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Abstract. Sharp coefficient inequalities are given for f normalised and analytic in z ∈ D = {z : |z| < 1}, and

satisfying
∣∣∣∣arg

(
z f ′(z)

f (z) − α
)∣∣∣∣ < πβ

2 (z ∈ D) for α ∈ [0, 1) and β ∈ (0, 1]. The results generalise and unify known
inequalities for starlike functions in a half-plane, and strongly starlike functions.

1. Introduction and definitions

LetS be the class of analytic normalised univalent functions f , defined for z ∈ D = {z : |z| < 1} and given
by

f (z) = z +

∞∑
n=2

anzn.

Denote by S∗ the subset of functions f , starlike with respect to the origin, so that f ∈ S∗ if, and only if,

Re
z f ′(z)

f (z)
> 0 (z ∈ D).

The subclasses of starlike functions S∗(α) in a half-plane, and strongly starlike functions SS∗(β) defined
in a sector, have been widely studied, see e.g. [1, 2, 3, 4, 13]. Thus f ∈ S∗(α) if, and only if, for α ∈ [0, 1),

Re
z f ′(z)

f (z)
> α (z ∈ D),

and f ∈ SS∗(β) if, and only if, for β ∈ (0, 1],∣∣∣∣∣arg
z f ′(z)

f (z)

∣∣∣∣∣ < πβ

2
(z ∈ D).
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The object of this paper is to study a combination of these two subclasses by defining a set of functions
SS

∗(α, β) by the relationship

f ∈ SS∗(α, β) if, and only if, for α ∈ [0, 1) and β ∈ (0, 1],

∣∣∣∣∣∣arg
[

z f ′(z)
f (z)

− α

]∣∣∣∣∣∣ < πβ

2
(z ∈ D). (1)

Functions defined by (1), and referred to as strongly starlike of order β and type α, where considered in
[12], and some inclusion results were obtained.

In this paper we give some coefficient inequalities for functions in SS∗(α, β), which generalise and unify
known results for S∗(α) (see e.g. [4], [13]) and SS∗(β) [1–3, 15].

2. Necessary lemmas

Denote by P, the class of functions p satisfying Re p(z) > 0 for z ∈ D, with coefficients pn given by

p(z) = 1 +

∞∑
n=1

pnzn.

We shall use the following lemmas [1, 2, 8, 9], the first one of which was originally proved by Ma and
Minda in [9], with a simpler proof given by Ali [1].

Lemma 2.1. If p ∈ P, then |pn| ≤ 2 for n ≥ 1, and∣∣∣∣p2 −
µ

2
p2

1

∣∣∣∣ ≤ max{2, 2|µ − 1|} =
{

2, 0 ≤ µ ≤ 2,
2|µ − 1|, elsewhere.

Also ∣∣∣∣∣p2 −
1
2

p2
1

∣∣∣∣∣ ≤ 2 −
1
2

∣∣∣p2
1

∣∣∣ .
Lemma 2.2 (Lemma 3, [1]). Let p ∈ P. If 0 ≤ B ≤ 1 and B(2B − 1) ≤ D ≤ B, then∣∣∣p3 − 2Bp1p2 + Dp3

1

∣∣∣ ≤ 2.

Lemma 2.3 (Corollary 1, [1]). If p ∈ P, and 0 ≤ B ≤ 1, then∣∣∣p3 − 2Bp1p2 + Bp3
1

∣∣∣ ≤ 2.

Lemma 2.4 (Lemma 4, [1]). If p ∈ P, then∣∣∣p3 − (1 + µ)p1p2 + µp3
1

∣∣∣ ≤ max{2, 2|2µ − 1|} =
{

2, 0 ≤ µ ≤ 1
2|2µ − 1|, elsewhere .
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Lemma 2.5 ([8]). If p ∈ P, then for some complex valued x with |x| ≤ 1, and some complex valued ζ with |ζ| ≤ 1

2p2 = p2
1 + x(4 − p2

1),

4p3 = p3
1 + 2(4 − p2

1)p1x − p1(4 − p2
1)x2 + 2(4 − p2

1)(1 − |x|2)ζ.

Lemma 2.6 ([14]). Let f (z) be subordinate to 1(z), with

f (z) =

∞∑
n=1

anzn, 1(z) =

∞∑
n=1

bnzn.

If 1(z) is univalent for z ∈ D and 1(D) is convex, then

|an| ≤ |b1|.

3. Initial coefficients

First note that if f ∈ SS∗(α, β), then from (1) we can write

z f ′(z)
f (z)

= α + (1 − α)p(z)β (2)

for p ∈ P. Equating coefficients in (2) then gives

a2 = (1 − α)βp1,

a3 =
1
2

(1 − α)β
[
p2 −

1
2

(1 + (2α − 3)β)p2
1

]
,

a4 =
1
3

(1 − α)β
{
p3 −

1
2
[
2 + (3α − 5)β

]
p1p2 +

1
12

[
4 + 3(3α − 5)β

+(17 − 21α + 6α2)β2
]

p3
1

}
.

(3)

We now give sharp inequalities for these coefficients as follows.

Theorem 3.1. Let f ∈ S∗(α, β), then |a2| ≤ 2β(1 − α).

If 1
3 < β ≤ 1 and 0 ≤ α < 3β−1

2β , then

|a3| ≤ (1 − α)(3 − 2α)β2,

and

|a3| ≤ (1 − α)β,

otherwise.

Also

|a4| ≤
2
9

(1 − α)β
[
1 + (17 − 21α + 6α2)β2

]
, (4)
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when

7
4
−

√
16 + 11β2

4β
√

3
≤ α < 1 and

√
2
17

< β < 1,

and

|a4| ≤
2
3

(1 − α)β, (5)

otherwise.

All the estimates for |a2|, |a3| and |a4| are sharp.

Proof. Since |p1| ≤ 2, the inequality for |a2| is trivial.

For a3 we apply Lemma 2.1 in (3) with µ = 1 + (2α − 3)β, so that µ ∈ [0, 2] when 0 < β ≤ 1
3 and 0 ≤ α < 1,

or when 1
3 < β < 1 and 3β−1

2β ≤ α < 1. This gives the first two inequalities for |a3|.

When 1
3 < β ≤ 1 and 0 ≤ α < 3β−1

2β it follows that µ ≤ 0, and Lemma 2.1 also gives the third inequality.

Next, in order to prove (4), note that in (3) the coefficient of p1p2 is positive when 2
5 < β ≤ 1, and

0 ≤ α < 5β−2
3β , and the coefficient of p3

1 is positive when 0 < β ≤ 1 and 0 ≤ α < 1. Since |pn| ≤ 2 when

n = 1, 2, 3, the second inequality is therefore satisfied when 2
5 < β ≤ 1, and 0 ≤ α < 5β−2

3β .

For the remaining intervals we use Lemma 2.3 with B = 1
4 [2 + (3α− 5)β] and D = 1

12 [4 + 3(3α− 5)β+ (17−
21α + 6α2)β2], and write

p3 − 2Bp1p2 + Dp3
1 = p3 − 2Bp1p2 + Bp3

1 + (D − B)p3
1.

Then since 0 ≤ B ≤ 1 and D ≥ B provided
√

2
17 < β ≤ 2

5 and 0 ≤ α ≤ 7
4 −

√
16+11β2

4β
√

3
, or 2

5 < β < 1 and

5β−2
3β ≤ α ≤

7
4 −

√
16+11β2

4β
√

3
, we obtain, using |p1| ≤ 2,

|a4| ≤
1
3

(1 − α)β
{
2 +

[2
3

(
−2 + (17 − 21α + 6α2)β2

)]}
=

2
9

(1 − α)β
[
1 + (17 − 21α + 6α2)β2

]
.

To prove (5), we first use Lemma 2.2 in (3), so that 0 ≤ B ≤ 1 and B(2B − 1) ≤ D ≤ B are satisfied when

0 < β ≤

√
2
17

and 0 ≤ α < 1,

or when√
2

17
< β < 1 and

7
4
−

√
16 + 11β2

4β
√

3
≤ α < 1.
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This establishes the inequality (5), and completes the proof of Theorem 3.1.

Choosing p1 = 2 in (3) shows that the inequality for |a2| is sharp. Choosing p1 = 0 and p2 = 2 shows
that the first two inequalities for |a3| are sharp, and p1 = 2 and p2 = 2 that the second inequality for |a3| is
sharp. Finally choosing p1 = 0, p2 = 0 and p3 = 2 shows that the first two inequalities for |a4| are sharp, and
choosing p1 = 2, p2 = 2 and p3 = 2 shows that the third inequality for |a4| is sharp.

We note that when β = 0, we obtain the classical inequalities for f ∈ S∗(α), see e.g. [4], and when α = 0,
the results in [2, 3].

4. Inverse coefficients

We first note that since f ∈ S∗(α, β) is univalent, f−1 exists in some disc |ω| < r0( f ).

Let

f−1(ω) = ω + A2ω
2 + A3ω

3 + A4ω
4 + · · · .

Since f ( f−1(ω)) = ω, equating coefficients gives

A2 = −a2,

A3 = 2a2
2 − a3,

A4 = −5a3
2 + 5a2a3 − a4.

(6)

We now give sharp inequalities for these coefficients as follows.

Theorem 4.1. Let f ∈ SS∗(α, β), then |A2| ≤ 2β(1 − α).

If 1
5 < β ≤ 1 and 0 ≤ α < 5β−1

6β , then

|A3| ≤ (5 − 6α)(1 − α)β2,

and

|A3| ≤ (1 − α)β,

otherwise.

Also

|A4| ≤
2
3

(1 − α)β,

when

0 ≤ α < 1 and 0 < β ≤
1
√

31
, (7)

or when

13
16
−

√
16 + 11β2

16β
√

3
≤ α < 1 and

1
√

31
< β ≤

1
2
, (8)
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or when

17
20
−

√
40 − 13β2

20β
√

3
≤ α < 1 and

1
2
< β ≤ 1. (9)

Further

|A4| ≤
2
9

(1 − α)β
[
1 + 2(31 − 78α + 48α2)β2

]
, (10)

when

0 ≤ α <
13
16
−

√
16 + 11β2

16β
√

3
and

1
√

31
< β ≤

1
2
, (11)

or when

0 ≤ α ≤
13β − 2

16β
−

√
11β2 + 4β − 4

16β
√

3
and

1
2
< β ≤ 1. (12)

Also

|A4| ≤
2
9

(1 − α)β
[
5 − 2(31 − 78α + 48α2)β2

]
, (13)

when

13β + 2
16β

−

√
11β2 − 4β + 60

16β
√

3
≤ α <

17
20
−

√
40 − 13β2

20β
√

3
and

1
2
< β ≤ 1. (14)

The inequalities for |A2|, |A3| and |A4| are sharp.

Proof. The inequality for |A2| follows at once from (6) and Theorem 3.1.

For A3 we use (3) and (6) to obtain

A3 =
1
2

(1 − α)β
{
p2 −

1
2
[
1 − (6α − 5)β

]
p2

1

}
.

We now apply Lemma 2.1 with µ = 1 − (6α − 5)β, so that µ ∈ [0, 2] when

0 < β ≤
1
5

and 0 ≤ α < 1,

or when

1
5
< β ≤ 1 and

5β − 1
6β

≤ α < 1.

This gives the first two inequalities for |A3|.

When µ is outside [0, 2], Lemma 2.1 also gives |A3| ≤ (5 − 6α)(1 − a)β2 when

1
5
< β ≤ 1 and 0 ≤ α <

5β − 1
6β

,



D. K. Thomas, N. Tuneski / Filomat 32:6 (2018), 2091–2100 2097

which proves the third inequality for |A3|.

For A4 we use (3) and (6) to obtain

|A4| =
1
3

(1 − α)β
∣∣∣∣p3 + [−1 + (−5 + 6α)β]p1p2

+
1
6

[
2 − 3(−5 + 6α)β + (31 − 78α + 48α2)β2

]
p3

1

∣∣∣∣
=

1
3

(1 − α)β
∣∣∣p3 − 2Bp1p2 + Dp3

1

∣∣∣ ,
with B = 1

2 [1 − (6α − 5)β] and D = 1
6 [2 − 3(−5 + 6α)β + (31 − 78α + 48α2)β2].

We first use Lemma 2.2, so that 0 ≤ B ≤ 1 and B(2B − 1) ≤ D ≤ B, are equivalent to the conditions (7) or
(8) or (9). This gives the inequality |A4| ≤

2
3 (1 − α)β.

Now, note that if conditions (11) and (12) hold, then D ≥ B and one of the following:

(i) 0 ≤ B ≤ 1 and (D < B(2B − 1) or D > B),

(ii) B > 1 and (D ≤ 1 or D ≥ 2B − 1),

(iii) B > 1 and 1 < D < 2B − 1 and 3|D − B| ≥ 2(B − 1).

Similarly, if condition (14) holds, then D < B and one of (i), (ii) or (iii) holds.

If (i) holds (regardless of whether D ≥ B or not), then using Lemma 2.3 we have

|A4| =
1
3

(1 − α)β
∣∣∣p3 − 2Bp1p2 + Bp3

1 + (D − B)p3
1

∣∣∣
≤

2
3

(1 − α)β (1 + 4|D − B|)

=

 2
9 (1 − α)β

[
1 + 2(31 − 78α + 48α2)β2

]
, D ≥ B

2
9 (1 − α)β

[
5 − 2(31 − 78α + 48α2)β2

]
, D < B

.

If (ii) or (iii) holds (regardless of whether D ≥ B or not), we write

p3 − 2Bp1p2 + Dp3
1

= p3 − 2p1p2 + p3
1 + 2(1 − B)p1p2 + (D − 1)p3

1

= p3 − 2p1p2 + p3
1 + 2(1 − B)p1

[
p2 +

D − 1
2(1 − B)

· p2
1

]
= p3 − 2p1p2 + p3

1 + 2(1 − B)p1

p2 −
p2

1

2
+

D − B
2(1 − B)

· p2
1

 ,
and using Lemma 2.3 obtain

|A4| ≤
1
3

(1 − α)β
[
2 + 2 · |1 − B| · |p1|

(
2 −

1
2
· |p1|

2 +
1
2
·

∣∣∣∣∣D − B
1 − B

∣∣∣∣∣ · |p1|
2
)]

=
1
3

(1 − α)β
{
2 + |p1| ·

[
4 · (B − 1) + (|D − B| − (B − 1)) · |p1|

2
]}

:= h(|p1|).

Next note that

h′(|p1|) =
1
3

(1 − α)β
[
4 · (B − 1) + 3(|D − B| − (B − 1)) · |p1|

2
]
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so if (ii) holds, then |D − B| − (B − 1) ≥ 0, and so h′(|p1|) ≥ 0 on (0, 2).

If (iii) holds, then h′(|p1|) = 0 has only one positive solution

p∗ = 2

√
B − 1

3(B − 1 − |D − B|)
≥ 2

and so again h′(|p1|) ≥ 0 for |p1| ∈ (0, 2).

Thus, if (ii) or (iii) holds, then h(|p1|) increases on (0, 2) and

|A4| ≤ h(2) =

 2
9 (1 − α)β

[
1 + 2(31 − 78α + 48α2)β2

]
, D ≥ B

2
9 (1 − α)β

[
5 − 2(31 − 78α + 48α2)β2

]
, D < B

.

Thus (10) and (13) are established, and so all the inequalities for |A4| are proved.

Choosing p1 = 2 in (6) shows that the inequality for |A2| is sharp. Choosing p1 = 0 and p2 = 2 shows that
the first two inequalities for |A3| are sharp, and p1 = 2 and p2 = 2 that the second inequality for |A3| is sharp.
Finally choosing p1 = 0, p2 = 0 and p3 = 2 shows that the first inequality for |A4| is sharp, choosing p1 = 2,
p2 = 2 and p3 = 2 shows that the second inequality for |A4| is sharp and choosing p1 = −2, p2 = 2 and p3 = 2
shows that the third inequality for |A4| is sharp.

We note finally that when β = 1, Theorem 2 gives the initial inverse coefficients of f ∈ S∗(α) in [7, 13],
and when α = 0, the corresponding results found in [1].

5. Logarithmic coefficients

The logarithmic coefficients of f are defined in D by

log
f (z)
z

= 2
∞∑

n=1

γnzn. (15)

They play a central role in the theory of univalent functions, and were used by de Branges in his celebrated
proof of the Bieberbach conjecture. We prove the following.

Theorem 5.1. Let f ∈ SS∗(α, β), then for n ≥ 1

|γn| ≤
β(1 − α)

n
. (16)

The inequalities are sharp.

Proof. From (2) and (15), we have

z
{

log
f (z)
z

}′
=

z f ′(z)
f (z)

− 1 = α − 1 + (1 − α)p(z)β

and so

z
{

log
f (z)
z

}′
≺ α − 1 + (1 − α)

(1 + z
1 − z

)β
= 2(1 − a)βz + ...

Applying Lemma 2.6 gives (16) at once. The inequality is sharp when pn = 2 for n ≥ 1.

We note that when f ∈ S∗(α), the above result is a trivial consequence of differentiating (15) and using
(2), and when f ∈ SS∗(β) for β ∈ (0, 1], the result was proved in [15].
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6. Second Hankel determinant

The qth Hankel determinant Hq(n) of a function f is defined for q ≥ 1 and n ≥ 1 by

Hq(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
an an+1... an+q+1

an+1 ...
...

...
an+q−1 ... an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

In recent years a great deal of attention has been devoted to finding estimates of Hankel determinants
whose elements are the coefficients of univalent (and multivalent) functions. For f ∈ S, growth results
have been established for the general Hankel determinant Hq(n), [11]. The second Hankel determinant
H2(2) = |a2a4 − a2

3| has received more attention, with significant results being obtained for f ∈ S in [5, 10].

For starlike functions, the sharp inequality H2(2) ≤ 1 was found in [6], and many subsequent results
have been obtained for H2(2) for a variety of subclasses of S, most of which are subclasses of S∗. Relevant
to this paper are the sharp results in [16] that H2(2) ≤ 1

3 (1−α)2
|(3− 2α)(2α− 1)| for f ∈ S∗(α), and in [15] that

H2(2) ≤ β2 when f ∈ SS∗(β).

We prove the following.

Theorem 6.1. If f ∈ SS∗(α, β), then

H2(2) ≤ (1 − α)2β2.

The inequality is sharp.

Proof. From (3) we have

H2(2) = |a2a4 − a2
3|

=

∣∣∣∣∣ 1
144

(1 − α)2β2
[(

7 − 6β − (13 − 24α + 12α2)β2
)
p4

1

− 12(1 − β)p2
1p2 − 36p2

2 + 48p1p3

]∣∣∣∣∣.
(17)

We now use Lemma 2.5 to express p2 and p3 in terms of p1, and since without loss in generality we may
normalise the coefficient p1 to assume that p1 = p, where p ∈ [0, 2], we obtain after simplification

H2(2) =
1

144
(1 − α)2β2

∣∣∣∣[4 − (13 − 24α + 12α2)β2
]

p4 + 24pVX + 6βp2xX − 12p2x2X − 9x2X2
∣∣∣∣ ,

where for simplicity we have written X = 4 − p2 and V = (1 − |x|2)ζ.

We now use the triangle inequality to obtain

H2(2) ≤
1

144
(1 − α)2β2

[
6βp2(4 − p2)|x| + 12p2(4 − p2)|x|2

+ 9(4 − p2)2
|x|2 + 24p(4 − p2)(1 − |x|2)

+
∣∣∣4 − (13 − 24α + 12α2)β2

∣∣∣ p4

]
:= φ(|x|).
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Since

φ′(|x|) =
1

24
(1 − α)2β2

(
4 − p2

) [
βp2 + (6 − p)(2 − p)|x|

]
,

it follows that φ′(|x|) ≥ 0 for |x| ∈ [0, 1]. Thus φ(|x|) ≤ φ(1) and so

H2(2) ≤
1

144
(1 − α)2β2

{
3(4 − p2)[12 + (1 + 2β)p2]

+
∣∣∣4 − (13 − 24α + 12α2)β2

∣∣∣ p4
}
.

(18)

The only critical point of the above expression is a minimum point when p = 0. Noting that p(0) =
(1 − α)2β2, and that p(0) ≥ p(2), when 0 ≤ α < 1 and 0 < β ≤ 1, the required estimate for H2(2) follows.

Choosing p1 = 0, p2 = 2 and p3 = 0 in (17) shows that the inequality is sharp.

Setting β = 1, we obtain the following known sharp estimate for functions in S∗(α) (see e.g [16]).

Corollary 6.2. Let f ∈ S∗(α) for 0 ≤ α < 1. Then

H2(2) ≤ (1 − α)2.
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