Univalence Conditions for an Integral Operator Defined by a Generalization of the Srivastava-Attiya Operator

H. M. Srivastava ${ }^{\text {a }}$, Abdul Rahman S. Juma ${ }^{\text {b }}$, Hanaa M. Zayed ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada
and
Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, Republic of China
${ }^{b}$ Department of Mathematics, University of Anbar, Ramadi, Iraq
${ }^{c}$ Department of Mathematics, Faculty of Science, Menofia University, Shebin Elkom 32511, Egypt

Abstract

The main object of this paper is to introduce and study systematically the univalence criteria of a new family of integral operators by using a substantially general form of the widely-investigated Srivastava-Attiya operator. In particular, we derive several new sufficient conditions of univalence for this generalized Srivastava-Attiya operator. Relevant connections with other related earlier works are also pointed out.

1. Introduction, Definitions and Preliminaries

Let \mathcal{A} denote the class of functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic and univalent in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\}
$$

If the function $g \in \mathcal{A}$ is given by

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \tag{2}
\end{equation*}
$$

[^0]then the Hadamard product (or convolution) of $f(z)$ and $g(z)$ is defined by (see also [27])
\[

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=(g * f)(z) \tag{3}
\end{equation*}
$$

\]

In the year 2007, Srivastava and Attiya (see [21]) defined the operator $\mathcal{J}_{s, a}$ by

$$
\begin{align*}
& \mathcal{J}_{s, a}(f)(z)=z+\sum_{n=2}^{\infty}\left(\frac{1+a}{n+a}\right)^{s} a_{n} z^{n} \tag{4}\\
& \left(z \in \mathbb{U} ; a \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; \mathbb{Z}_{0}^{-}=\{0,1,2, \cdots\} ; s \in \mathbb{C}\right)
\end{align*}
$$

In fact, in terms of the Hadamard product (or convolution), the linear Srivastava-Attiya operator $\mathcal{J}_{s, a}(f)$ defined by (4) can be written as follows (see also the recent works [8], [25] and [28]):

$$
\mathcal{J}_{s, b} f(z)=G_{s, a}(z) * f(z)
$$

where $G_{s, a}(z)$ is given by

$$
\begin{equation*}
G_{s, a}(z)=(1+a)^{s}\left[\Phi(z, s, a)-a^{-s}\right] \quad(z \in \mathbb{U}) \tag{5}
\end{equation*}
$$

and the function $\Phi(z, s, a)$ involved in the right-hand side of (5) is the well-known Hurwitz-Lerch zeta function defined by (see [22])

$$
\begin{align*}
& \Phi(z, s, a)=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+a)^{s}} \tag{6}\\
& \left(z \in \mathbb{U} ; a \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} ; s \in \mathbb{C} \quad \text { when } \quad|z|<1 ; \mathfrak{R}(s)>1 \quad \text { when } \quad|z|>1\right)
\end{align*}
$$

Recently, a new family of λ-generalized Hurwitz-Lerch zeta functions was investigated by Srivastava (see [20]) who introduced this λ-generalized Hurwitz-Lerch zeta function

$$
\Phi_{\lambda_{1}, \cdots, \cdots, \lambda_{p} ; \mu_{1}, \cdots, \mu_{q}}^{\left(\rho_{1}, \cdots, \rho_{p}, \sigma_{1}, \cdots, \sigma_{q}\right)}(z, s, a ; b, \lambda)
$$

as well as gave the following explicit series representation for it (see [20, p. 1489, Eq. (2.1)]):

$$
\begin{gather*}
\Phi_{\lambda_{1}, \cdots, \lambda_{p} ; \mu_{1}, \cdots, \mu_{q}}^{\left(\rho_{1}, \cdots,,_{p}, \sigma_{1}, \cdots, \sigma_{q}\right)}(z, s, a ; b, \lambda)=\frac{1}{\lambda \Gamma(s)} \sum_{n=0}^{\infty} \frac{\prod_{j=1}^{p}\left(\lambda_{j}\right)_{n \rho_{j}}}{(a+n)^{s} \cdot \prod_{j=1}^{q}\left(\mu_{j}\right)_{n \sigma_{j}}} \\
\cdot H_{0,2}^{2,0}\left[(a+n) b^{\frac{1}{\lambda}} \left\lvert\, \overline{(s, 1),\left(0, \frac{1}{\lambda}\right)}\right.\right] \frac{z^{n}}{n!} \quad(\lambda>0) \tag{7}\\
\left(\lambda>0 ; \lambda_{j} \in \mathbb{C}(j=1, \cdots, p) ; \mu_{j} \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} \quad(j=1, \cdots, q) ;\right. \\
\rho_{j}>0(j=1, \cdots, p) ; \sigma_{j}>0(j=1, \cdots, q) \\
\left.1+\sum_{j=1}^{q} \sigma_{j}-\sum_{j=1}^{p} \rho_{j} \geqq 0 ; \min \{\mathfrak{R}(a), \mathfrak{R}(b)\}>0\right)
\end{gather*}
$$

where the equality in the convergence condition holds true for suitably bounded values of $|z|$ given by

$$
|z|<\nabla:=\left(\prod_{j=1}^{p} \rho_{j}^{-\rho_{j}}\right) \cdot\left(\prod_{j=1}^{q} \sigma_{j}^{\sigma_{j}}\right)
$$

$(\lambda)_{v}(\lambda, v \in \mathbb{C})$ denotes the general Pochhammer symbol (or the shifted factorial), occurring in (7), is defined, in terms of the familiar Gamma function, by

$$
(\lambda)_{v}:=\frac{\Gamma(\lambda+v)}{\Gamma(\lambda)}= \begin{cases}1 & (v=0 ; \lambda \in \mathbb{C} \backslash\{0\}) \\ \lambda(\lambda+1) \cdots(\lambda+n-1) & (v=n \in \mathbb{N} ; \lambda \in \mathbb{C})\end{cases}
$$

it being understood conventionally that $(0)_{0}:=1$ and assumed tacitly that the above Γ-quotient exists. Moreover, the H-function involved in the right-hand side of (7) is the well-known Fox's H-function which is defined by (see, for example, [26, Chapter 2] and [12, pp. 58 et seq.])

$$
\begin{align*}
H_{p, q}^{m, n}(z) & =H_{p, q}^{m, n}\left[z \left\lvert\, \begin{array}{c}
\left(a_{p}, A_{p}\right) \\
\left(b_{q}, B_{q}\right)
\end{array}\right.\right] \\
& =H_{p, q}^{m, n}\left[z \left\lvert\, \begin{array}{c}
\left(a_{1}, A_{1}\right), \cdots,\left(a_{p}, A_{p}\right) \\
\left(b_{1}, B_{1}\right), \cdots,\left(b_{q}, B_{q}\right)
\end{array}\right.\right]=\frac{1}{2 \pi \mathrm{i}} \int_{\mathcal{L}} \Xi(\mathfrak{s}) z^{-\mathfrak{s}} \mathrm{d} \mathfrak{s}, \tag{8}
\end{align*}
$$

where

$$
\begin{equation*}
\Xi(\mathfrak{s})=\frac{\prod_{j=1}^{m} \Gamma\left(b_{j}+B_{j} \mathfrak{s}\right) \prod_{j=1}^{n} \Gamma\left(1-a_{j}-A_{j \mathfrak{s}}\right)}{\prod_{j=m+1}^{q} \Gamma\left(1-b_{j}-B_{j \mathfrak{s}}\right) \prod_{j=n+1}^{p} \Gamma\left(a_{j}+A_{j \mathfrak{s}}\right)} \tag{9}
\end{equation*}
$$

Here

$$
z \in \mathbb{C} \backslash\{0\} \quad \text { with } \quad|\arg (z)|<\pi
$$

an empty product is interpreted as $1, m, n, p$ and q are integers such that $1 \leqq m \leqq q$ and $0 \leqq n \leqq p$,

$$
\begin{array}{ll}
A_{j}>0(j=1, \cdots, p) \quad \text { and } \quad & B_{j}>0(j=1, \cdots, q), \\
\alpha_{j} \in \mathbb{C}(j=1, \cdots, p) \quad \text { and } \quad & \beta_{j} \in \mathbb{C}(j=1, \cdots, q),
\end{array}
$$

and \mathcal{L} is a suitable Mellin-Barnes type contour separating the poles of the gamma functions

$$
\left\{\Gamma\left(b_{j}+B_{j \mathfrak{s}}\right)\right\}_{j=1}^{m}
$$

from the poles of the gamma functions

$$
\left\{\Gamma\left(1-a_{j}-A_{j \mathfrak{s}}\right)\right\}_{j=1}^{n}
$$

If, in the series representation (7), we make use of the following limit formula (see [20, p. 1496, Eq. (4.12)])

$$
\begin{equation*}
\lim _{b \rightarrow 0}\left\{H_{0,2}^{2,0}\left[(a+n) b^{\frac{1}{\lambda}} \left\lvert\, \overline{(s, 1),\left(0, \frac{1}{\lambda}\right)}\right.\right]\right\}=\lambda \Gamma(s) \quad(\lambda>0) \tag{10}
\end{equation*}
$$

we find for the extended Hurwitz-Lerch zeta function

$$
\Phi_{\lambda_{1}, \cdots, \lambda_{p} ; \mu_{1}, \cdots, \mu_{q}}^{\left(\rho_{1}, \cdots, \rho_{p}, \sigma_{1}, \cdots, \sigma_{q}\right)}(z, s, a)
$$

that (see [29, p. 503, Eq. (6.2)])

$$
\begin{gather*}
\Phi_{\lambda_{1}, \cdots, p_{p} ; \mu_{1}, \cdots, \mu_{q}}^{\left(\rho_{1}, \cdots, \rho_{p}, \sigma_{1}, \cdots, \sigma_{2}\right)}(z, s, a):=\sum_{n=0}^{\infty} \frac{\prod_{j=1}^{p}\left(\lambda_{j}\right)_{n \rho_{j}}}{n!\cdot \prod_{j=1}^{q}\left(\mu_{j}\right)_{n \sigma_{j}}} \frac{z^{n}}{(n+a)^{s}} \tag{11}\\
\left(p, q \in \mathbb{N}_{0} ; \lambda_{j} \in \mathbb{C}(j=1, \cdots, p) ; a, \mu_{j} \in \mathbb{C} \backslash Z_{0}^{-}(j=1, \cdots, q) ;\right. \\
\rho_{j}, \sigma_{k} \in \mathbb{R}^{+}(j=1, \cdots, p ; k=1, \cdots, q) ; \Delta>-1 \text { when } s, z \in \mathbb{C} ; \\
\Delta=-1 \text { and } s \in \mathbb{C} \text { when }|z|<\nabla^{*} ; \\
\left.\Delta=-1 \text { and } \mathfrak{R}(\Xi)>\frac{1}{2} \text { when }|z|=\nabla^{*}\right),
\end{gather*}
$$

which was defined by Srivastava et al. (see [20, p. 1496, Eq. (4.12)]). In fact, the function

$$
\Phi_{\lambda_{1}, \cdots, \lambda_{p} ; \mu_{1}, \cdots, \mu_{q}}^{\left(\rho_{1}, \cdots, \rho_{p}, \sigma_{1}, \cdots, \sigma_{q}\right)}(z, s, a)
$$

in (11), which was introduced by Srivastava et al. [29], is a multiparameter extension and generalization of the classical Hurwitz-Lerch zeta function $\Phi(z, s, a)$ defined by (6).

By applying Srivastava's λ-generalized Hurwitz-Lerch zeta function

$$
\Phi_{\lambda_{1}, \cdots, \lambda_{p} ; \mu_{1}, \cdots, \mu_{q}}^{\left(\rho_{1}, \cdots, \rho_{p}, \sigma_{1} \cdots, \sigma_{q}\right)}(z, s, a ; b, \lambda)
$$

occurring on the left-hand side of (7), Srivastava and Gaboury [24] introduced the following linear operator:

$$
\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda}(f): \mathcal{A} \rightarrow \mathcal{A}
$$

which they defined by

$$
\begin{equation*}
\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda}(f)(z)=G_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda}(z) * f(z) \tag{12}
\end{equation*}
$$

where

$$
\begin{align*}
G_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda}(z)= & \frac{\lambda \Gamma(s) \prod_{j=1}^{q}\left(\mu_{j}\right)(a+1)^{s}}{\prod_{j=1}^{p}\left(\lambda_{j}\right)}[\Lambda(a+1, b, s, \lambda)]^{-1} \\
& \cdot\left[\Phi_{\lambda_{1}, \cdots, \lambda_{p} ; \mu_{1}, \cdots, \mu_{q}}^{(1, \cdots, 1, \cdots, 1)}(z, s, a ; b, \lambda)-\frac{a^{-s}}{\lambda \Gamma(s)} \Lambda(a, b, s, \lambda)\right] \\
= & z+\sum_{n=2}^{\infty} \frac{\prod_{j=1}^{p}\left(\lambda_{j}+1\right)_{n-1}}{\prod_{j=1}^{q}\left(\mu_{j}+1\right)_{n-1}} \cdot\left(\frac{a+1}{a+n}\right)^{s} \frac{\Lambda(a+n, b, s, \lambda)}{\Lambda(a+1, b, s, \lambda)} \frac{z^{n}}{n!} \tag{13}
\end{align*}
$$

with

$$
\Lambda(a, b, s, \lambda):=H_{0,2}^{2,0}\left[\begin{array}{l|l}
(a+n) b^{\frac{1}{\lambda}} & \overline{(s, 1),\left(0, \frac{1}{\lambda}\right)} \tag{14}
\end{array}\right]
$$

Now, from (12) and (13), we have

$$
\begin{align*}
& \mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a,} f(z)=z+\sum_{n=2}^{\infty} \frac{\prod_{j=1}^{p}\left(\lambda_{j}+1\right)_{n-1}}{\prod_{j=1}^{q}\left(\mu_{j}+1\right)_{n-1}} \cdot\left(\frac{a+1}{a+n}\right)^{s} \frac{\Lambda(a+n, b, s, \lambda)}{\Lambda(a+1, b, s, \lambda)} a_{n} \frac{z^{n}}{n!} \tag{15}\\
& \left(\lambda_{j} \in \mathbb{C}(j=1, \cdots, p) ; \mu_{j} \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}(j=1, \cdots, q) ; p \leqq q+1 ; z \in \mathbb{U} ;\right. \\
& \left.\min \{\mathfrak{R}(a), \mathfrak{R}(s)\}>0 ; \lambda>0 \text { when } \mathfrak{R}(b)>0 \text { and } s \in \mathbb{C} ; a \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} \text {when } b=0\right) .
\end{align*}
$$

It is easy to see from the definition (15) that

$$
\begin{equation*}
z\left(\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f(z)\right)^{\prime}=\left(\lambda_{1}+1\right) \mathcal{J}_{\left(\lambda_{1}+1, \lambda_{2}, \cdots, \lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f(z)-\lambda_{1} \mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f(z) . \tag{16}
\end{equation*}
$$

Definition 1. Let Ψ be the set of complex-valued functions $\psi(u, v, w)$ given by

$$
\psi(u, v, w): \mathbb{C}^{3} \rightarrow \mathbb{C}
$$

such that
(i) $\psi(u, v, w)$ is continuous in a domain $\mathbb{D} \subset \mathbb{C}^{3}$;
(ii) $(0,0,0) \in \mathbb{D}$ and $|\psi(0,0,0)|<1$;
(iii) The following inequality holds true:

$$
\left|\psi\left(e^{i \theta},\left[\frac{\lambda_{1}+t}{\lambda_{1}+1}\right] e^{i \theta}, \frac{1}{\lambda_{1}+1}\left[\lambda_{1}+2 t+\frac{L}{\lambda_{1}+1}\right] e^{i \theta}\right)\right| \geqq 1
$$

when $\lambda_{1} \notin \mathbb{Z}_{0}^{-}$and

$$
\left(e^{i \theta},\left[\frac{\lambda_{1}+t}{\lambda_{1}+1}\right] e^{i \theta}, \frac{1}{\lambda_{1}+1}\left[\lambda_{1}+2 t+\frac{L}{\lambda_{1}+1}\right] e^{i \theta}\right) \in \mathbb{D}
$$

with $\Re(L) \geqq t(t-1)$ for real $\theta \in \mathbb{R}$ and $t \geqq 1$.
By using the generalization of the Srivastava-Attiya operator defined by (15), we now introduce the following integral operator:

$$
\mathscr{F}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{\beta, s_{1}}\left(\gamma_{1}, \cdots, \gamma_{k} ; z\right): \mathcal{A}^{n} \rightarrow \mathcal{A} .
$$

Definition 2. For $\beta, \gamma_{1}, \gamma_{2}, \cdots, \gamma_{k} \in \mathbb{C}$ with

$$
\mathfrak{R}(\beta)>0 \quad \text { and } \quad \mathfrak{R}\left(\gamma_{m}\right)>0 \quad(m \in\{1, \cdots, k\}),
$$

we define the integral operator:

$$
\tilde{\mathscr{F}}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{\beta, s, \lambda, \lambda}\left(\gamma_{1}, \cdots, \gamma_{k} ; z\right): \mathcal{A}^{n} \rightarrow \mathcal{A}
$$

by

$$
\begin{equation*}
\mathscr{F}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{\beta, s, \lambda}\left(\gamma_{1}, \cdots, \gamma_{k} ; z\right)=\left(\beta \int_{0}^{z} t^{\beta-1} \prod_{m=1}^{k}\left[\frac{\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f_{m}(t)}{t}\right]^{\frac{1}{m m}} d t\right)^{\frac{1}{\beta}} \tag{17}
\end{equation*}
$$

By suitably specializing Definition 2, we are led to the following integral operators:

$$
\begin{align*}
& \mathfrak{F}_{\left(\alpha_{1}-1, \cdots, \alpha_{p}-1\right),\left(\beta_{1}-1, \cdots, \beta_{q}-1\right), 0}^{1+k(\alpha-1), \alpha, \lambda}\left(\frac{1}{\alpha-1}, \cdots, \frac{1}{\alpha-1} ; z\right) \\
& \quad=F_{\alpha}\left(\alpha_{1}, \beta_{1} ; z\right)=\left([1+k(\alpha-1)] \cdot \int_{0}^{z}\left(H_{q}^{p}\left(\alpha_{1}, \beta_{1}\right) f_{1}(t)\right)^{\alpha-1} \cdots,\left[H_{q}^{p}\left(\alpha_{1}, \beta_{1}\right) f_{k}(t)\right]^{\alpha-1} d t\right)^{\frac{1}{1+k(\alpha-1)}}, \tag{18}
\end{align*}
$$

where the operator $F_{\alpha}\left(\lambda_{1}, \mu_{1} ; z\right)$ was investigated by Selvaraj and Karthikeyan [19];

$$
\begin{align*}
& \mathfrak{F}_{(\lambda, 1),(\lambda), 0}^{1+k(\alpha-1),, \alpha, \lambda}\left(\frac{1}{\alpha-1}, \cdots, \frac{1}{\alpha-1} ; z\right)=F_{k, \alpha}(z) \\
& \quad=\left([1+k(\alpha-1)] \int_{0}^{z}\left[f_{1}(t)\right]^{\alpha-1} \cdots\left[f_{k}(t)\right]^{\alpha-1} d t\right)^{\frac{1}{1+k(\alpha-1)}} \tag{19}
\end{align*}
$$

where the operator $F_{k, \alpha}(z)$ was investigated by Breaz et al. (see [1], [3] and [5]);

$$
\begin{align*}
& \mathfrak{F}_{(\lambda, 1),(\lambda), 0}^{\beta, 0, \lambda, \lambda}\left(\frac{1}{\alpha_{1}}, \cdots, \frac{1}{\alpha_{k}} ; z\right)=J_{\alpha_{1}, \cdots, \alpha_{k} \beta \beta}(z) \\
& \quad=\left[\beta \int_{0}^{z} t^{\beta-1}\left(\frac{f_{1}(t)}{t}\right)^{\alpha_{1}} \cdots\left(\frac{f_{k}(t)}{t}\right)^{\alpha_{k}} d t\right]^{\frac{1}{\beta}}, \tag{20}
\end{align*}
$$

where the operator $J_{\alpha_{1}, \cdots, \alpha_{k}, \beta}(z)$ was investigated by Breaz and Breaz [2] (see also Stanciu et al. [30]);

$$
\begin{align*}
& \mathscr{F}_{(\lambda, 1),(\lambda), 0}^{\beta, 0, \lambda}\left(\frac{1}{\alpha_{1}}, \cdots, \frac{1}{\alpha_{k}} ; z\right)=F_{\alpha_{1}, \cdots, \alpha_{k} \beta}(z) \\
& \quad=\left[\beta \int_{0}^{z} t^{\beta-1}\left(\frac{f_{1}(t)}{t}\right)^{\frac{1}{\alpha_{1}}} \cdots\left(\frac{f_{k}(t)}{t}\right)^{\frac{1}{\alpha_{k}}} d t\right]^{\frac{1}{\beta}}, \tag{21}
\end{align*}
$$

where the operator $F_{\alpha_{1}, \cdots, \alpha_{k}, \beta}(z)$ was investigated by Seenivasagan and Breaz [18] (see also [6]);

$$
\begin{align*}
& \mathfrak{\mathscr { ® }}_{(\lambda, 1),(\lambda),(\lambda), 0}^{1,0, \lambda}\left(\frac{1}{\alpha_{1}}, \cdots, \frac{1}{\alpha_{k}} ; z\right)=F(z) \\
& \quad=\int_{0}^{z}\left(\frac{f_{1}(t)}{t}\right)^{\alpha_{1}} \cdots\left(\frac{f_{k}(t)}{t}\right)^{\alpha_{k}} d t, \tag{22}
\end{align*}
$$

where the operator $F(z)$ was investigated by Breaz and Breaz [2];

$$
\begin{gather*}
\tilde{F}_{(2,1,1),(1,0,0,0}^{1+k(\alpha-1), 0, \lambda}\left(\frac{1}{\alpha-1}, \cdots, \frac{1}{\alpha-1} ; z\right)=F_{\alpha}(z)=([1+k(\alpha-1)] \\
\left.\cdot \int_{0}^{z} t^{k(\alpha-1)}\left[f_{1}^{\prime}(t)\right]^{\alpha-1} \cdots\left[f_{k}^{\prime}(t)\right]^{\alpha-1} d t\right)^{1+(k \alpha(\alpha-1)} \tag{23}
\end{gather*}
$$

where the operator $F_{\alpha}(z)$ was investigated by Selvaraj and Karthikeyan [19];

$$
\begin{gather*}
\mathfrak{F}_{(2,1,1),(1,0), 0}^{1,0, a, \lambda}\left(\frac{1}{\alpha_{1}}, \cdots, \frac{1}{\alpha_{k}} ; z\right)=F_{\alpha_{1}, \cdots, \alpha_{k}}(z) \\
\quad=\int_{0}^{z}\left[f_{1}^{\prime}(t)\right]^{\alpha_{1}-1} \cdots\left[f_{k}^{\prime}(t)\right]^{\alpha_{k}-1} d t \tag{24}
\end{gather*}
$$

where the operator $F_{\alpha}(z)$ was investigated by Breaz et al. [7];

$$
\begin{equation*}
\mathfrak{F}_{(\lambda, 1),(\lambda), 0}^{\delta, 0, a, \lambda}\left(\frac{1}{\alpha-1}, \cdots, \frac{1}{\alpha-1} ; z\right)=F_{\alpha}(z)=\left(\alpha \int_{0}^{z}[f(t)]^{\alpha-1}\right)^{\frac{1}{\alpha}} d t \tag{25}
\end{equation*}
$$

where the operator $F_{\alpha}(z)$ was investigated by Pescar [17].
By making use of the integral operator defined in (15), we have the following definition.
Definition 3. A function $f_{m} \in \mathcal{A}(m \in\{1, \cdots, k\})$ is said to be in the class $\mathcal{S}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda}$ if it satisfy the following condition:

$$
\begin{equation*}
\left|\frac{z^{2}\left(\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f_{m}(t)\right)^{\prime}}{\left(\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f_{m}(t)\right)^{2}}-1\right|<1 \quad(z \in \mathbb{U} ; m \in\{1, \cdots, k\}) \tag{26}
\end{equation*}
$$

In our investigation of the function class $\mathcal{S}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda}$ given by Definition 3, we shall need the univalence criteria and other results asserted by the following lemmas.

Lemma 1. (see [14]) Let the function f be analytic in the disk

$$
\mathbb{U}_{R}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<R\}
$$

with $|f(z)|<M$ for some fixed $M>0$. If $f(z)$ has one zero with multiplicity order bigger that m for $z=0$, then

$$
\begin{equation*}
|f(z)| \leqq \frac{M}{R^{m}}|z|^{m} \quad\left(z \in \mathbb{U}_{R}\right) \tag{27}
\end{equation*}
$$

The equality holds true in (27) only if

$$
f(z)=e^{i \theta} \frac{M}{R^{m}} z^{m} \quad\left(z \in \mathcal{U}_{R}\right)
$$

where θ is real constant.
Lemma 2. (see [15] and [16]) Let $\beta \in \mathbb{C}$ with $\mathfrak{R}(\beta)>0$. If the function $f(z) \in \mathcal{A}$ is constrained by

$$
\frac{1-|z|^{2 \mathfrak{R}}(\beta)}{\Re(\beta)}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leqq 1 \quad(z \in \mathbb{U})
$$

then the function $F_{\beta}(z)$ given in terms of the following integral operator:

$$
\begin{align*}
F_{\beta}(z) & =\left(\beta \int_{0}^{z} t^{\beta-1} f^{\prime}(t) d t\right)^{\frac{1}{\beta}} \\
& =z+\frac{2 a_{2}}{\beta+1} z^{2}+\left(\frac{3 a_{3}}{\beta+2}-\frac{2 \beta(1-\beta) a_{2}^{2}}{(\beta+1)^{2}}\right) z^{3}+\cdots \tag{28}
\end{align*}
$$

is in the class \mathcal{S} of normalized analytic and univalent functions in \mathbb{U}.

Lemma 3. (see [17]) Let $\beta \in \mathbb{C}$ with

$$
\mathfrak{R}(\beta)>0 \quad \text { and } \quad c \in \mathbb{C} \quad|c| \leqq 1
$$

If the function $f(z) \in \mathcal{A}$ is constrained by

$$
\left.\left.|c| z\right|^{2 \beta}+\left(1-|z|^{2 \beta}\right) \frac{z f^{\prime \prime}(z)}{\beta f^{\prime}(z)} \right\rvert\, \leqq 1 \quad(z \in \mathbb{U})
$$

then the function $F_{\beta}(z)$ given in terms of the following integral operator:

$$
\begin{equation*}
F_{\beta}(z)=\left(\beta \int_{0}^{z} t^{\beta-1} f^{\prime}(t) d t\right)^{\frac{1}{\beta}} \tag{29}
\end{equation*}
$$

is in the class \mathcal{S} of normalized analytic and univalent functions in \mathbb{U}.
Lemma 4. (see [13]) Let the function $w(z)$ given by

$$
\omega(z)=a+\omega_{r} z^{r}+\omega_{r+1} z^{r+1}+\cdots
$$

be analytic in \mathbb{U} with

$$
\omega(z) \neq a \quad \text { and } \quad r \in \mathbb{N} .
$$

If

$$
z_{0}=r_{0} e^{i \theta} \quad\left(0<r_{0}<1\right) \quad \text { and } \quad\left|\omega\left(z_{0}\right)\right|=\max _{|z| \leqq r_{0}}\{|\omega(z)|\}
$$

then

$$
\begin{equation*}
\frac{z_{0} \omega^{\prime}\left(z_{0}\right)}{\omega\left(z_{0}\right)}=\tau \quad \text { and } \quad \Re\left(1+\frac{z_{0} \omega^{\prime \prime}\left(z_{0}\right)}{\omega^{\prime}\left(z_{0}\right)}\right) \geqq \tau \tag{30}
\end{equation*}
$$

where τ is a real number and

$$
\tau \geqq r \frac{\left|\omega\left(z_{0}\right)-a\right|^{2}}{\left|\omega\left(z_{0}\right)\right|^{2}-|a|^{2}} \geqq r \frac{\left|\omega\left(z_{0}\right)\right|-|a|}{\left|\omega\left(z_{0}\right)\right|+|a|} .
$$

2. Main Results and Their Corollaries

We begin by proving Theorem 1 below.
Theorem 1. Let the functions $f_{m}(z) \in \mathcal{A}(m=1, \cdots, k)$. Suppose that $\beta, \gamma_{m} \in \mathbb{C} \quad(m=1, \cdots, k)$ with

$$
\mathfrak{R}(\beta)>0 \quad \text { and } \quad M_{m}>0 \quad(m=1, \cdots, k)
$$

Also let

$$
\begin{equation*}
\sum_{m=1}^{k} \frac{2 M_{m}+1}{\left|\gamma_{m}\right|} \leqq \mathfrak{R}(\beta) \tag{31}
\end{equation*}
$$

If, for all $m \in\{1, \cdots, k\}$,

$$
f_{m}(z) \in \mathcal{S}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda}(z)
$$

and

$$
\begin{equation*}
\left|\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, v} f_{m}(z)\right| \leqq M_{m} \quad(z \in \mathbb{U}) \tag{32}
\end{equation*}
$$

then the general integral operator defined by (17) is analytic and univalent in \mathbb{U}.

Proof. It is easy to verify that

$$
\frac{\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, v} f_{m}(z)}{z} \neq 0
$$

Hence, for $z=0$, we find that

$$
\left(\frac{\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, v} f_{1}(z)}{z}\right)^{\frac{1}{\mu_{j}}} \cdots\left(\frac{\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, v} f_{m}(z)}{z}\right)^{\frac{1}{\gamma_{k}}}=1
$$

Let us define the function $g(z)$ as follows:

$$
\begin{equation*}
g(z)=\int_{0}^{z} \prod_{m=1}^{k}\left(\frac{\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f_{m}(t)}{t}\right)^{\frac{1}{\gamma_{m}}} d t \tag{33}
\end{equation*}
$$

Then we have

$$
\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}=\sum_{m=1}^{k} \frac{1}{\gamma_{m}}\left(\frac{z\left(\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f_{m}(z)\right)^{\prime}}{\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a} f_{m}(z)}-1\right)
$$

so that

$$
\left|\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right| \leqq \sum_{m=1}^{k} \frac{1}{\left|\gamma_{m}\right|}\left|\frac{z\left(\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f_{m}(z)\right)^{\prime}}{\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f_{m}(z)}-1\right|
$$

Therefore, we get

$$
\begin{aligned}
& \frac{1-|z|^{2 \mathfrak{R}}(\beta)}{\mathfrak{R}(\beta)}\left|\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right| \\
& \leqq \frac{1-|z|^{2 \mathfrak{R}(\beta)}}{\mathfrak{R}(\beta)}\left(\sum_{m=1}^{k} \frac{1}{\left|\gamma_{m}\right|}\left|\frac{z\left(\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f_{m}(z)\right)^{\prime}}{\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f_{m}(z)}\right|+1\right) \\
& \leqq \frac{1-|z|^{2 \mathfrak{R}}(\beta)}{\mathfrak{R}(\beta)}\left(\sum_{m=1}^{k} \frac{1}{\left|\gamma_{m}\right|}\left|\frac{z^{2}\left(\mathcal{J}_{(\lambda p,(\mu q), b}^{s, \lambda}, f_{m}(z)\right)^{\prime}}{\left(\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, f_{m}} f_{m}(z)\right)^{2}}\right| \cdot\left|\frac{\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f_{m}(z)}{z}\right|+1\right) \\
& \leqq \frac{1-|z|^{2 \Re(\beta)}}{\mathfrak{R}(\beta)}\left(\sum_{m=1}^{k} \frac{1}{\left|\gamma_{m}\right|}\left[\left|\frac{z^{2}\left(\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s a, \lambda} f_{j}(z)\right)^{\prime}}{\left(\mathcal{J}_{\left(\lambda_{p},(,(q)), b\right.}^{s, a} f_{i}(z)\right)^{2}}-1\right|+1\right] \cdot\left|\frac{\mathcal{J}_{(p,),\left(q_{2}, b\right.}^{s, \lambda}, f_{m}(z)}{z}\right|+1\right) \\
& \leqq \frac{1}{\mathfrak{R}(\beta)} \sum_{m=1}^{k} \frac{2 M_{m}+1}{\left|\gamma_{m}\right|} \text {. }
\end{aligned}
$$

By using the Schwarz lemma, we have

$$
\left|\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, v} f_{m}(z)\right| \leqq M_{m}|z| \quad(z \in \mathcal{U})
$$

Now, from (31), we obtain

$$
\frac{1-|z|^{2 \mathfrak{R}}(\beta)}{\mathfrak{R}(\beta)}\left|\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right| \leqq 1
$$

Finally, by applying Lemma 2 for the function $g(z)$, we obtain the required result asserted by Theorem 1.

Remark 1. If, in Theorem 1, we set

$$
\begin{aligned}
\lambda_{1} & =\alpha_{1}-1, \cdots, \lambda_{p}=\alpha_{p}-1, \quad \mu_{1}=\beta_{1}-1, \cdots, \mu_{q}=\beta_{q}-1 \\
\gamma_{1} & =\frac{1}{\alpha-1}, \cdots, \gamma_{k}=\frac{1}{\alpha-1} \quad \text { and } \quad M_{m}=1 \quad(1 \leqq m \leqq k)
\end{aligned}
$$

we obtain a known result proven in [19].
Corollary 1. Let the functions $f_{m}(z) \in \mathcal{A}(m \in\{1, \cdots, k\})$. Also let $\alpha \in \mathbb{C}$ with

$$
\mathfrak{R}(\alpha)>0 \quad \text { and } \quad|\alpha-1| \leqq \frac{\Re(\alpha)}{3 k}
$$

If

$$
\left|\frac{z^{2}\left(H_{q}^{p}\left(\alpha_{1}, \beta_{1}\right) f_{m}(t)\right)^{\prime}}{\left[H_{q}^{p}\left(\alpha_{1}, \beta_{1}\right) f_{m}(t)\right]^{2}}-1\right|<1
$$

and

$$
\left|H_{q}^{p}\left(\alpha_{1}, \beta_{1}\right) f_{m}(t)\right| \leqq M_{m} \quad(m=1, \cdots, k ; z \in \mathbb{U})
$$

then the general integral operator defined by (18) is analytic and univalent in \mathbb{U}.
Remark 2. Putting

$$
p=2, \quad q=1, \quad \lambda_{1}=\lambda, \quad \lambda_{2}=1, \quad \mu_{1}=\lambda, \quad \gamma_{j}=\frac{1}{\alpha-1} \quad(j=1, \cdots, k)
$$

and

$$
M_{m}=1 \quad(1 \leqq m \leqq k)
$$

in Theorem 1, we obtain another known result given in [4].
Corollary 2. Let the functions $f_{m}(z) \in \mathcal{A}(m \in\{1, \cdots, k\})$. Also let $\alpha \in \mathbb{C}$ with

$$
\mathfrak{R}(\alpha)>0 \quad \text { and } \quad|\alpha-1| \leqq \frac{\mathfrak{R}(\alpha)}{3 k}
$$

If

$$
\left|\frac{z^{2} f_{m}^{\prime}(t)}{f_{m}^{2}(t)}-1\right|<1 \quad \text { and } \quad\left|f_{m}(t)\right| \leqq 1 \quad(m=1, \cdots, k ; z \in \mathbb{U})
$$

then the general integral operator defined by (19) is analytic and univalent in \mathbb{U}.
We now prove another result asserted by Theorem 2 below.
Theorem 2. Let the functions $f_{m}(z) \in \mathcal{A} \quad(m=1, \cdots, k)$. Suppose that

$$
c, \beta \in \mathbb{C} \quad \text { and } \quad M_{m}>0 \quad(m=1, \cdots, k)
$$

Also let

$$
\gamma_{m} \in\left[1, \max _{1 \leqq m \leqq k}\left\{\frac{\left(2 M_{m}+1\right) k}{\left(2 M_{m}+1\right) k-1}\right\}\right] \quad(m=1, \cdots, k)
$$

and

$$
\begin{equation*}
|c| \leqq 1-\frac{1}{\Re(\beta)} \max _{1 \leqq m \leqq k}\left\{\frac{\left(2 M_{m}+1\right) k}{\left|\gamma_{m}\right|}\right\} \tag{34}
\end{equation*}
$$

If, for all $m=1, \cdots, k$,

$$
\begin{equation*}
f_{m}(z) \in \mathcal{S}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda}(z) \quad \text { and } \quad\left|\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, v} f_{m}(z)\right| \leqq M_{m} \quad(z \in \mathbb{U}) \tag{35}
\end{equation*}
$$

then the general integral operator defined by (17) is analytic and univalent in \mathbb{U}.
Proof. From Theorem 1, we have

$$
\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}=\sum_{m=1}^{k} \frac{1}{\gamma_{m}}\left(\frac{z\left(\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f_{m}(z)\right)^{\prime}}{\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f_{m}(z)}-1\right)
$$

so that

$$
\begin{aligned}
& \left.\left.|c| z\right|^{2 \beta}+\left(1-|z|^{2 \beta}\right) \frac{z g^{\prime \prime}(z)}{\beta g^{\prime}(z)} \right\rvert\, \\
& =\left.|c| z\right|^{2 \beta}+\left(\frac{1-|z|^{2 \beta}}{\beta}\right)\left[\sum_{m=1}^{k} \frac{1}{\gamma_{m}}\left(\frac{z\left(\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f_{m}(z)\right)^{\prime}}{\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f_{m}(z)}-1\right]| |\right. \\
& \leqq|c|+\frac{1}{|\beta|}\left(\sum_{m=1}^{k} \frac{1}{\left|\gamma_{m}\right|}\left|\frac{z\left(\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f_{m}(z)\right)^{\prime}}{\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f_{m}(z)}-1\right|\right) \\
& \leqq|c|+\frac{1}{\Re(\beta)}\left(\sum_{m=1}^{k} \frac{1}{\left|\gamma_{m}\right|}\left|\frac{z^{2}\left(\mathcal{J}_{\left(p_{p}\right),\left(q_{q}\right), b}^{s, n} f_{m}(z)\right)^{\prime}}{\left(\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, b} f_{m}(z)\right)^{2}}\right| \cdot\left|\frac{\mathcal{J}_{\left(\lambda_{p}\right),(\mu q), b}^{s, n} f_{m}(z)}{z}\right|+1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leqq|c|+\frac{1}{\Re(\beta)} \sum_{m=1}^{k} \frac{2 M_{m}+1}{\left|\gamma_{m}\right|} \\
& \leqq|c|+\frac{1}{\mathfrak{R}(\beta)} \max _{1 \leqq m \leqq k} \frac{\left(2 M_{m}+1\right) k}{\left|\gamma_{m}\right|} \text {. }
\end{aligned}
$$

Now, by making use of (34), we obtain

$$
\left.\left.|c| z\right|^{2 \beta}+\left(1-|z|^{2 \beta}\right) \frac{z g^{\prime \prime}(z)}{\beta g^{\prime}(z)} \right\rvert\, \leqq 1
$$

Finally, if we apply Lemma 3 for the function $g(z)$, we obtain the result asserted by Theorem 2.

Remark 3. If we set

$$
p=2, \quad q=1, \quad \lambda_{1}=\lambda, \quad \lambda_{2}=1, \quad \mu_{1}=\lambda \quad \text { and } \quad \gamma_{j}=\frac{1}{\alpha_{j}} \quad(j=1, \cdots, k)
$$

in Theorem 2, we obtain a known result (see [31]).
Corollary 3. Let the functions $f_{m}(z) \in \mathcal{A}(m=1, \cdots, k)$. Suppose that

$$
c, \beta \in \mathbb{C} \quad \text { and } \quad M_{m} \geqq 1 \quad(m=1, \cdots, k) .
$$

Also let

$$
\alpha_{m} \in\left[1, \max _{1 \leqq m \leqq k}\left\{\frac{\left(2 M_{m}+1\right) k}{\left(2 M_{m}+1\right) k-1}\right\}\right] \quad(m=1, \cdots, k)
$$

and

$$
|c| \leqq 1-\frac{k}{\Re(\beta)} \max _{1 \leqq m \leqq k}\left(2 M_{m}+1\right)\left|\alpha_{m}\right|
$$

If

$$
\left|f_{m}(z)\right| \leqq M_{m} \quad \text { and } \quad\left|\frac{z f_{m}^{\prime}(z)}{f_{m}^{2}(z)}-1\right| \leqq 1 \quad(z \in \mathbb{U} ; m=1, \cdots, k)
$$

then the general integral operator defined by (20) is analytic and univalent in \mathbb{U}.
Finally, we state and prove Theorem 3 below.
Theorem 3. Let $\lambda_{1} \notin \mathbb{Z}_{0}^{-}$. Suppose that $\psi(u, v, w) \in \Psi$ and that

$$
\begin{align*}
\left(\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f(z),\right. & \mathcal{J}_{\left(\lambda_{1}+1, \lambda_{2}, \cdots, \lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f(z), \\
& \left.\mathcal{J}_{\left(\lambda_{1}+2, \lambda_{2}, \cdots, \lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f(z)\right) \in \mathbb{D} \subset \mathbb{C}^{3} . \tag{36}
\end{align*}
$$

If

$$
\begin{align*}
& \mid \psi\left(\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f(z), \mathcal{J}_{\left(\lambda_{1}+1, \lambda_{2}, \cdots, \lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f(z),\right. \\
& \left.\mathcal{J}_{\left(\lambda_{1}+2, \lambda_{2}, \cdots, \lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f(z)\right) \mid<1 \quad(z \in \mathbb{U}), \tag{37}
\end{align*}
$$

then

$$
\left|\left(\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{5, a, \lambda} f(z)\right)\right|<1 \quad(z \in \mathbb{U})
$$

Proof. Let

$$
\begin{equation*}
\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f(z)=\omega(z) \quad(z \in \mathbb{U}) \tag{38}
\end{equation*}
$$

Thus, clearly, it follows that $\omega(z)$ is analytic in \mathbb{U},

$$
\omega(0)=1 \quad \text { and } \quad \omega(z) \neq 1 \quad(z \in \mathbb{U})
$$

Upon differentiating both sides (38) with respect to z, if we make use of the identity (16), we readily obtain

$$
\begin{equation*}
\left(\lambda_{1}+1\right)\left(\mathcal{J}_{\left(\lambda_{1}+1, \lambda_{2}, \cdots, \lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f(z)\right)=z \omega^{\prime}(z)+\lambda_{1} \omega(z) \tag{39}
\end{equation*}
$$

Moreover, by differentiating (39) with respect to z and using the following identity:

$$
\begin{aligned}
z\left(\mathcal{J}_{\left(\lambda_{1}+1, \lambda_{2}, \cdots, \lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f(z)\right)^{\prime}= & \left(\lambda_{1}+2\right) \mathcal{J}_{\left(\lambda_{1}+2, \lambda_{2}, \cdots, \lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f(z) \\
& -\left(\lambda_{1}+1\right) \mathcal{J}_{\left(\lambda_{1}+1, \lambda_{2}, \cdots, \lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f(z),
\end{aligned}
$$

which is a consequence of the identity (16), we obtain

$$
\begin{align*}
\left(\lambda_{1}+2\right) & \left(\mathcal{J}_{\left(\lambda_{1}+2, \lambda_{2}, \cdots, \lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a} f(z)\right) \\
& =\lambda_{1} \omega(z)+2 z \omega^{\prime}(z)+\frac{1}{\lambda_{1}+1} z^{2} \omega^{\prime \prime}(z) \quad(z \in \mathbb{U}) \tag{40}
\end{align*}
$$

We now claim that

$$
|\omega(z)|<1 \quad(z \in \mathbb{U})
$$

Otherwise, there exists a point $z_{0} \in \mathbb{U}$ such that

$$
\begin{equation*}
\max _{|z| \leqq\left|z_{0}\right|}|\omega(z)|=\left|\omega\left(z_{0}\right)\right|=1 \tag{41}
\end{equation*}
$$

Thus, by letting $\omega\left(z_{0}\right)=e^{i \theta}$ and using Lemma 4 with $a=1$ and $r=1$, we see that

$$
\begin{aligned}
& \mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f(z)=e^{i \theta}, \\
& \mathcal{J}_{\left(\lambda_{1}+1, \lambda_{2}, \cdots, \lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f(z)=\frac{1}{\lambda_{1}+1}\left(\lambda_{1}+\tau\right) e^{i \theta}
\end{aligned}
$$

and

$$
\mathcal{J}_{\left(\lambda_{1}+2, \lambda_{2}, \cdots, \lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f(z)=\frac{1}{\lambda_{1}+2}\left(\lambda_{1}+2 \tau+\frac{L}{\lambda_{1}+1}\right) e^{i \theta}
$$

where

$$
L=\frac{z_{0}^{2} w^{\prime \prime}\left(z_{0}\right)}{\omega\left(z_{0}\right)} \quad \text { and } \quad \tau \geqq 1
$$

Furthermore, by an application of (30) in Lemma 4, we get

$$
\mathfrak{R}(L) \geqq \tau(\tau-1)
$$

Since $\psi(u, v, w) \in \Psi$, we have

$$
\begin{equation*}
\left|\psi\left(e^{i \theta},\left[\frac{\lambda_{1}+\tau}{\lambda_{1}+1}\right] e^{i \theta}, \frac{1}{\lambda_{1}+1}\left[\lambda_{1}+2 \tau+\frac{L}{\lambda_{1}+1}\right] e^{i \theta}\right)\right| \geqq 1 \tag{42}
\end{equation*}
$$

which contradicts the condition (37) of Theorem 3. Therefore, we conclude that

$$
\left|\mathcal{J}_{\left(\lambda_{p}\right),\left(\mu_{q}\right), b}^{s, a, \lambda} f(z)\right|<1 \quad(z \in \mathbb{U})
$$

which evidently completes the proof of Theorem 3.

3. Concluding Remarks and Observations

In our present investigation, we have introduced and studied systematically the univalence criteria of a new family of integral operators by using a substantially general form of the widely-investigated Srivastava-Attiya operator. In particular, we have derived new sufficient conditions of univalence for this generalized Srivastava-Attiya operator. Our main results are contained in Theorems 1, 2 and 3. By suitably specializing these main results, we have deduced several corollaries and consequences which were derived in a number related earlier works on the subject of investigation here (see also the recent works [9], [10], [11] and [23]).

References

[1] D. Breaz, Integral Operators on Spaces of Univalent Functions, Publishing House of the Romanian Academy of Sciences, Bucharest, 2004 (in Romanian).
[2] D. Breaz and N. Breaz, Two integral operators, Stud. Univ. Babeş-Bolyai Math. 47 (3) (2002), 13-19.
[3] D. Breaz and N. Breaz, Univalence of an integral operator, Mathematica (Cluj) 47 (70) (2005), 35-38.
[4] D. Breaz and N. Breaz, An integral univalent operator, Acta Math. Univ. Comenian. 7 (2007), 137-142.
[5] D. Breaz, N. Breaz and H. M. Srivastava, An extension of the univalent condition for a family of integral operators, Appl. Math. Lett. 22 (2009), 41-44.
[6] D. Breaz and H. Ö. Güney, On the univalence criterion of a general integral operator, J. Inequal. Appl. 2008 (2008), Article ID 702715, 1-8.
[7] D. Breaz, S. Owa and N. Breaz, A new integral univalent operator, Acta Univ. Apulensis Math. Inform. 16 (2008), 11-16.
[8] N. E. Cho, I. H. Kim and H. M. Srivastava, Sandwich-type theorems for multivalent functions associated with the SrivastavaAttiya operator, Appl. Math. Comput. 217 (2010), 918-928.
[9] E. Deniz, Univalence criteria for a general integral operator, Filomat 28 (2014), 11-19.
[10] E. Deniz, On the univalence of two general integral operators, Filomat 29 (2015), 1581-1586.
[11] E. Deniz, H. Orhan and H. M. Srivastava, Some sufficient conditions for univalence of certain families of integral operators involving generalized Bessel functions, Taiwanese J. Math. 15 (2011), 883-917.
[12] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006.
[13] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), $289-305$.
[14] Z. Nehari, Conformal Mapping, McGraw-Hill Book Company, New York, 1952.
[15] N. N. Pascu, On a univalence criterion. II, In: Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1985), Vol. 85, pp. 153-154, Babeş-Bolyai University, Cluj-Napoca, Romania, 1985.
[16] N. N. Pascu, An improvement of Becker's univalence criterion, Proceedings of the Commemorative Session Simion Stoilow (Braşov, 1987), pp. 43-48.
[17] V. Pescar, A new generalization of Ahlfors's and Becker's criterion of univalence, Bull. Malays. Math. Soc. 19 (1996), 53-54.
[18] N. Seenivasagan and D. Breaz, Certain sufficient conditions for univalence, Gen. Math. 15 (4) (2007), 7-15.
[19] C. Selvaraj and K. R. Karthikeyan, Sufficient conditions for univalence of a general integral operator, Acta Univ. Apulensis Math. Inform. 17 (2009), 87-94.
[20] H. M. Srivastava, A new family of the λ-generalized Hurwitz-Lerch zeta functions with applications, Appl. Math. Inform. Sci. 8 (2014), 1485-1500.
[21] H. M. Srivastava and A. A. Attiya, An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination, Integral Transforms Spec. Funct. 18 (2007), 207-216.
[22] H. M. Srivastava and J. Choi, Series Associated with Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.
[23] H. M. Srivastava, B. A. Frasin and Virgil Pescar, Univalence of integral operators involving Mittag-Leffler functions, Appl. Math. Inform. Sci. 11 (2017), 635-641.
[24] H. M. Srivastava and S. Gaboury, A new class of analytic functions defined by means of a generalization of the Srivastava-Attiya operator, J. Inequal. Appl. 2015 (2015), Article ID 39, 1-15.
[25] H. M. Srivastava, S. Gaboury and F. Ghanim, A unified class of analytic functions involving a generalization of the SrivastavaAttiya operator, Appl. Math. Comput. 251 (2015), 35-45.
[26] H. M. Srivastava, K. C. Gupta and S. P. Goyal, The H-Functions of One and Two Variables with Applications, South Asian Publishers, New Delhi and Madras, 1982.
[27] H. M. Srivastava and S. Owa (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
[28] H. M. Srivastava, D. Răducanu and G. S. Sălăgean, A new class of generalized close-to-starlike functions defined by the Srivastava-Attiya operator, Acta Math. Sinica (English Ser.) 29 (2013), 833-840.
[29] H. M. Srivastava, R. K. Saxena, T. K. Pogány and R. Saxena, Integral and computational representations of the extended HurwitzLerch zeta function, Integral Transforms Spec. Funct. 22 (2011), 487-506.
[30] L. F. Stanciu, D. Breaz and H. M. Srivastava, Some criteria for univalence of a certain integral operator, Novi Sad J. Math. 43 (2) (2013), 51-57.
[31] N. Ularu and D. Breaz, Univalence criterion for two integral operators, Filomat 25 (2011), 105-110.

[^0]: 2010 Mathematics Subject Classification. Primary 30C45, 33C60; Secondary 11M35, 30C50
 Keywords. Analytic functions; Univalent functions; Hadamard product (or convolution); λ-Generalized Hurwitz-Lerch function; Series representations; Fox's H-function; Mellin-Barnes contour integral; Integral operators; Srivastava-Attiya Operator

 Received: 22 April 2017; Accepted: 24 July 2017
 Communicated by Dragan S. Djordjević
 Email addresses: harimsri@math.uvic.ca (H. M. Srivastava), dr_juma@hotmail.com (Abdul Rahman S. Juma),
 hanaa_zayed42@yahoo.com (Hanaa M. Zayed)

