$$
\max (t, s) \geq \alpha\|y\|=\max (\alpha\|x\|, \alpha\|y\|) \geq \alpha(\|x+y\|)
$$

Hence, we get

$$
\mu_{x+y}(\max (t, s))=\frac{\max (t, s)}{\max (t, s)+(\beta-\alpha)\|x+y\|} \Rightarrow \mu_{x+y}(\max (t, s)) \geq T_{M}\left(\mu_{x}(t), \mu_{y}(s)\right)
$$

If $\alpha\|x\|<t \leq \beta\|x\|$, and $\alpha\|y\|<s \leq \beta\|y\|$, then in this case the relation is similar to the proof of Example 2.4, and thus it is omitted. This completes the proof of the example.

Definition 2.6. (cf. [14, 23]). A non-Archimedean random normed algebra $\left(X, \mu, T, T^{\prime}\right)$ is a non-Archimedean random normed space (X, μ, T) with an algebraic structure such that
(NA-RN4) $\mu_{x y}(t) \geq T^{\prime}\left(\mu_{x}(t), \mu_{y}(t)\right)$ for all $x, y \in X$ and all $t>0$, in which T^{\prime} is a continuous t-norm.
Example 2.7. (cf. [23]). Let $(X,\|\cdot\|)$ be a non-Archimedean normed algebra. Define

$$
\mu_{x}(t)= \begin{cases}0, & x \neq 0, t \leq 0 \\ \frac{t}{t+\|x\|}, & x \neq 0, t>0 \\ 1, & x=0\end{cases}
$$

Then $\left(X, \mu, T_{M}\right)$ is a non-Archimedean RN-space. An easy computation shows that $\mu_{x y}(t) \geq \mu_{x}(t) \mu_{y}(t)$ if and only if

$$
\|x y\| \leq\|x\|\|y\|+t\|y\|+t\|x\|
$$

for all $x, y \in X$ and $t>0$. It follows that $\left(X, \mu, T_{M}, T_{P}\right)$ is a non-Archimedean random normed algebra.
Definition 2.8. (cf. [14]). Let $\left(X, \mu, T, T^{\prime}\right)$ and $\left(Y, \mu, T, T^{\prime}\right)$ be non-Archimedean random normed algebras.
(a) An \mathbb{R}-linear mapping $f: X \rightarrow Y$ is called a homomorphism if $f(x y)=f(x) f(y)$ for all $x, y \in X$.
(b) An \mathbb{R}-linear mapping $f: X \rightarrow Y$ is called a derivation if $f(x y)=f(x) y+x f(y)$ for all $x, y \in X$.

Definition 2.9. (cf. [14]). Let $\left(\mathcal{U}, \mu, T, T^{\prime}\right)$ be non-Archimedean random Banach algebra, then an involution on \mathcal{U} is a mapping $u \rightarrow u^{*}$ from \mathcal{U} into \mathcal{U} which satisfies
(I') $u^{* *}=u$ for $u \in \mathcal{U}$;
(II') $(\alpha u+\beta v)^{*}=\bar{\alpha} u^{*}+\bar{\beta} v^{*}$;
(III') $(u v)^{*}=v^{*} u^{*}$ for $u, v \in \mathcal{U}$.
If, in addition, $\mu_{u^{*} u}(t)=T^{\prime}\left(\mu_{u}(t), \mu_{u}(t)\right)$ for $u \in \mathcal{U}$ and $t>0$, then \mathcal{U} is a non-Archimedean random C^{*}-algebra.
Definition 2.10. (cf. [14]) Let (X, μ, T) be a non-Archimedean $R N$-space. Let $\left\{x_{n}\right\}$ be a sequence in X. Then $\left\{x_{n}\right\}$ is said to be convergent if there exists $x \in X$ such that

$$
\lim _{n \rightarrow \infty} \mu_{x_{n}-x}(t)=1
$$

for all $t>0$. In this case, x is called the limit of the sequence $\left\{x_{n}\right\}$.
A sequence $\left\{x_{n}\right\}$ in X is called Cauchy if for each $\varepsilon>0$ and $t>0$, there exists n_{0} such that for all $n \geq n_{0}$ and all $p>0$ we have $\mu_{x_{n+p}-x_{n}}(t)>1-\varepsilon$. Due to

$$
\mu_{x_{n+p}-x_{n}}(t) \geq \min \left\{\mu_{x_{n+p}-x_{n+p-1}}(t), \ldots, \mu_{x_{n+1}-x_{n}}(t)\right\} .
$$

Therefore, the sequence $\left\{x_{n}\right\}$ is Cauchy if for each $\varepsilon \geq 0$ and $t>0$ there exists n_{0} such that for all $n \geq n_{0}$, we have $\mu_{x_{n+1}-x_{n}}(t)>1-\varepsilon$.

If each Cauchy sequence is convergent, then the random norm is said to be complete, and the nonArchimedean RN-space is called a non-Archimedean random Banach space.

Definition 2.11. Let S be a set. A function $d: S \times S \rightarrow[0, \infty]$ is called a generalized metric on S if d satisfies
(1) $d(x, y)=0$ if and only if $x=y$;
(2) $d(x, y)=d(y, x), \forall x, y \in S$;
(3) $d(x, z) \leq d(x, y)+d(y, z), \forall x, y, z \in S$.

The next Lemma 2.12 is due to Diaz and Margolis [6], which is extensively applied to the stability theory of functional equations.

Lemma 2.12. ([6]). Let (S, d) be a complete generalized metric space and $J: S \rightarrow S$ be a strictly contractive mapping with Lipschitz constant $L<1$. Then for each fixed element $x \in S$, either

$$
d\left(J^{n} x, J^{n+1} x\right)=\infty
$$

for all nonnegative integers n or there exists a positive integer n_{0} such that
(i) $d\left(J^{n} x, J^{n+1} x\right)<\infty, \quad \forall n \geq n_{0}$;
(ii) the sequence $\left\{J^{n} x\right\}$ is convergent to a fixed point y^{*} of J;
(iii) y^{*} is the unique fixed point of J in the set $S^{*}:=\left\{y \in S \mid d\left(J^{n_{0}} x, y\right)<+\infty\right\}$;
(iv) $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, J y), \quad \forall y \in S^{*}$.

3. Stability of homomorphisms and derivations in non-Archimedean random C^{*}-algebras

In this section, assume that \mathcal{A} is a non-Archimedean random C^{*}-algebra with the norm $\mu^{\mathcal{A}}$ and that \mathcal{B} is a non-Archimedean random C^{*}-algebra with the norm $\mu^{\mathcal{B}}$. For a given mapping $f: \mathcal{A} \rightarrow \mathcal{B}$, we define

$$
\mathcal{D}_{\lambda, f}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i<j \leq n} f\left(\frac{\lambda x_{i}+\lambda x_{j}}{2}+\sum_{l=1, k_{l} \neq i, j}^{n-2} \lambda x_{k_{l}}\right)-\frac{(n-1)^{2}}{2} \sum_{i=1}^{n} \lambda f\left(x_{i}\right)
$$

for all $x_{1}, \ldots, x_{n} \in \mathcal{A}(n \geq 3)$ and $\lambda \in \mathbb{T}^{1}:=\{\lambda \in \mathbb{C}:|\lambda|=1\}$.
We need the following lemmas to prove the main results.
Lemma 3.1. (cf. [24]). Let V and W be linear spaces and let $n \geq 3$ be a fixed positive integer. A mapping $f: V \rightarrow W$ satisfies the functional equation (1) for all $x_{1}, \ldots, x_{n} \in V$ if and only if f is an additive mapping.

Lemma 3.2. (cf. [28]). Let $f: \mathcal{A} \rightarrow \mathcal{A}$ be an additive mapping such that $f(\lambda x)=\lambda f(x)$ for all $\lambda \in \mathbb{T}^{1}$ and all $x \in \mathcal{A}$. Then the mapping f is \mathbb{C}-linear.

Note that a \mathbb{C}-linear mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ is called homomorphism in non-Archimedean random C^{*}-algebras if H satisfies $H(x y)=H(x) H(y)$ and $H\left(x^{*}\right)=H(x)^{*}$ for all $x, y \in \mathcal{A}$.

Now we are going to prove the generalized Hyers-Ulam stability of homomorphisms in non-Archimedean random C^{*}-algebras for the functional equation $\mathcal{D}_{\lambda, f}\left(x_{1}, \ldots, x_{n}\right)=0$.

Theorem 3.3. Let $f: \mathcal{A} \rightarrow \mathcal{B}$ be a mapping for which there are functions $\varphi: \mathcal{A}^{n} \rightarrow D^{+}, \psi: \mathcal{A}^{2} \rightarrow D^{+}$and $\eta: \mathcal{A} \rightarrow D^{+}$such that $|\rho|<1$ is far from zero and

$$
\begin{align*}
& \mu_{\mathcal{D}_{1, f}\left(x_{1}, \ldots, x_{n}\right)}^{\mathcal{B}}(t) \geq \varphi_{x_{1}, \ldots, x_{n}}(t) \tag{2}\\
& \mu_{f(x y)-f(x) f(y)}^{\mathcal{B}}(t) \geq \psi_{x, y}(t) \tag{3}\\
& \mu_{f\left(x^{*}\right)-f(x)^{*}}^{\mathcal{B}}(t) \geq \eta_{x}(t) \tag{4}
\end{align*}
$$

for all $\lambda \in \mathbb{T}^{1}, x_{1}, \ldots, x_{n}, x, y \in \mathcal{A}$ and $t>0$. If there exits a constant $0<L<1$ such that

$$
\begin{align*}
& \varphi_{\rho x_{1}, \ldots, \rho x_{n}}(|\rho| L t) \geq \varphi_{x_{1}, \ldots, x_{n}}(t) \tag{5}\\
& \psi_{\rho x, \rho y}\left(|\rho|^{2} L t\right) \geq \psi_{x, y}(t) \tag{6}\\
& \eta_{\rho x}(|\rho| L t) \geq \eta_{x}(t) \tag{7}
\end{align*}
$$

for all $x, y, x_{1}, \ldots, x_{n} \in \mathcal{A}$ and $t>0$, then there exists a unique homomorphism $H: \mathcal{A} \rightarrow \mathcal{B}$ such that

$$
\begin{equation*}
\mu_{f(x)-H(x)}^{\mathcal{B}}(t) \geq \varphi_{x, \ldots, x}\left(\frac{|n \| \rho|^{2}(1-L)}{|2|} t\right) \tag{8}
\end{equation*}
$$

for all $x \in \mathcal{A}$ and $t>0$, where $\rho:=n-1$.

Proof. Letting $\lambda=1$, and $x_{1}=\cdots=x_{n}=x$ in (2), we obtain

$$
\begin{equation*}
\mu^{\mathcal{B}}\binom{n}{2} f((n-1) x)-\frac{n(n-1)^{2}}{2} f(x)=\varphi_{x, \ldots, x}(t) \tag{9}
\end{equation*}
$$

for all $x \in \mathcal{A}$ and $t>0$. Then

$$
\begin{equation*}
\mu_{f(x)-\frac{f(\rho x)}{\rho}}^{\mathcal{B}}\left(\frac{|2|}{|n||\rho|^{2}} t\right) \geq \varphi_{x, \ldots, x}(t) \tag{10}
\end{equation*}
$$

for all $x \in \mathcal{A}$ and $t>0$.
Let us define Ω to be the set of all mappings $g: \mathcal{A} \rightarrow \mathcal{B}$ and introduce a generalized metric on Ω as follows:

$$
d(g, h):=\inf \left\{\delta \in \mathbb{R}_{+} \mid \mu_{g(x)-h(x)}^{\mathcal{B}}(\delta t) \geq \varphi_{x, \ldots, x}(t), \forall x \in \mathcal{A}, t>0\right\}
$$

It is easy to see that (Ω, d) is a complete generalized metric space [2, 20]. Now, we consider the mapping $\mathcal{J}: \Omega \rightarrow \Omega$ defined by

$$
\begin{equation*}
\mathcal{J} g(x):=\frac{1}{\rho} g(\rho x) \tag{11}
\end{equation*}
$$

for all $g \in \Omega$ and $x \in \mathcal{A}$. Note that for all $g, h \in \Omega$, we have

$$
\begin{align*}
\mu_{\mathcal{J} g(x)-\mathcal{J} h(x)}^{\mathcal{B}}(L \delta t) & =\mu_{\frac{1}{\rho} g(\rho x)-\frac{1}{\rho} h(\rho x)}^{\mathcal{B}}(L \delta t)=\mu_{g(\rho x)-h(\rho x)}^{\mathcal{B}}(|\rho| L \delta t) \\
& \geq \varphi_{\rho x, \ldots, p x}(|\rho| L t) \geq \varphi_{x, \ldots, x}(t) \tag{12}
\end{align*}
$$

for all $x \in \mathcal{A}$ and $t>0$. So $d(\mathcal{J} g, \mathcal{J} h) \leq L d(g, h)$ holds for all $g, h \in \Omega$.
By (10), we have $d(f, \mathcal{J} f) \leq \frac{|2|}{|n \| \rho|^{2}}$. Hence according to Lemma 2.12, the sequence $\mathcal{J}^{m} f$ converges to a fixed point H of \mathcal{J}, that is,

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{1}{|\rho|^{m}} f\left(\rho^{m} x\right)=H(x) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
H(\rho x)=\rho H(x) \tag{14}
\end{equation*}
$$

for all $x \in \mathcal{A}$. Also H is the unique fixed point of \mathcal{J} in the set $\Omega^{*}=\{g \in \Omega: d(f, g)<\infty\}$. This implies that H is a unique mapping satisfying (14) such that there exists a $\delta \in \mathbb{R}_{+}$such that

$$
\mu_{f(x)-H(x)}^{\mathcal{B}}(\delta t) \geq \varphi_{x, \ldots, x}(t)
$$

for all $x \in \mathcal{A}$ and $t>0$. Also,

$$
d(f, H) \leq \frac{1}{1-L} d(f, \mathcal{J} f) \leq \frac{|2|}{|n \| \rho|^{2}(1-L)}
$$

This implies that the inequality (8) holds. It follows from (2), (5) and (13) that

$$
\begin{aligned}
\mu_{\mathcal{D}_{\lambda, H}}^{\mathcal{B}}\left(x_{1}, \ldots, x_{n}\right)(t) & =\lim _{m \rightarrow \infty} \mu_{\frac{1}{\rho^{m}} \mathcal{D}_{\lambda, f}\left(\rho^{m} x_{1}, \ldots, \rho^{m} x_{n}\right)}^{\mathcal{B}}(t) \\
& \geq \lim _{m \rightarrow \infty} \varphi_{\rho^{m} x_{1}, \ldots, \rho^{m} x_{n}}\left(|\rho|^{m} t\right)=1
\end{aligned}
$$

for all $\lambda \in \mathbb{T}^{1}, x_{1}, \ldots, x_{n} \in \mathcal{A}$ and $t>0$. Hence, we obtain

$$
\begin{equation*}
\mathcal{D}_{\lambda, H}\left(x_{1}, \ldots, x_{n}\right)=0 \tag{15}
\end{equation*}
$$

for all $x_{1}, \ldots, x_{n} \in \mathcal{A}$. If we put $\lambda=1$ in (15), then H is additive by Lemma 3.1. Also, letting $x_{1}=\cdots=x_{n}=x$ in the last equality, we obtain $H(\lambda x)=\lambda H(x)$. Now by using Lemma 3.2, we infer that the mapping H is \mathbb{C}-linear. On the other hand, it follows from (3), (6) and (13) that

$$
\begin{aligned}
\mu_{H(x y)-H(x) H(y)}^{\mathcal{B}}(t) & =\lim _{m \rightarrow \infty} \mu_{f\left(\rho^{2 m} x y\right)-f\left(\rho^{m} x\right) f\left(\rho^{m} y\right)}^{\mathcal{B}}\left(|\rho|^{2 m} t\right) \\
& \geq \lim _{m \rightarrow \infty} \psi_{\rho^{m} x, \rho^{m} y}\left(|\rho|^{2 m} t\right)=1
\end{aligned}
$$

for all $x, y \in \mathcal{A}$. So, $H(x y)=H(x) H(y)$ for all $x, y \in \mathcal{A}$. Thus $H: \mathcal{A} \rightarrow \mathcal{B}$ is a homomorphism satisfying (8), as desired. Also, by (4), (7) and (13) and by a similar method, we have $H\left(x^{*}\right)=H(x)^{*}$. This completes the proof of the theorem.

Theorem 3.4. Let $f: \mathcal{A} \rightarrow \mathcal{B}$ be a mapping for which there are functions $\varphi: \mathcal{A}^{n} \rightarrow D^{+}, \psi: \mathcal{A}^{2} \rightarrow D^{+}$and $\eta: \mathcal{A} \rightarrow D^{+}$such that $|\rho|<1$ is far from zero, and (2), (3) and (4) hold for all $\lambda \in \mathbb{T}^{1}, x_{1}, \ldots, x_{n}, x, y \in \mathcal{A}$ and $t>0$. If there exits a constant $0<L<1$ such that

$$
\begin{align*}
& \varphi_{\frac{x_{1}}{\rho}, \ldots, \frac{x_{n}}{\rho}}\left(\frac{L}{|\rho|} t\right) \geq \varphi_{x_{1}, \ldots, x_{n}}(t) \tag{16}\\
& \psi_{\frac{x}{\rho}, \frac{y}{\rho}}\left(\frac{L}{|\rho|^{2}} t\right) \geq \psi_{x, y}(t) \tag{17}\\
& \eta_{\frac{x}{\rho}}\left(\frac{L}{|\rho|} t\right) \geq \eta_{x}(t) \tag{18}
\end{align*}
$$

for all $x, y, x_{1}, \ldots, x_{n} \in \mathcal{A}$ and $t>0$, then there exists a unique homomorphism $H: \mathcal{A} \rightarrow \mathcal{B}$ such that

$$
\begin{equation*}
\mu_{f(x)-H(x)}^{\mathcal{B}}(t) \geq \varphi_{x, \ldots, x}\left(\frac{|n \| \rho|^{2}(1-L)}{|2| L} t\right) \tag{19}
\end{equation*}
$$

for all $x \in \mathcal{A}$ and $t>0$, where $\rho:=n-1$.
Proof. Let Ω and d be as in the proof of Theorem 3.3. Then (Ω, d) becomes complete generalized metric space and the mapping $\mathcal{J}: \Omega \rightarrow \Omega$ defined by

$$
\mathcal{J} g(x):=\rho g\left(\frac{x}{\rho}\right), \quad \text { for all } g \in \Omega \text { and } x \in \mathcal{A}
$$

Then, it is easy to see that $d(\mathcal{J} g, \mathcal{J} h) \leq L d(g, h)$ for all $g, h \in S$. By (9) and (16), we obtain

$$
\mu_{f(x)-\rho f\left(\frac{x}{\rho}\right)}^{\mathcal{B}}\left(\frac{|2| L}{|n \| \rho|^{2}} t\right) \geq \varphi_{\frac{x}{\rho}, \ldots, \frac{x}{\rho}}\left(\frac{L}{|\rho|} t\right) \geq \varphi_{x, \ldots, x}(t)
$$

for all $x \in \mathcal{A}$ and $t>0$. So, we have $d(f, \mathcal{J} f) \leq \frac{|2| L}{|n \| \rho|^{2}}$.
The remaining assertion is similar to the corresponding part of Theorem 3.3. This completes the proof.ם
Corollary 3.5. Let $\ell \in\{-1,1\}, r \neq 1$ and θ be nonnegative real numbers. Suppose that $f: \mathcal{A} \rightarrow \mathcal{B}$ be a mapping such that

$$
\begin{aligned}
& \mu_{\mathcal{D}_{\lambda, f}^{\mathcal{B}}\left(x_{1}, \ldots, x_{n}\right)}(t) \geq \frac{t}{t+\theta\left(\left\|x_{1}\right\|_{\mathcal{A}}^{r}+\left\|x_{2}\right\|_{\mathcal{A}}^{r}+\cdots+\left\|x_{n}\right\|_{\mathcal{A}}^{r}\right)} \\
& \mu_{f(x y)-f(x) f(y)}^{\mathcal{B}}(t) \geq \frac{t}{t+\theta \cdot\left(\|x\|_{\mathcal{A}}^{r} \cdot\|y\|_{\mathcal{A}}^{r}\right)} \\
& \mu_{f\left(x^{*}\right)-f(x)^{*}}^{\mathcal{B}}(t) \geq \frac{t}{t+\theta \cdot\|x\|_{\mathcal{A}}^{r}}
\end{aligned}
$$

for all $\lambda \in \mathbb{T}^{1}, x_{1}, \ldots, x_{n}, x, y \in \mathcal{A}$ and $t>0$. Then there exists a unique homomorphism $H: \mathcal{A} \rightarrow \mathcal{B}$ such that, if $\ell r>\ell$,

$$
\begin{equation*}
\mu_{f(x)-H(x)}^{\mathcal{B}}(t) \geq \frac{\ell|n \| \rho|\left(|\rho|-|\rho|^{r}\right) t}{\ell\left|n\left\|\rho\left|\left(|\rho|-|\rho|^{r}\right) t+\theta\right| 2| | n \mid\right\| x \|_{\mathcal{A}}^{r}\right.} \tag{20}
\end{equation*}
$$

for all $x \in \mathcal{A}$ and $t>0$, where $\rho:=n-1$.
Proof. The proof follows from Theorems 3.3 and 3.4 by taking

$$
\begin{aligned}
& \varphi_{x_{1}, \ldots, x_{n}}(t)=\frac{t}{t+\theta\left(\left\|x_{1}\right\|_{\mathcal{A}}^{r}+\left\|x_{2}\right\|_{\mathcal{A}}^{r}+\cdots+\left\|x_{n}\right\|_{\mathcal{A}}^{r}\right)} \\
& \psi_{x, y}(t)=\frac{t}{t+\theta \cdot\left(\|x\|_{\mathcal{A}}^{r} \cdot\|y\|_{\mathcal{A}}^{r}\right)}, \quad \eta_{x}(t)=\frac{t}{t+\theta \cdot\|x\|_{\mathcal{A}}^{r}}
\end{aligned}
$$

for all $x_{1}, \ldots, x_{n}, x, y \in \mathcal{A}$ and $t>0$. We can choose $L=|\rho|^{\ell(r-1)}$, we obtain the desired result.
Note that a \mathbb{C}-linear mapping $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is called derivation on \mathcal{A} if δ satisfies $\delta(x y)=\delta(x) y+x \delta(y)$ for all $x, y \in \mathcal{A}$.

We prove the generalized Hyers-Ulam stability of derivations on non-Archimedean random C^{*}-algebras for the functional equation $\mathcal{D}_{\lambda, f}\left(x_{1}, \ldots, x_{n}\right)=0$.

Theorem 3.6. Let $f: \mathcal{A} \rightarrow \mathcal{A}$ be a mapping for which there are functions $\varphi: \mathcal{A}^{n} \rightarrow D^{+}, \psi: \mathcal{A}^{2} \rightarrow D^{+}$and $\eta: \mathcal{A} \rightarrow D^{+}$such that $|\rho|<1$ is far from zero and

$$
\begin{align*}
& \mu_{\mathcal{D}_{1, f}\left(x_{1}, \ldots, x_{n}\right)}^{\mathcal{A}}(t) \geq \varphi_{x_{1}, \ldots, x_{n}}(t) \tag{21}\\
& \mu_{f(x y)-f(x) y-x f(y)}^{\mathcal{A}}(t) \geq \psi_{x, y}(t) \tag{22}\\
& \mu_{f\left(x^{*}\right)-f(x)^{*}}(t) \geq \eta_{x}(t) \tag{23}
\end{align*}
$$

for all $\lambda \in \mathbb{T}^{1}, x_{1}, \ldots, x_{n}, x, y \in \mathcal{A}$ and $t>0$. If there exits a constant $0<L<1$ such that (5), (6) and (7) hold, then there exists a unique derivation $\delta: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
\begin{equation*}
\mu_{f(x)-\delta(x)}^{\mathcal{A}}(t) \geq \varphi_{x, \ldots, x}\left(\frac{|n||\rho|^{2}(1-L)}{|2|} t\right) \tag{24}
\end{equation*}
$$

for all $x \in \mathcal{A}$ and $t>0$, where $\rho:=n-1$.

Proof. By the same reasoning as in the proof of Theorem 3.3, the mapping $\delta: \mathcal{A} \rightarrow \mathcal{A}$ defined by

$$
\begin{equation*}
\delta(x):=\lim _{m \rightarrow \infty} \frac{1}{|\rho|^{m}} f\left(\rho^{m} x\right) \quad \forall x \in \mathcal{A} \tag{25}
\end{equation*}
$$

is a unique \mathbb{C}-linear mapping which satisfies (24). We show that δ is a derivation. By (22) and (25), we have

$$
\begin{aligned}
\mu_{\delta(x y)-\delta(x) y-x \delta(y)}^{\mathcal{P}}(t) & =\lim _{m \rightarrow \infty} \mu_{f\left(\rho^{2 m} x y\right)-f\left(\rho^{m} x\right) \rho^{m} y-\rho^{m} x \delta\left(\rho^{m} y\right)}^{\mathcal{F}}\left(|\rho|^{2 m} t\right) \\
& \geq \lim _{m \rightarrow \infty} \psi_{\rho^{m} x, \rho^{m} y}\left(|\rho|^{2 m} t\right)=1
\end{aligned}
$$

for all $x, y \in \mathcal{A}$ and all $t>0$. Hence we have $\delta(x y)=\delta(x) y+x \delta(y)$ for all $x, y \in \mathcal{A}$. This means that δ is a derivation satisfying (24). This completes the proof.

4. Stability of homomorphisms and derivations in non-Archimedean random Lie C^{*}-algebras

A non-Archimedean random C^{*}-algebra C, endowed with the Lie product $[x, y]=\frac{x y-y x}{2}$ on C, is called a non-Archimedean random Lie C^{*}-algebra.

Definition 4.1. Let \mathcal{A} and \mathcal{B} be non-Archimedean random Lie C^{*}-algebras. A \mathbb{C}-linear mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ is called a non-Archimedean random Lie C^{*}-algebra homomorphism if $H([x, y])=[H(x), H(y)]$ for all $x, y \in \mathcal{A}$.

In this section, assume that \mathcal{A} is a non-Archimedean random Lie C^{*}-algebra with the norm $\mu^{\mathcal{A}}$ and that \mathcal{B} is a non-Archimedean random Lie C^{*}-algebra with the norm $\mu^{\mathcal{B}}$.

Now, we prove the generalized Hyers-Ulam stability of homomorphisms in non-Archimedean random Lie C^{*}-algebras for the equation $\mathcal{D}_{\lambda, f}\left(x_{1}, \ldots, x_{n}\right)=0$.

Theorem 4.2. Let $f: \mathcal{A} \rightarrow \mathcal{B}$ be a mapping for which there are functions $\varphi: \mathcal{A}^{n} \rightarrow D^{+}, \psi: \mathcal{A}^{2} \rightarrow D^{+}$and $\eta: \mathcal{A} \rightarrow D^{+}$such that $|\rho|<1$ is far from zero, (2) and (4) hold and

$$
\begin{equation*}
\mu_{f([x, y])-[f(x), f(y)]}^{\mathcal{B}}(t) \geq \psi_{x, y}(t) \tag{26}
\end{equation*}
$$

for all $x, y \in \mathcal{A}$ and $t>0$. If there exits a constant $0<L<1$ and (5), (6) and (7) hold, then there exists a unique homomorphism $H: \mathcal{A} \rightarrow \mathcal{B}$ such that (8) holds for all $x \in \mathcal{A}$ and $t>0$, where $\rho:=n-1$.

Proof. By the same reasoning as in the proof of Theorem 3.3, we can find the mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ given by

$$
\begin{equation*}
H(x):=\lim _{m \rightarrow \infty} \frac{1}{|\rho|^{m}} f\left(\rho^{m} x\right) \tag{27}
\end{equation*}
$$

for all $x \in \mathcal{A}$. It follows from (6), (26) and (27) that

$$
\begin{aligned}
\mu_{H([x, y])-[H(x), H(y)]}^{\mathcal{B}}(t) & =\lim _{m \rightarrow \infty} \mu_{f\left(\rho^{2 m}[x, y]\right)-\left[f\left(\rho^{m} x\right), f\left(\rho^{m} y\right)\right]}^{\mathcal{B}}\left(|\rho|^{2 m} t\right) \\
& \geq \lim _{m \rightarrow \infty} \psi_{\rho^{m} x, \rho^{m} y}\left(|\rho|^{2 m} t\right)=1
\end{aligned}
$$

for all $x, y \in \mathcal{A}$ and $t>0$, then

$$
H([x, y])=[H(x), H(y)]
$$

for all $x, y \in \mathcal{A}$. Thus, $H: \mathcal{A} \rightarrow \mathcal{B}$ is a Lie C^{*}-algebra homomorphism satisfying (8), as desired.
Theorem 4.3. Let $f: \mathcal{A} \rightarrow \mathcal{B}$ be a mapping for which there are functions $\varphi: \mathcal{A}^{n} \rightarrow D^{+}, \psi: \mathcal{A}^{2} \rightarrow D^{+}$and $\eta: \mathcal{A} \rightarrow D^{+}$such that $|\rho|<1$ is far from zero, and (2), (4) and (26) hold for all $\lambda \in \mathbb{T}^{1}, x_{1}, \ldots, x_{n}, x, y \in \mathcal{A}$ and $t>0$. If there exits a constant $0<L<1$ and (16), (17) and (18) hold, then there exists a unique homomorphism $H: \mathcal{A} \rightarrow \mathcal{B}$ such that (19) holds for all $x \in \mathcal{A}$ and $t>0$, where $\rho:=n-1$.

Proof. The proof follows from Theorem 3.4 and a method similar to Theorem 4.2.
Corollary 4.4. Let $\ell \in\{-1,1\}, r=\neq 1$ and θ be nonnegative real numbers. Suppose that $f: \mathcal{A} \rightarrow \mathcal{B}$ be a mapping such that

$$
\begin{aligned}
& \mu_{\mathcal{D}_{\lambda, f}\left(x_{1}, \ldots, x_{n}\right)}^{\mathcal{B}}(t) \geq \frac{t}{t+\theta\left(\left\|x_{1}\right\|_{\mathcal{A}}^{r}+\left\|x_{2}\right\|_{\mathcal{A}}^{r}+\cdots+\left\|x_{n}\right\|_{\mathcal{A}}^{r}\right)} \\
& \mu_{f([x, y])-[f(x), f(y)]}^{\mathcal{B}}(t) \geq \frac{t}{t+\theta \cdot\left(\|x\|_{\mathcal{A}}^{r} \cdot\|y\|_{\mathcal{A}}^{r}\right)} \\
& \mu_{f\left(x^{*}\right)-f(x)^{*}}^{\mathcal{B}}(t) \geq \frac{t}{t+\theta \cdot\|x\|_{\mathcal{A}}^{r}}
\end{aligned}
$$

for all $\lambda \in \mathbb{T}^{1}, x_{1}, \ldots, x_{n}, x, y \in \mathcal{A}$ and $t>0$. Then there exists a unique homomorphism $H: \mathcal{A} \rightarrow \mathcal{B}$ such that (20) holds.

Proof. The proof follows from Theorems 4.2 and 4.3, and a method similar to Corollary 3.5.
Definition 4.5. Let \mathcal{A} be non-Archimedean random Lie C^{*}-algebra. A \mathbb{C}-linear mapping $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is called a Lie derivation if $\delta([x, y])=[\delta(x), y]+[x, \delta(y)]$ for all $x, y \in \mathcal{A}$.

We prove the generalized Hyers-Ulam stability of derivations on non-Archimedean random Lie C^{*} algebras for the functional equation $\mathcal{D}_{\lambda, f}\left(x_{1}, \ldots, x_{n}\right)=0$.

Theorem 4.6. Let $f: \mathcal{A} \rightarrow \mathcal{A}$ be a mapping for which there are functions $\varphi: \mathcal{A}^{n} \rightarrow D^{+}, \psi: \mathcal{A}^{2} \rightarrow D^{+}$and $\eta: \mathcal{A} \rightarrow D^{+}$such that $|\rho|<1$ is far from zero, and (21) and (23) hold and

$$
\begin{equation*}
\mu_{f([x, y])-[f(x), y]-[x, f(y)]}^{\mathcal{P}}(t) \geq \psi_{x, y}(t) \tag{28}
\end{equation*}
$$

for all $x, y \in \mathcal{A}$ and $t>0$. If there exits a constant $0<L<1$ such that (5), (6) and (7) hold, then there exists a unique derivation $\delta: \mathcal{A} \rightarrow \mathcal{A}$ such that (24) holds for all $x \in \mathcal{A}$ and $t>0$, where $\rho:=n-1$.

Proof. By the same reasoning as in the proof of Theorem 4.2, we can find the mapping $\delta: \mathcal{A} \rightarrow \mathcal{B}$ given by

$$
\begin{equation*}
\delta(x):=\lim _{m \rightarrow \infty} \frac{1}{|\rho|^{m}} f\left(\rho^{m} x\right) \tag{29}
\end{equation*}
$$

for all $x \in \mathcal{A}$. It follows from (6), (28) and (29) that

$$
\begin{aligned}
\mu_{\delta([x, y])-[\delta(x), y]-[x, \delta(y)]}^{\mathcal{P}}(t) & =\lim _{m \rightarrow \infty} \mu_{f\left(\rho^{2 m}[x, y]\right)-\left[f\left(\rho^{m} x\right), \rho^{m} y\right]-\left[x, f\left(\rho^{m}\right)\right]}^{\mathcal{A}}\left(|\rho|^{2 m} t\right) \\
& \geq \lim _{m \rightarrow \infty} \psi_{\rho^{m} x, \rho^{m} y}\left(|\rho|^{2 m} t\right)=1
\end{aligned}
$$

for all $x, y \in \mathcal{A}$ and $t>0$, then

$$
\delta([x, y])=[\delta(x), y]+[x, \delta(y)]
$$

for all $x, y \in \mathcal{A}$. Thus, $\delta: \mathcal{A} \rightarrow \mathcal{A}$ is a Lie derivation satisfying (24), as desired.
Acknowledgements: This research work was done during 2015-16 while the first author studied at the University of Louisville as a Visiting Scholar from the Hubei University of Technology.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2(1950), 64-66.
[2] L. Cǎdariu and V. Radu, On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber. 346(2004), 43-52.
[3] S. S. Chang, Y. J. Cho and S. M. Kang, Nonlinear operator theory in probabilistic metric spaces, Nova Science Publishers, New York, 2001.
[4] Y. J. Cho, C. Park and R. Saadati, Functional inequalities in non-Archimedean in Banach spaces, Appl. Math. Lett. 60(2010), 1994-2002.
[5] Y. J. Cho, R. Saadati and J. Vahidi, Approximation of homomorphisms and derivations on non-Archimedean Lie C*-algebras via fixed point method, Discrete Dyn. Nat. Soc. 2012(2012), Article ID 373904, 9 pages.
[6] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74(1968), 305-309.
[7] P. Găvruță, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994), 431-436.
[8] M. E. Gordji and Z. Alizadeh, Stability and superstability of ring homomorphisms on non-Archimedean Banach algebras, Abst. Appl. Anal. 2011(2011), Article ID 123656, 10 pages.
[9] M. E. Gordji, H. Khodaei and M. Kamyar, Stability of Cauchy-Jensen type functional equation in generalized fuzzy normed spaces, Comput. Math. Appl. 62(2011), 2950-2960.
[10] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27(1941), 222-224.
[11] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several variables, Birkhäuser, Basel, 1998.
[12] S. Y. Jang and R. Saadati, Approximation of the Jensen type functional equation in non-Archimedean C^{*}-algebras, J. Comput. Anal. Appl. 18(2015), 472-491.
[13] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Science, New York, 2011.
[14] J. I. Kang and R. Saadati, Approximation of homomorphisms and derivations on non-Archimedean random Lie C*-algebras via fixed point method, J. Ineq. Appl. 2012(2012), Article ID 251.
[15] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Science, New York, 2009.
[16] H. A. Kenary, S. Y. Jang and C. Park, A fixed point approach to the Hyers-Ulam stability of a functional equation in various normed spaces, Fixed Point Theory Appl. 2011(2011), Article ID 67.
[17] H. A. Kenary, H. Rezaei, S. Talebzadeh and C. Park, Stability for the Jensen equation in C^{*}-algebras: a fixed point alternative approach, Adv. Differ. Equ. 2012(2012), Article ID 17.
[18] S. S. Kim, J. M. Rassias, Y. J. Cho and S. H. Kim, Stability of n-Lie homomorphisms and Jordan n-Lie homomorphisms on n-Lie algebras, J. Math. Phys. 54(2013), 053501; 10.1063/1.4803026.
[19] Y. Lee and K. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238(1999), 305-315.
[20] D. Miheț and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. 343(2008), 567-572.
[21] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets Syst. 159(2008), 720-729.
[22] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy approximately cubic mappings, Inform. Sciences 178(2008), 3791-3798.
[23] A. K. Mirmostafaee, Perturbation of generalized derivations in fuzzy Menger normed algebras, Fuzzy Sets Syst. 195(2012), 109-117.
[24] F. Moradlou, H. Vaezi and C. Park, Fixed points and stability of an additive functional equation of n-Apollonius type in C^{*}-algebras, Abst. Appl. Anal. 2008(2008), Article ID 672618, 13 pages.
[25] A. Najati and A. Ranjbari, Stability of homomorphisms for a 3D Cauchy-Jensen type functional equation on C^{*}-ternary algebras, J. Math. Anal. Appl. 341(2008), 62-79.
[26] A. Najati, Fuzzy stability of a generalized quadratic functional equation, Commun. Korean Math. Soc. 25(2010), 405-417.
[27] A. Najati and Y. J. Cho, Generalized Hyers-Ulam stability of the Pexiderized Cauchy functional equation in non-Archimedean spaces, Fixed Point Theory Appl. 2011(2011), Article ID 309026, 11 pages.
[28] C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. 36(2005), 79-97.
[29] C. Park, Y. J. Cho and H. A. Kenary, Orthogonal stability of a generalized quadratic functional equation in non-Archimedean spaces, J. Comput. Anal. Appl. 14(2012), 526-535.
[30] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300.
[31] Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic, Dordrecht, 2003.
[32] J. M. Rassias and M. J. Rassias, On the Ulam stability of Jensen and Jensen type mappings on restricted domains, J. Math. Anal. Appl. 281(2003), 516-524.
[33] J. M. Rassias, Refined Hyers-Ulam approximation of approximately Jensen type mappings, Bull. Sci. Math. 131(2007), 89-98.
[34] J. M. Rassias and H. M. Kim, Generalized Hyers-Ulam stability for general additive functional equations in quasi- β-normed spaces, J. Math. Anal. Appl. 356(2009), 302-309.
[35] P. K. Sahoo and Pl. Kannappan, Introduction to Functional Equations, CRC Press, Boca Raton, 2011.
[36] B. Schweizer and A. Sklar, Probabilistic metric spaces, North-Holland, New York, 1983.
[37] A. N. Šerstnev, On the notion of a random normed space (in Russian), Dokl. Akad. Nauk. SSSR 149(1963), 280-283.
[38] N. Shilkret, Non-Archimedean Banach algebras, PhD thesis, Polytechnic University, ProQuest LLC, 1968.
[39] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.

[^0]: 2010 Mathematics Subject Classification. Primary 39B82; Secondary 39A10, 39B52, 46L05, 47H10
 Keywords. Derivation in C^{*}-algebras and Lie C^{*}-algebras; fixed point method; a general additive functional equation; generalized Hyers-Ulam stability; homomorphism in C^{*}-algebras and Lie C^{*}-algebras; non-Archimedean random space.

 Received: 08 April 2016; Accepted: 06 May 2018
 Communicated by Dragan S. Djordjević
 Corresponding author: Zhihua Wang
 This research work is supported by D20161401, NSFC \#11401190 and 17YJA790098.
 Email addresses: matwzh2000@126.com (Zhihua Wang), sahoo@louisville.edu (Prasanna K. Sahoo)

