Some Unifying Inequalities for Starlike Functions in a Half-plane and a Sector

Derek K. Thomas ${ }^{\text {a }}$, Nikola Tuneski ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
${ }^{b}$ Faculty of Mechanical Engineering, Ss. Cyril and Methodius University in Skopje, Karpoš II b.b., 1000 Skopje, Republic of Macedonia.

Abstract

Sharp coefficient inequalities are given for f normalised and analytic in $z \in \mathbb{D}=\{z:|z|<1\}$, and satisfying $\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}-\alpha\right)\right|<\frac{\pi \beta}{2}(z \in \mathbb{D})$ for $\alpha \in[0,1)$ and $\beta \in(0,1]$. The results generalise and unify known inequalities for starlike functions in a half-plane, and strongly starlike functions.

1. Introduction and definitions

Let \mathcal{S} be the class of analytic normalised univalent functions f, defined for $z \in \mathbb{D}=\{z:|z|<1\}$ and given by

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

Denote by \mathcal{S}^{*} the subset of functions f, starlike with respect to the origin, so that $f \in \mathcal{S}^{*}$ if, and only if,

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0 \quad(z \in \mathbb{D})
$$

The subclasses of starlike functions $\mathcal{S}^{*}(\alpha)$ in a half-plane, and strongly starlike functions $\mathcal{S} \mathcal{S}^{*}(\beta)$ defined in a sector, have been widely studied, see e.g. [1, 2, 3, 4, 13]. Thus $f \in \mathcal{S}^{*}(\alpha)$ if, and only if, for $\alpha \in[0,1)$,

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>\alpha \quad(z \in \mathbb{D})
$$

and $f \in \mathcal{S S}^{*}(\beta)$ if, and only if, for $\beta \in(0,1]$,

$$
\left|\arg \frac{z f^{\prime}(z)}{f(z)}\right|<\frac{\pi \beta}{2} \quad(z \in \mathbb{D})
$$

[^0]The object of this paper is to study a combination of these two subclasses by defining a set of functions $\mathcal{S S}{ }^{*}(\alpha, \beta)$ by the relationship
$f \in \mathcal{S S}^{*}(\alpha, \beta)$ if, and only if, for $\alpha \in[0,1)$ and $\beta \in(0,1]$,

$$
\begin{equation*}
\left|\arg \left[\frac{z f^{\prime}(z)}{f(z)}-\alpha\right]\right|<\frac{\pi \beta}{2} \quad(z \in \mathbb{D}) \tag{1}
\end{equation*}
$$

Functions defined by (1), and referred to as strongly starlike of order β and type α, where considered in [12], and some inclusion results were obtained.

In this paper we give some coefficient inequalities for functions in $\mathcal{S S}^{*}(\alpha, \beta)$, which generalise and unify known results for $S^{*}(\alpha)$ (see e.g. [4], [13]) and $\mathcal{S S}^{*}(\beta)$ [1-3, 15].

2. Necessary lemmas

Denote by \mathcal{P}, the class of functions p satisfying $\operatorname{Re} p(z)>0$ for $z \in \mathbb{D}$, with coefficients p_{n} given by

$$
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}
$$

We shall use the following lemmas $[1,2,8,9]$, the first one of which was originally proved by Ma and Minda in [9], with a simpler proof given by Ali [1].

Lemma 2.1. If $p \in \mathcal{P}$, then $\left|p_{n}\right| \leq 2$ for $n \geq 1$, and

$$
\left|p_{2}-\frac{\mu}{2} p_{1}^{2}\right| \leq \max \{2,2|\mu-1|\}= \begin{cases}2, & 0 \leq \mu \leq 2 \\ 2|\mu-1|, & \text { elsewhere } .\end{cases}
$$

Also

$$
\left|p_{2}-\frac{1}{2} p_{1}^{2}\right| \leq 2-\frac{1}{2}\left|p_{1}^{2}\right| .
$$

Lemma 2.2 (Lemma 3, [1]). Let $p \in \mathcal{P}$. If $0 \leq B \leq 1$ and $B(2 B-1) \leq D \leq B$, then

$$
\left|p_{3}-2 B p_{1} p_{2}+D p_{1}^{3}\right| \leq 2
$$

Lemma 2.3 (Corollary 1, [1]). If $p \in \mathcal{P}$, and $0 \leq B \leq 1$, then

$$
\left|p_{3}-2 B p_{1} p_{2}+B p_{1}^{3}\right| \leq 2 .
$$

Lemma 2.4 (Lemma 4, [1]). If $p \in \mathcal{P}$, then

$$
\left|p_{3}-(1+\mu) p_{1} p_{2}+\mu p_{1}^{3}\right| \leq \max \{2,2|2 \mu-1|\}= \begin{cases}2, & 0 \leq \mu \leq 1 \\ 2|2 \mu-1|, & \text { elsewhere }\end{cases}
$$

Lemma 2.5 ([8]). If $p \in \mathcal{P}$, then for some complex valued x with $|x| \leq 1$, and some complex valued ζ with $|\zeta| \leq 1$

$$
\begin{aligned}
& 2 p_{2}=p_{1}^{2}+x\left(4-p_{1}^{2}\right) \\
& 4 p_{3}=p_{1}^{3}+2\left(4-p_{1}^{2}\right) p_{1} x-p_{1}\left(4-p_{1}^{2}\right) x^{2}+2\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) \zeta
\end{aligned}
$$

Lemma 2.6 ([14]). Let $f(z)$ be subordinate to $g(z)$, with

$$
f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, g(z)=\sum_{n=1}^{\infty} b_{n} z^{n}
$$

If $g(z)$ is univalent for $z \in \mathbb{D}$ and $g(\mathbb{D})$ is convex, then

$$
\left|a_{n}\right| \leq\left|b_{1}\right| .
$$

3. Initial coefficients

First note that if $f \in \mathcal{S S}^{*}(\alpha, \beta)$, then from (1) we can write

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\alpha+(1-\alpha) p(z)^{\beta} \tag{2}
\end{equation*}
$$

for $p \in \mathcal{P}$. Equating coefficients in (2) then gives

$$
\begin{align*}
a_{2} & =(1-\alpha) \beta p_{1} \\
a_{3} & =\frac{1}{2}(1-\alpha) \beta\left[p_{2}-\frac{1}{2}(1+(2 \alpha-3) \beta) p_{1}^{2}\right] \\
a_{4} & =\frac{1}{3}(1-\alpha) \beta\left\{p_{3}-\frac{1}{2}[2+(3 \alpha-5) \beta] p_{1} p_{2}+\frac{1}{12}[4+3(3 \alpha-5) \beta\right. \tag{3}\\
& \left.\left.+\left(17-21 \alpha+6 \alpha^{2}\right) \beta^{2}\right] p_{1}^{3}\right\} .
\end{align*}
$$

We now give sharp inequalities for these coefficients as follows.

Theorem 3.1. Let $f \in S^{*}(\alpha, \beta)$, then $\left|a_{2}\right| \leq 2 \beta(1-\alpha)$.
If $\frac{1}{3}<\beta \leq 1$ and $0 \leq \alpha<\frac{3 \beta-1}{2 \beta}$, then

$$
\left|a_{3}\right| \leq(1-\alpha)(3-2 \alpha) \beta^{2}
$$

and

$$
\left|a_{3}\right| \leq(1-\alpha) \beta
$$

otherwise.
Also

$$
\begin{equation*}
\left|a_{4}\right| \leq \frac{2}{9}(1-\alpha) \beta\left[1+\left(17-21 \alpha+6 \alpha^{2}\right) \beta^{2}\right] \tag{4}
\end{equation*}
$$

when

$$
\frac{7}{4}-\frac{\sqrt{16+11 \beta^{2}}}{4 \beta \sqrt{3}} \leq \alpha<1 \quad \text { and } \quad \sqrt{\frac{2}{17}}<\beta<1,
$$

and

$$
\begin{equation*}
\left|a_{4}\right| \leq \frac{2}{3}(1-\alpha) \beta, \tag{5}
\end{equation*}
$$

otherwise.
All the estimates for $\left|a_{2}\right|,\left|a_{3}\right|$ and $\left|a_{4}\right|$ are sharp.

Proof. Since $\left|p_{1}\right| \leq 2$, the inequality for $\left|a_{2}\right|$ is trivial.
For a_{3} we apply Lemma 2.1 in (3) with $\mu=1+(2 \alpha-3) \beta$, so that $\mu \in[0,2]$ when $0<\beta \leq \frac{1}{3}$ and $0 \leq \alpha<1$, or when $\frac{1}{3}<\beta<1$ and $\frac{3 \beta-1}{2 \beta} \leq \alpha<1$. This gives the first two inequalities for $\left|a_{3}\right|$.

When $\frac{1}{3}<\beta \leq 1$ and $0 \leq \alpha<\frac{3 \beta-1}{2 \beta}$ it follows that $\mu \leq 0$, and Lemma 2.1 also gives the third inequality.
Next, in order to prove (4), note that in (3) the coefficient of $p_{1} p_{2}$ is positive when $\frac{2}{5}<\beta \leq 1$, and $0 \leq \alpha<\frac{5 \beta-2}{3 \beta}$, and the coefficient of p_{1}^{3} is positive when $0<\beta \leq 1$ and $0 \leq \alpha<1$. Since $\left|p_{n}\right| \leq 2$ when $n=1,2,3$, the second inequality is therefore satisfied when $\frac{2}{5}<\beta \leq 1$, and $0 \leq \alpha<\frac{5 \beta-2}{3 \beta}$.

For the remaining intervals we use Lemma 2.3 with $B=\frac{1}{4}[2+(3 \alpha-5) \beta]$ and $D=\frac{1}{12}[4+3(3 \alpha-5) \beta+(17-$ $\left.\left.21 \alpha+6 \alpha^{2}\right) \beta^{2}\right]$, and write

$$
p_{3}-2 B p_{1} p_{2}+D p_{1}^{3}=p_{3}-2 B p_{1} p_{2}+B p_{1}^{3}+(D-B) p_{1}^{3} .
$$

Then since $0 \leq B \leq 1$ and $D \geq B$ provided $\sqrt{\frac{2}{17}}<\beta \leq \frac{2}{5}$ and $0 \leq \alpha \leq \frac{7}{4}-\frac{\sqrt{16+11 \beta^{2}}}{4 \beta \sqrt{3}}$, or $\frac{2}{5}<\beta<1$ and $\frac{5 \beta-2}{3 \beta} \leq \alpha \leq \frac{7}{4}-\frac{\sqrt{16+11 \beta^{2}}}{4 \beta \sqrt{3}}$, we obtain, using $\left|p_{1}\right| \leq 2$,

$$
\begin{aligned}
\left|a_{4}\right| & \leq \frac{1}{3}(1-\alpha) \beta\left\{2+\left[\frac{2}{3}\left(-2+\left(17-21 \alpha+6 \alpha^{2}\right) \beta^{2}\right)\right]\right\} \\
& =\frac{2}{9}(1-\alpha) \beta\left[1+\left(17-21 \alpha+6 \alpha^{2}\right) \beta^{2}\right] .
\end{aligned}
$$

To prove (5), we first use Lemma 2.2 in (3), so that $0 \leq B \leq 1$ and $B(2 B-1) \leq D \leq B$ are satisfied when

$$
0<\beta \leq \sqrt{\frac{2}{17}} \text { and } 0 \leq \alpha<1 \text {, }
$$

or when

$$
\sqrt{\frac{2}{17}}<\beta<1 \quad \text { and } \quad \frac{7}{4}-\frac{\sqrt{16+11 \beta^{2}}}{4 \beta \sqrt{3}} \leq \alpha<1 .
$$

This establishes the inequality (5), and completes the proof of Theorem 3.1.
Choosing $p_{1}=2$ in (3) shows that the inequality for $\left|a_{2}\right|$ is sharp. Choosing $p_{1}=0$ and $p_{2}=2$ shows that the first two inequalities for $\left|a_{3}\right|$ are sharp, and $p_{1}=2$ and $p_{2}=2$ that the second inequality for $\left|a_{3}\right|$ is sharp. Finally choosing $p_{1}=0, p_{2}=0$ and $p_{3}=2$ shows that the first two inequalities for $\left|a_{4}\right|$ are sharp, and choosing $p_{1}=2, p_{2}=2$ and $p_{3}=2$ shows that the third inequality for $\left|a_{4}\right|$ is sharp.

We note that when $\beta=0$, we obtain the classical inequalities for $f \in S^{*}(\alpha)$, see e.g. [4], and when $\alpha=0$, the results in $[2,3]$.

4. Inverse coefficients

We first note that since $f \in \mathcal{S}^{*}(\alpha, \beta)$ is univalent, f^{-1} exists in some disc $|\omega|<r_{0}(f)$.
Let

$$
f^{-1}(\omega)=\omega+A_{2} \omega^{2}+A_{3} \omega^{3}+A_{4} \omega^{4}+\cdots
$$

Since $f\left(f^{-1}(\omega)\right)=\omega$, equating coefficients gives

$$
\begin{align*}
& A_{2}=-a_{2} \\
& A_{3}=2 a_{2}^{2}-a_{3} \tag{6}\\
& A_{4}=-5 a_{2}^{3}+5 a_{2} a_{3}-a_{4}
\end{align*}
$$

We now give sharp inequalities for these coefficients as follows.

Theorem 4.1. Let $f \in \mathcal{S S}^{*}(\alpha, \beta)$, then $\left|A_{2}\right| \leq 2 \beta(1-\alpha)$.
If $\frac{1}{5}<\beta \leq 1$ and $0 \leq \alpha<\frac{5 \beta-1}{6 \beta}$, then

$$
\left|A_{3}\right| \leq(5-6 \alpha)(1-\alpha) \beta^{2}
$$

and

$$
\left|A_{3}\right| \leq(1-\alpha) \beta,
$$

otherwise.
Also

$$
\left|A_{4}\right| \leq \frac{2}{3}(1-\alpha) \beta
$$

when

$$
\begin{equation*}
0 \leq \alpha<1 \quad \text { and } \quad 0<\beta \leq \frac{1}{\sqrt{31}} \tag{7}
\end{equation*}
$$

or when

$$
\begin{equation*}
\frac{13}{16}-\frac{\sqrt{16+11 \beta^{2}}}{16 \beta \sqrt{3}} \leq \alpha<1 \quad \text { and } \quad \frac{1}{\sqrt{31}}<\beta \leq \frac{1}{2} \tag{8}
\end{equation*}
$$

or when

$$
\begin{equation*}
\frac{17}{20}-\frac{\sqrt{40-13 \beta^{2}}}{20 \beta \sqrt{3}} \leq \alpha<1 \text { and } \frac{1}{2}<\beta \leq 1 \tag{9}
\end{equation*}
$$

Further

$$
\begin{equation*}
\left|A_{4}\right| \leq \frac{2}{9}(1-\alpha) \beta\left[1+2\left(31-78 \alpha+48 \alpha^{2}\right) \beta^{2}\right] \tag{10}
\end{equation*}
$$

when

$$
\begin{equation*}
0 \leq \alpha<\frac{13}{16}-\frac{\sqrt{16+11 \beta^{2}}}{16 \beta \sqrt{3}} \text { and } \frac{1}{\sqrt{31}}<\beta \leq \frac{1}{2} \tag{11}
\end{equation*}
$$

or when

$$
\begin{equation*}
0 \leq \alpha \leq \frac{13 \beta-2}{16 \beta}-\frac{\sqrt{11 \beta^{2}+4 \beta-4}}{16 \beta \sqrt{3}} \text { and } \frac{1}{2}<\beta \leq 1 \tag{12}
\end{equation*}
$$

Also

$$
\begin{equation*}
\left|A_{4}\right| \leq \frac{2}{9}(1-\alpha) \beta\left[5-2\left(31-78 \alpha+48 \alpha^{2}\right) \beta^{2}\right] \tag{13}
\end{equation*}
$$

when

$$
\begin{equation*}
\frac{13 \beta+2}{16 \beta}-\frac{\sqrt{11 \beta^{2}-4 \beta+60}}{16 \beta \sqrt{3}} \leq \alpha<\frac{17}{20}-\frac{\sqrt{40-13 \beta^{2}}}{20 \beta \sqrt{3}} \text { and } \frac{1}{2}<\beta \leq 1 \tag{14}
\end{equation*}
$$

The inequalities for $\left|A_{2}\right|,\left|A_{3}\right|$ and $\left|A_{4}\right|$ are sharp.

Proof. The inequality for $\left|A_{2}\right|$ follows at once from (6) and Theorem 3.1.
For A_{3} we use (3) and (6) to obtain

$$
A_{3}=\frac{1}{2}(1-\alpha) \beta\left\{p_{2}-\frac{1}{2}[1-(6 \alpha-5) \beta] p_{1}^{2}\right\} .
$$

We now apply Lemma 2.1 with $\mu=1-(6 \alpha-5) \beta$, so that $\mu \in[0,2]$ when

$$
0<\beta \leq \frac{1}{5} \quad \text { and } \quad 0 \leq \alpha<1
$$

or when

$$
\frac{1}{5}<\beta \leq 1 \quad \text { and } \quad \frac{5 \beta-1}{6 \beta} \leq \alpha<1
$$

This gives the first two inequalities for $\left|A_{3}\right|$.
When μ is outside [0,2], Lemma 2.1 also gives $\left|A_{3}\right| \leq(5-6 \alpha)(1-a) \beta^{2}$ when

$$
\frac{1}{5}<\beta \leq 1 \quad \text { and } \quad 0 \leq \alpha<\frac{5 \beta-1}{6 \beta}
$$

which proves the third inequality for $\left|A_{3}\right|$.
For A_{4} we use (3) and (6) to obtain

$$
\begin{aligned}
\left|A_{4}\right| & \left.=\frac{1}{3}(1-\alpha) \beta \right\rvert\, p_{3}+[-1+(-5+6 \alpha) \beta] p_{1} p_{2} \\
& \left.+\frac{1}{6}\left[2-3(-5+6 \alpha) \beta+\left(31-78 \alpha+48 \alpha^{2}\right) \beta^{2}\right] p_{1}^{3} \right\rvert\, \\
& =\frac{1}{3}(1-\alpha) \beta\left|p_{3}-2 B p_{1} p_{2}+D p_{1}^{3}\right|
\end{aligned}
$$

with $B=\frac{1}{2}[1-(6 \alpha-5) \beta]$ and $D=\frac{1}{6}\left[2-3(-5+6 \alpha) \beta+\left(31-78 \alpha+48 \alpha^{2}\right) \beta^{2}\right]$.
We first use Lemma 2.2, so that $0 \leq B \leq 1$ and $B(2 B-1) \leq D \leq B$, are equivalent to the conditions (7) or (8) or (9). This gives the inequality $\left|A_{4}\right| \leq \frac{2}{3}(1-\alpha) \beta$.

Now, note that if conditions (11) and (12) hold, then $D \geq B$ and one of the following:
(i) $0 \leq B \leq 1$ and $(D<B(2 B-1)$ or $D>B)$,
(ii) $B>1$ and $(D \leq 1$ or $D \geq 2 B-1)$,
(iii) $B>1$ and $1<D<2 B-1$ and $3|D-B| \geq 2(B-1)$.

Similarly, if condition (14) holds, then $D<B$ and one of (i), (ii) or (iii) holds.
If (i) holds (regardless of whether $D \geq B$ or not), then using Lemma 2.3 we have

$$
\begin{aligned}
\left|A_{4}\right| & =\frac{1}{3}(1-\alpha) \beta\left|p_{3}-2 B p_{1} p_{2}+B p_{1}^{3}+(D-B) p_{1}^{3}\right| \\
& \leq \frac{2}{3}(1-\alpha) \beta(1+4|D-B|) \\
& =\left\{\begin{array}{ll}
\frac{2}{9}(1-\alpha) \beta\left[1+2\left(31-78 \alpha+48 \alpha^{2}\right) \beta^{2}\right], & D \geq B \\
\frac{2}{9}(1-\alpha) \beta\left[5-2\left(31-78 \alpha+48 \alpha^{2}\right) \beta^{2}\right], & D<B
\end{array} .\right.
\end{aligned}
$$

If (ii) or (iii) holds (regardless of whether $D \geq B$ or not), we write

$$
\begin{aligned}
& p_{3}-2 B p_{1} p_{2}+D p_{1}^{3} \\
& =p_{3}-2 p_{1} p_{2}+p_{1}^{3}+2(1-B) p_{1} p_{2}+(D-1) p_{1}^{3} \\
& =p_{3}-2 p_{1} p_{2}+p_{1}^{3}+2(1-B) p_{1}\left[p_{2}+\frac{D-1}{2(1-B)} \cdot p_{1}^{2}\right] \\
& =p_{3}-2 p_{1} p_{2}+p_{1}^{3}+2(1-B) p_{1}\left[p_{2}-\frac{p_{1}^{2}}{2}+\frac{D-B}{2(1-B)} \cdot p_{1}^{2}\right]
\end{aligned}
$$

and using Lemma 2.3 obtain

$$
\begin{aligned}
\left|A_{4}\right| & \leq \frac{1}{3}(1-\alpha) \beta\left[2+2 \cdot|1-B| \cdot\left|p_{1}\right|\left(2-\frac{1}{2} \cdot\left|p_{1}\right|^{2}+\frac{1}{2} \cdot\left|\frac{D-B}{1-B}\right| \cdot\left|p_{1}\right|^{2}\right)\right] \\
& =\frac{1}{3}(1-\alpha) \beta\left\{2+\left|p_{1}\right| \cdot\left[4 \cdot(B-1)+(|D-B|-(B-1)) \cdot\left|p_{1}\right|^{2}\right]\right\}:=h\left(\left|p_{1}\right|\right)
\end{aligned}
$$

Next note that

$$
h^{\prime}\left(\left|p_{1}\right|\right)=\frac{1}{3}(1-\alpha) \beta\left[4 \cdot(B-1)+3(|D-B|-(B-1)) \cdot\left|p_{1}\right|^{2}\right]
$$

so if (ii) holds, then $|D-B|-(B-1) \geq 0$, and so $h^{\prime}\left(\left|p_{1}\right|\right) \geq 0$ on $(0,2)$.
If (iii) holds, then $h^{\prime}\left(\left|p_{1}\right|\right)=0$ has only one positive solution

$$
p_{*}=2 \sqrt{\frac{B-1}{3(B-1-|D-B|)}} \geq 2
$$

and so again $h^{\prime}\left(\left|p_{1}\right|\right) \geq 0$ for $\left|p_{1}\right| \in(0,2)$.
Thus, if (ii) or (iii) holds, then $h\left(\left|p_{1}\right|\right)$ increases on $(0,2)$ and

$$
\left|A_{4}\right| \leq h(2)=\left\{\begin{array}{ll}
\frac{2}{9}(1-\alpha) \beta\left[1+2\left(31-78 \alpha+48 \alpha^{2}\right) \beta^{2}\right], & D \geq B \\
\frac{2}{9}(1-\alpha) \beta\left[5-2\left(31-78 \alpha+48 \alpha^{2}\right) \beta^{2}\right], & D<B
\end{array} .\right.
$$

Thus (10) and (13) are established, and so all the inequalities for $\left|A_{4}\right|$ are proved.
Choosing $p_{1}=2$ in (6) shows that the inequality for $\left|A_{2}\right|$ is sharp. Choosing $p_{1}=0$ and $p_{2}=2$ shows that the first two inequalities for $\left|A_{3}\right|$ are sharp, and $p_{1}=2$ and $p_{2}=2$ that the second inequality for $\left|A_{3}\right|$ is sharp. Finally choosing $p_{1}=0, p_{2}=0$ and $p_{3}=2$ shows that the first inequality for $\left|A_{4}\right|$ is sharp, choosing $p_{1}=2$, $p_{2}=2$ and $p_{3}=2$ shows that the second inequality for $\left|A_{4}\right|$ is sharp and choosing $p_{1}=-2, p_{2}=2$ and $p_{3}=2$ shows that the third inequality for $\left|A_{4}\right|$ is sharp.

We note finally that when $\beta=1$, Theorem 2 gives the initial inverse coefficients of $f \in S^{*}(\alpha)$ in [7, 13], and when $\alpha=0$, the corresponding results found in [1].

5. Logarithmic coefficients

The logarithmic coefficients of f are defined in D by

$$
\begin{equation*}
\log \frac{f(z)}{z}=2 \sum_{n=1}^{\infty} \gamma_{n} z^{n} \tag{15}
\end{equation*}
$$

They play a central role in the theory of univalent functions, and were used by de Branges in his celebrated proof of the Bieberbach conjecture. We prove the following.

Theorem 5.1. Let $f \in \mathcal{S S}^{*}(\alpha, \beta)$, then for $n \geq 1$

$$
\begin{equation*}
\left|\gamma_{n}\right| \leq \frac{\beta(1-\alpha)}{n} \tag{16}
\end{equation*}
$$

The inequalities are sharp.

Proof. From (2) and (15), we have

$$
z\left\{\log \frac{f(z)}{z}\right\}^{\prime}=\frac{z f^{\prime}(z)}{f(z)}-1=\alpha-1+(1-\alpha) p(z)^{\beta}
$$

and so

$$
z\left\{\log \frac{f(z)}{z}\right\}^{\prime}<\alpha-1+(1-\alpha)\left(\frac{1+z}{1-z}\right)^{\beta}=2(1-a) \beta z+\ldots
$$

Applying Lemma 2.6 gives (16) at once. The inequality is sharp when $p_{n}=2$ for $n \geq 1$.
We note that when $f \in S^{*}(\alpha)$, the above result is a trivial consequence of differentiating (15) and using (2), and when $f \in \mathcal{S S}^{*}(\beta)$ for $\beta \in(0,1$], the result was proved in [15].

6. Second Hankel determinant

The q th Hankel determinant $H_{q}(n)$ of a function f is defined for $q \geq 1$ and $n \geq 1$ by

$$
H_{q}(n)=\left|\begin{array}{ccc}
a_{n} & a_{n+1} \ldots & a_{n+q+1} \\
a_{n+1} & \ldots & \vdots \\
\vdots & & \\
a_{n+q-1} & \ldots & a_{n+2 q-2}
\end{array}\right|
$$

In recent years a great deal of attention has been devoted to finding estimates of Hankel determinants whose elements are the coefficients of univalent (and multivalent) functions. For $f \in S$, growth results have been established for the general Hankel determinant $H_{q}(n)$, [11]. The second Hankel determinant $H_{2}(2)=\left|a_{2} a_{4}-a_{3}^{2}\right|$ has received more attention, with significant results being obtained for $f \in S$ in $[5,10]$.

For starlike functions, the sharp inequality $H_{2}(2) \leq 1$ was found in [6], and many subsequent results have been obtained for $\mathrm{H}_{2}(2)$ for a variety of subclasses of S, most of which are subclasses of S^{*}. Relevant to this paper are the sharp results in [16] that $H_{2}(2) \leq \frac{1}{3}(1-\alpha)^{2}|(3-2 \alpha)(2 \alpha-1)|$ for $f \in S^{*}(\alpha)$, and in [15] that $H_{2}(2) \leq \beta^{2}$ when $f \in \mathcal{S S}^{*}(\beta)$.

We prove the following.

Theorem 6.1. If $f \in \mathcal{S S}^{*}(\alpha, \beta)$, then

$$
H_{2}(2) \leq(1-\alpha)^{2} \beta^{2}
$$

The inequality is sharp.

Proof. From (3) we have

$$
\begin{align*}
H_{2}(2) & =\left|a_{2} a_{4}-a_{3}^{2}\right| \\
& =\left\lvert\, \frac{1}{144}(1-\alpha)^{2} \beta^{2}\left[\left(7-6 \beta-\left(13-24 \alpha+12 \alpha^{2}\right) \beta^{2}\right) p_{1}^{4}\right.\right. \tag{17}\\
& \left.-12(1-\beta) p_{1}^{2} p_{2}-36 p_{2}^{2}+48 p_{1} p_{3}\right] \mid .
\end{align*}
$$

We now use Lemma 2.5 to express p_{2} and p_{3} in terms of p_{1}, and since without loss in generality we may normalise the coefficient p_{1} to assume that $p_{1}=p$, where $p \in[0,2]$, we obtain after simplification

$$
H_{2}(2)=\frac{1}{144}(1-\alpha)^{2} \beta^{2}\left|\left[4-\left(13-24 \alpha+12 \alpha^{2}\right) \beta^{2}\right] p^{4}+24 p V X+6 \beta p^{2} x X-12 p^{2} x^{2} X-9 x^{2} X^{2}\right|
$$

where for simplicity we have written $X=4-p^{2}$ and $V=\left(1-|x|^{2}\right) \zeta$.
We now use the triangle inequality to obtain

$$
\begin{aligned}
H_{2}(2) & \leq \frac{1}{144}(1-\alpha)^{2} \beta^{2}\left[6 \beta p^{2}\left(4-p^{2}\right)|x|+12 p^{2}\left(4-p^{2}\right)|x|^{2}\right. \\
& +9\left(4-p^{2}\right)^{2}|x|^{2}+24 p\left(4-p^{2}\right)\left(1-|x|^{2}\right) \\
& \left.+\left|4-\left(13-24 \alpha+12 \alpha^{2}\right) \beta^{2}\right| p^{4}\right]:=\phi(|x|) .
\end{aligned}
$$

Since

$$
\phi^{\prime}(|x|)=\frac{1}{24}(1-\alpha)^{2} \beta^{2}\left(4-p^{2}\right)\left[\beta p^{2}+(6-p)(2-p)|x|\right]
$$

it follows that $\phi^{\prime}(|x|) \geq 0$ for $|x| \in[0,1]$. Thus $\phi(|x|) \leq \phi(1)$ and so

$$
\begin{align*}
H_{2}(2) & \leq \frac{1}{144}(1-\alpha)^{2} \beta^{2}\left\{3\left(4-p^{2}\right)\left[12+(1+2 \beta) p^{2}\right]\right. \tag{18}\\
& \left.+\left|4-\left(13-24 \alpha+12 \alpha^{2}\right) \beta^{2}\right| p^{4}\right\}
\end{align*}
$$

The only critical point of the above expression is a minimum point when $p=0$. Noting that $p(0)=$ $(1-\alpha)^{2} \beta^{2}$, and that $p(0) \geq p(2)$, when $0 \leq \alpha<1$ and $0<\beta \leq 1$, the required estimate for $H_{2}(2)$ follows.

Choosing $p_{1}=0, p_{2}=2$ and $p_{3}=0$ in (17) shows that the inequality is sharp.

Setting $\beta=1$, we obtain the following known sharp estimate for functions in $\mathcal{S}^{*}(\alpha)$ (see e.g [16]).
Corollary 6.2. Let $f \in \mathcal{S}^{*}(\alpha)$ for $0 \leq \alpha<1$. Then

$$
H_{2}(2) \leq(1-\alpha)^{2}
$$

References

[1] R. M. Ali, Coefficients of the Inverse of Strongly Starlike Functions, Bull. Malaysian Math. Soc. 26 (2003), 63-71.
[2] R. M. Ali, V. A. Singh, On the fourth and fifth coefficients of strongly starlike functions, Results in Mathematics 29 (1996), $197-202$.
[3] D. A. Brannan, J. Clunie, W. E. Kirwan, Coefficient estimates for a class of starlike functions, Can.J. Math. XXII 3 (1970), $476-485$.
[4] A. W. Goodman, Univalent Functions, Mariner Publishing, Tampa, Florida, 1983.
[5] W.K. Hayman, On the second Hankel determinant of mean univalent functions, Proc, Lond. Math. Soc. 3 (18) (1968), 77-94.
[6] A. Janteng, S. Halim, M. Darus, Hankel Determinants for Starlike and Convex Functions, Int. Journal. Math. Analysis 1 (13) (2007), 619-625.
[7] G. P. Kapoor, A. K. Mishra, Coefficient estimates for inverses of starlike functions of positive order, J. Math. Anal. Appl. 329 (2) (2007), 922-934.
[8] R. J. Libera, E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87 (2) (1983), 251-257.
[9] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proc. Conf. on Complex Analysis, Tianjin, 1992, 157-169.
[10] J. W. Noonan, D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (2)(1976), 337-346.
[11] Ch. Pommerenke, On the Hankel determinants of univalent functions, Mathematika (London) 16 (13) (1967), $108-112$.
[12] J. K. Prajapat, S. P. Goyal, Applications of Srivastava-Attiya Operator to the class of Strongly Starlike and Strongly Convex Functions, Journal of Mathematical Inequalities 3 (1) (2009), 129-137.
[13] D. V. Prokhorov, J. Szynal, Inverse coefficients for (α, β)-convex functions, Annales Universitatis Mariae Curie - Sklodowska X (15) (1981), 125-141.
[14] W. Rogosinski, On the coefficients of subordinate functions, Proc. Lond. Math. Soc 48 (2) (1943), 48-82.
[15] D. K. Thomas, On the Coefficients of Strongly Starlike Functions, Indian Journal of Mathematics, 58 (2) (2016), 135-146.
[16] D. K. Thomas, N. Tuneski, \& Vasudevarao Allu, Univalent Functions - A Primer, De Gruyter, Berin, 2018).

[^0]: 2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C50
 Keywords. univalent functions, starlike functions, coefficients, inverse, logarithmic coefficients, Hankel determinants.
 Received: 27 February 2016; Accepted: 03 July 2016
 Communicated by Dragan S. Djordjević
 Email addresses: d.k.thomas@swansea.ac.uk (Derek K. Thomas), nikola.tuneski@mf.edu.mk (Nikola Tuneski)

