Fredholm Generalized Composition Operators on Weighted Hardy Spaces

Sunil Kumar Sharma ${ }^{\text {a }}$, Rohit Gandhi ${ }^{\text {b }}$, B.S.Komal ${ }^{\text {c }}$
${ }^{a}$ M.P. Govt. College, Amb, Distt. Una, H.P, India
${ }^{b}$ Lovely Professional University, Phagwara, Punjab, India
${ }^{c}$ M.I.E.T, Kot Bhalwal, Jammu, India

Abstract

The main purpose of this paper is to study Fredholm generalized composition operators on weighted Hardy spaces.

1. Introduction

Let f be an analytic function on the open unit disk Ω in a complex plane \mathbb{C} given by $f(z)=\sum_{n=0}^{\infty} f_{n} z^{n}$, where $\left\{f_{n}\right\}_{n=0}^{\infty}$ is a sequence of complex numbers. Let $\left\{\beta_{n}\right\}$ be a sequence of positive real numbers with $\beta(0)=1$. For $p \in[1, \infty)$, let $H^{p}(\beta)=\left\{f: f(z)=\sum_{n=0}^{\infty} f_{n} z^{n}, \sum_{n=0}^{\infty}\left|f_{n}\right|^{p} \beta_{n}^{p}<\infty\right\}$ be the space of formal series. Then $H^{p}(\beta)$ is a Banach space under the norm $\|f\|_{\beta}^{p}=\sum_{n=0}^{\infty}\left|f_{n}\right|^{p} \beta_{n}^{p}$. For $p=2$, the space $H^{2}(\beta)$ is a Hilbert space under the inner product defined as $\langle f, g\rangle=\sum_{n=0}^{\infty} f_{n} \bar{g}_{n} \beta_{n}^{2}$, where $f(z)=\sum_{n=0}^{\infty} f_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} g_{n} z^{n}$. The weighted Hardy space is denoted by $H^{2}(\beta)$. Let $e_{k}(z)=z^{k}$ and $\hat{e}_{k}(z)=\frac{z^{k}}{\beta_{k}}$, clearly $\left\{e_{k}\right\}_{k=0}^{\infty}$ is an orthogonal basis for $H^{2}(\beta)$. If $\phi: \Omega \rightarrow \Omega$ is a mapping such that the transformation $C_{\phi}: H^{2}(\beta) \rightarrow H^{2}(\beta)$ defined by $C_{\phi} f=$ fo ϕ, for every $f \in H^{2}(\beta)$, is continuous, we shall call it a composition operator induced by ϕ. A generalized composition operator $C_{\phi}^{d}: H^{2}(\beta) \rightarrow H^{2}(\beta)$ is defined by $C_{\phi}^{d} f=f^{\prime} o \phi$, where f^{\prime} is the derivative of f. By the anti-differential operator D_{a} we shall mean the operator $D_{a}: H^{2}(\beta) \rightarrow H^{2}(\beta)$ defined by

$$
D_{a}\left(\sum_{n=0}^{\infty} f_{n} z^{n}\right)=\sum_{n=0}^{\infty} \frac{f_{n} z^{n+1}}{n+1}
$$

[^0]Also the Differential operator D on $H^{2}(\beta)$ is defined by

$$
D\left(\sum_{n=0}^{\infty} f_{n} z^{n}\right)=\sum_{n=0}^{\infty} n f_{n} z^{n-1}
$$

Composition operators on the spaces of analytic functions were studied by Cowen[1], Ryff[4], Schwartz[5]and Singh[8]. Properties of generalized composition operators on weighted Hardy spaces were mentioned in the papers of Sharma[6]-[7], further Fredholm composition and weighted composition operators can be seen in the papers of Kumar[2], Maccluer[3] and Takagi[9]. In this paper we initiate the study of Fredholm generalized composition operators on weighted Hardy spaces. The symbol $\mathrm{B}(\mathrm{H})$ denote the Banach algebra of all bounded linear operators on H into itself and N_{o} denote the set $\{0,1,2,3, \ldots \ldots$.$\} .$

2. Fredholm generalized composition operators on weighted Hardy spaces

The necessary and sufficient condition for generalized composition operators to be Fredholm is investigated in this section.

Theorem 2.1. Suppose $\phi: \Omega \rightarrow \Omega$ is a mapping such that $\left\{\phi^{n}: n \in N_{0}\right\}$ is an orthogonal family in $H^{2}(\beta)$. Then $\operatorname{kerC} C_{\phi}^{d}=\operatorname{span}\left\{e_{0}\right\}$, where $\phi^{n}(z)=(\phi(z))^{n}$.

Proof. If $f=\alpha_{0} e_{0}$, then clearly $C_{\phi}^{d} f=0$, therefore $f \in \operatorname{ker} C_{\phi}^{d}$
Next, if $C_{\phi}^{d} f=0$ then for $f=\sum_{n=0}^{\infty} f_{n} e_{n}$
We have

$$
C_{\phi}^{d} f=\sum_{n=1}^{\infty} n f_{n} \phi^{n-1}=0
$$

this implies that

$$
\left\|C_{\phi}^{d} f\right\|^{2}=\sum_{n=1}^{\infty}\left|f_{n}\right|^{2} n^{2} \beta_{n}^{2}\left\|\phi^{n-1}\right\|^{2}=0
$$

so that

$$
\left|f_{n}\right|=0 \quad \text { for every } \quad n \in \mathbb{N}
$$

Hence

$$
f=f_{0} e_{0} .
$$

Theorem 2.2. Suppose $\phi: \Omega \rightarrow \Omega$ is a mapping such that $\left\{\phi^{n}: n \in N_{0}\right\}$ is an orthogonal family in $H^{2}(\beta)$. Then C_{ϕ}^{d} has closed range if and only if there exists $\epsilon>0$ such that $n\left\|\phi^{n-1}\right\| \geq \in \beta_{n}$ for all $n \in \mathbb{N}$.

Proof. We first assume that C_{ϕ}^{d} has closed range. Then C_{ϕ}^{d} is bounded away from zero on $\left(\operatorname{ker} C_{\phi}^{d}\right)^{\perp}$, therefore there exists $\epsilon>0$ such that

$$
\left\|C_{\phi}^{d} e_{n}\right\| \geq \epsilon\left\|e_{n}\right\| \text { for all } n \in \mathbb{N}
$$

which implies that

$$
n\left\|\phi^{n-1}\right\| \geq \epsilon \beta_{n} \text { for all } n \in \mathbb{N}
$$

Conversely suppose that the conditions is true. Then for $f \in\left(k e r C_{\phi}^{d}\right)^{\perp}$ we have

$$
\left\|C_{\phi}^{d} f\right\|^{2}=\left\|\sum_{n=1}^{\infty} f_{n} C_{\phi}^{d} e_{n}\right\|^{2}=\sum_{n=1}^{\infty}\left|f_{n}\right|^{2} n^{2}\left\|\phi^{n-1}\right\|^{2} \geq \epsilon^{2} \sum_{n=1}^{\infty}\left|f_{n}\right|^{2} \beta_{n}^{2}=\epsilon^{2}\|f\|^{2} \text { for every } f \in\left(\operatorname{ker} C_{\phi}^{d}\right)^{\perp}
$$

Then C_{ϕ}^{d} is bounded away from zero on $\left(k e r C_{\phi}^{d}\right)^{\perp}$. Consequently C_{ϕ}^{d} has closed range.
Theorem 2.3. Let $\phi: \Omega \rightarrow \Omega$ be such that $\left\{\phi^{n}: n \in N_{0}\right\}$ is an orthogonal family in $H^{2}(\beta)$. Then C_{ϕ}^{d} is Fredholm if and only if there exists $\in>0$ such that

$$
\frac{n\left\|\phi^{n-1}\right\|}{\beta_{n}} \geq \in \text { for every } n \in \mathbb{N}
$$

Proof. Suppose the condition is true. Then in view of the theorem (2.2) C_{ϕ}^{d} has closed range. Also in view of theorem (2.1), $\operatorname{kerC}_{\phi}^{d}$ is a finite dimensional.
We show that $\operatorname{ker} C_{\phi}^{d^{*}}$ is zero dimensional. Let $g \in \operatorname{ker} C_{\phi}^{d^{*}}$, then $C_{\phi}^{d^{*}} g=0$.
Therefore, for $n \in N_{0}$ we have

$$
\begin{aligned}
0=\left\langle C_{\phi}^{d^{*}} g, e_{n}\right\rangle & =\left\langle g, C_{\phi}^{d} e_{n}\right\rangle \\
& =n\left\langle g, \phi^{n-1}\right\rangle .
\end{aligned}
$$

Hence $g=0$, thus $k e r C_{\phi}^{d^{*}}=\{0\}$. Hence C_{ϕ}^{d} is Fredholm.
The converse is easy to prove in view of theorem (2.1) and theorem (2.2).
Example 2.4. Let $\phi: \Omega \rightarrow \Omega$ be defined by $\phi(z)=z$, let $\beta_{n}=n!$, then $\frac{n\left\|\phi^{n-1}\right\|}{\beta_{n}}=\frac{n \beta_{n-1}}{\beta_{n}}=1$. Therefore C_{ϕ}^{d} has closed range. Now $\operatorname{ker} C_{\phi}^{d}=\operatorname{span}\left\{e_{0}\right\}$ and $\operatorname{ker} C_{\phi}^{d^{*}}=\{0\}$.
Hence C_{ϕ}^{d} is Fredholm.

3. Fredholm Differential and Anti-Differential operators on weighted Hardy spaces

In this section we obtain adjoint of anti-differential operator on weighted Hardy spaces. The condition for anti-differential operator to be Fredholm is also investigated in this section.

Theorem 3.1. Let $f \in H^{2}(\beta)$. Then

$$
D_{a}^{*} f=\sum_{n=0}^{\infty} \frac{f_{n+1}}{(n+1)}\left(\frac{\beta_{n+1}}{\beta_{n}}\right)^{2} z^{n}
$$

where D_{a}^{*} is the adjoint of D_{a}.
Proof. For any $n \in N_{0}$
Consider

$$
\left\langle D_{a}^{*} e_{n+1}, f\right\rangle=\left\langle e_{n+1}, D_{a} f\right\rangle=\frac{1}{n+1}\left(\frac{\beta_{n+1}}{\beta_{n}}\right)^{2}\left\langle e_{n}, f\right\rangle \text { for every } f \in H^{2}(\beta)
$$

Therefore,

$$
D_{a}^{*} e_{n+1}=\frac{1}{n+1}\left(\frac{\beta_{n+1}}{\beta_{n}}\right)^{2} e_{n} \text { and } D_{a}^{*} e_{0}=0
$$

Now for $f=\sum_{n=0}^{\infty} f_{n} e_{n}$

$$
D_{a}^{*} f=\sum_{n=0}^{\infty} f_{n} D_{a}^{*} e_{n}=\sum_{n=0}^{\infty} f_{n+1} \frac{1}{n+1}\left(\frac{\beta_{n+1}}{\beta_{n}}\right)^{2} e_{n}
$$

Theorem 3.2. Let $D_{a} \in B\left(H^{2}(\beta)\right)$. Then D_{a} is Fredholm operator if and only if $\frac{\beta_{n}}{n \beta_{n-1}} \geq \in \quad \forall n \geq 1$.
Proof. Clearly, for $n \geq 1, D_{a}^{*} e_{n}=\frac{1}{n}\left(\frac{\beta_{n}}{\beta_{n-1}}\right)^{2} e_{n-1}$.
Since

$$
D_{a}^{*} e_{0}=0, \text { so } e_{0} \in k e r D_{a}^{*} .
$$

We shall show that $\operatorname{ker} D_{a}^{*}=\operatorname{span}\left\{e_{0}\right\}$
Let $f \in \operatorname{ker} D_{a}^{*}$, then

$$
D_{a}^{*} f=D_{a}^{*} \sum_{n=0}^{\infty} f_{n} e_{n}=\sum_{n=1}^{\infty} f_{n} \frac{1}{n}\left(\frac{\beta_{n}}{\beta_{n-1}}\right)^{2} e_{n-1}=0
$$

which implies that $f_{n}=0, \forall n \geq 1$.
Hence $\quad f=f_{0} e_{0}$
Thus $\quad \operatorname{ker} D_{a}^{*}=\operatorname{span}\left\{e_{0}\right\}=M$
Next we will see that D_{a}^{*} is bounded away from zero on $\left(k e r D_{a}^{*}\right)^{\perp}$ if and only if $\frac{\beta_{n}}{n \beta_{n-1}} \geq \in \quad \forall n \geq 1$
Let $f \in\left(k e r D_{a}^{*}\right)^{\perp}=M^{\perp}$
Consider

$$
\left\|D_{a}^{*} f\right\|^{2}=\left\|\sum_{n=1}^{\infty} f_{n} D_{a}^{*} e_{n}\right\|^{2}=\sum_{n=1}^{\infty}\left(\frac{1}{n} \frac{\beta_{n}}{\beta_{n-1}}\right)^{2}\left|f_{n}\right|^{2} \beta_{n}^{2} \geq \epsilon^{2} \sum_{n=1}^{\infty}\left|f_{n}\right|^{2} \beta_{n}^{2}=\epsilon^{2}\|f\|^{2}
$$

This is true for every $f \in\left(k e r D_{a}^{*}\right)^{\perp}$
Hence D_{a}^{*} has closed range. Also $k e r D_{a}=\{0\}$. For if we have $D_{a} f=0$,
then $\sum_{n=0}^{\infty} f_{n} D_{a} e_{n}=0$ implies that $\sum_{n=0}^{\infty} f_{n} \frac{e_{n+1}}{n+1}=0$ or $\frac{f_{n}}{n+1}=0$ for all $n \in N_{0}$
This implies that $f=0$.
Thus $k e r D_{a}=\{0\}$. Hence D_{a} is Fredholm. The converse follows by reversing the arguments.

In the next theorem we characterize Fredholm differential operator.

Theorem 3.3. Let $D \in B\left(H^{2}(\beta)\right)$. Then D is Fredholm operator if and only if $\frac{n \beta_{n-1}}{\beta_{n}} \geq \epsilon$ for every $n \geq 1$.
Proof. We first note that $\operatorname{ker} D=\operatorname{span}\left\{e_{0}\right\}$.
For if we suppose that $D f=0$ for $f \in H^{2}(\beta)$,
then for $f=\sum_{n=0}^{\infty} f_{n} e_{n}$ we have

$$
D f=\sum_{n=1}^{\infty} f_{n} n e_{n-1}=0
$$

which implies that

$$
\sum_{n=1}^{\infty} n^{2}\left|f_{n}\right|^{2} \beta_{n-1}^{2}=0
$$

which further implies that $f_{n}=0$ for all $n=1,2, \ldots$.
Hence $f=f_{0} e_{0}$ so that $f \in \operatorname{span}\left\{e_{0}\right\}$.
Next we shall see that $\operatorname{ker} D^{*}=\{0\}$. Suppose $f \in \operatorname{ker} D^{*}$.
Then $D^{*} f=0$
or

$$
D^{*}\left(\sum_{n=0}^{\infty} f_{n} e_{n}\right)=\sum_{n=0}^{\infty} f_{n}(n+1)\left(\frac{\beta_{n}}{\beta_{n+1}}\right)^{2} e_{n+1}=0
$$

which implies that $f_{n}=0$ for all $\mathrm{n}=0,1, \ldots$. Thus $f=0$.
Finally we can show that if the given condition is satisfied, then D has closed range.
Let $f \in(k e r D)^{\perp}$ and $f=\sum_{n=1}^{\infty} f_{n} e_{n}$.
Then

$$
\|D f\|^{2}=\left\|\sum_{n=1}^{\infty} f_{n} n e_{n-1}\right\|^{2}=\sum_{n=0}^{\infty}\left|f_{n+1}\right|^{2}(n+1)^{2} \beta_{n}^{2}=\sum_{n=0}^{\infty}\left|f_{n+1}\right|^{2}(n+1)^{2} \frac{\beta_{n}^{2}}{\beta_{n+1}^{2}} \cdot \beta_{n+1}^{2} \geq \epsilon^{2} \sum_{n=0}^{\infty}\left|f_{n+1}\right|^{2} \beta_{n+1}^{2}=\epsilon^{2}\|f\|^{2}
$$

Thus D is bounded away from zero on $(\mathrm{ker} D)^{\perp}$ which proves that D has closed range. We can conclude that D is Fredholm.

Conversely suppose D is Fredholm. Then D has closed range. Therefore D is bounded away from zero on $(k e r D)^{\perp}$.
We can find $\epsilon>0$ such that

$$
\left\|D e_{n}\right\| \geq \epsilon\left\|e_{n}\right\| \quad \forall n=1,2, \ldots
$$

or

$$
\frac{n \beta_{n-1}}{\beta_{n}} \geq \epsilon \quad \forall n=1,2, \ldots
$$

This complete the proof of the theorem.

References

[1] Cowen, C.C. and MacCluer, B.D. : Compostion operators on spaces of analytic functions, CRC Press, Boca Raton, (1995).
[2] Kumar, A. : Fredholm composition operators, Proc. of Amer. Math. Soc., Vol.79(1980), No.2, 233-236.
[3] Maccluer,B.D. : Fredholm composition operators, Proc. of Amer. Math. Soc., Vol.125(1997), No.1, 163-166.
[4] Ryff, J.V. : Subordinate H^{p}-functions, Duke Math J., Vol.33(1966), 347-354.
[5] Schwartz, H.J. : Composition operators on H^{p}, Thesis, University of Toledo,(1969).
[6] Sharma, S. K. and Komal, B. S. : Generalized composition operators on weighted Hardy spaces, Int. Journal of Math Analysis, Vol.5(2011), No.12, 1067-1074.
[7] Sharma, S. K. and Komal, B. S. : Generalized multiplication operators on weighted Hardy spaces, Lobachevskii Journal of Mathematics, Vol.32(2011), No.4, 289-294.
[8] Singh, R.K. and Komal, B.S. : Composition operators,Bull. Austral. Math. Soc., Vol. 18(1978), 439-446.
[9] Takagi, H. : Fredholm weighted composition operators, Integr. Equat. Oper. Th., Vol.16(1993), 267-276.

[^0]: 2010 Mathematics Subject Classification. Primary 47B38 ; Secondary 47B99
 Keywords. Generalized composition operator, Fredholm operator, Differential operators, Anti-differential operator, Weighted Hardy spaces.

 Received: 04 February 2015; Accepted: 24 April 2018
 Communicated by Dragan S. Djordjević
 Corresponding author: Sunil Kumar Sharma
 Email addresses: sunilshrm167@gmail.com (Sunil Kumar Sharma), rohitglpu@gmail.com (Rohit Gandhi), bskomal2@yahoo.co.in (B.S.Komal)

