Filomat 32:6 (2018), 2029–2033 https://doi.org/10.2298/FIL1806029S

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Fredholm Generalized Composition Operators on Weighted Hardy Spaces

Sunil Kumar Sharma^a, Rohit Gandhi^b, B.S.Komal^c

^aM.P. Govt. College, Amb, Distt. Una, H.P, India ^bLovely Professional University, Phagwara, Punjab, India ^cM.I.E.T, Kot Bhalwal, Jammu, India

Abstract. The main purpose of this paper is to study Fredholm generalized composition operators on weighted Hardy spaces.

1. Introduction

Let f be an analytic function on the open unit disk Ω in a complex plane \mathbb{C} given by $f(z) = \sum_{n=0}^{\infty} f_n z^n$, where $\{f_n\}_{n=0}^{\infty}$ is a sequence of complex numbers. Let $\{\beta_n\}$ be a sequence of positive real numbers with $\beta(0) = 1$. For $p \in [1, \infty)$, let $H^p(\beta) = \{f : f(z) = \sum_{n=0}^{\infty} f_n z^n, \sum_{n=0}^{\infty} |f_n|^p \beta_n^p < \infty\}$ be the space of formal series. Then $H^p(\beta)$ is a Banach space under the norm $||f||_{\beta}^p = \sum_{n=0}^{\infty} |f_n|^p \beta_n^p$. For p = 2, the space $H^2(\beta)$ is a Hilbert space under the inner product defined as $\langle f, g \rangle = \sum_{n=0}^{\infty} f_n \overline{g}_n \beta_n^2$, where $f(z) = \sum_{n=0}^{\infty} f_n z^n$ and $g(z) = \sum_{n=0}^{\infty} g_n z^n$. The weighted

Hardy space is denoted by $H^2(\beta)$. Let $e_k(z) = z^k$ and $\hat{e}_k(z) = \frac{z^k}{\beta_k}$, clearly $\{e_k\}_{k=0}^{\infty}$ is an orthogonal basis for $H^2(\beta)$. If $\phi : \Omega \to \Omega$ is a mapping such that the transformation $C_{\phi} : H^2(\beta) \to H^2(\beta)$ defined by $C_{\phi}f = fo\phi$, for every $f \in H^2(\beta)$, is continuous, we shall call it a composition operator induced by ϕ . A generalized composition operator $C_{\phi}^d : H^2(\beta) \to H^2(\beta)$ is defined by $C_{\phi}^d f = f'o\phi$, where f' is the derivative of f. By the anti-differential operator D_a we shall mean the operator $D_a : H^2(\beta) \to H^2(\beta)$ defined by

$$D_a(\sum_{n=0}^{\infty} f_n z^n) = \sum_{n=0}^{\infty} \frac{f_n z^{n+1}}{n+1}$$

²⁰¹⁰ Mathematics Subject Classification. Primary 47B38 ; Secondary 47B99

Keywords. Generalized composition operator, Fredholm operator, Differential operators, Anti-differential operator, Weighted Hardy spaces.

Received: 04 February 2015; Accepted: 24 April 2018

Communicated by Dragan S. Djordjević

Corresponding author: Sunil Kumar Sharma

Email addresses: sunilshrm167@gmail.com (Sunil Kumar Sharma), rohitglpu@gmail.com (Rohit Gandhi),

bskomal2@yahoo.co.in(B.S.Komal)

Also the Differential operator *D* on $H^2(\beta)$ is defined by

$$D(\sum_{n=0}^{\infty} f_n z^n) = \sum_{n=0}^{\infty} n f_n z^{n-1}$$

Composition operators on the spaces of analytic functions were studied by Cowen[1], Ryff[4], Schwartz[5] and Singh[8]. Properties of generalized composition operators on weighted Hardy spaces were mentioned in the papers of Sharma[6]-[7], further Fredholm composition and weighted composition operators can be seen in the papers of Kumar[2], Maccluer[3] and Takagi[9]. In this paper we initiate the study of Fredholm generalized composition operators on weighted Hardy spaces. The symbol B(H) denote the Banach algebra of all bounded linear operators on H into itself and N_o denote the set {0, 1, 2, 3,}.

2. Fredholm generalized composition operators on weighted Hardy spaces

The necessary and sufficient condition for generalized composition operators to be Fredholm is investigated in this section.

Theorem 2.1. Suppose $\phi : \Omega \to \Omega$ is a mapping such that $\{\phi^n : n \in N_0\}$ is an orthogonal family in $H^2(\beta)$. Then $kerC^d_{\phi} = span\{e_0\}$, where $\phi^n(z) = (\phi(z))^n$.

Proof. If $f = \alpha_0 e_0$, then clearly $C_{\phi}^d f = 0$, therefore $f \in kerC_{\phi}^d$ Next, if $C_{\phi}^d f = 0$ then for $f = \sum_{n=0}^{\infty} f_n e_n$ We have

$$C^d_{\phi}f = \sum_{n=1}^{\infty} nf_n \phi^{n-1} = 0$$

$$||C_{\phi}^{d}f||^{2} = \sum_{n=1}^{\infty} |f_{n}|^{2} n^{2} \beta_{n}^{2} ||\phi^{n-1}||^{2} = 0$$

so that

$$|f_n| = 0$$
 for every $n \in \mathbb{N}$

Hence

$$f = f_0 e_0$$

Theorem 2.2. Suppose $\phi : \Omega \to \Omega$ is a mapping such that $\{\phi^n : n \in N_0\}$ is an orthogonal family in $H^2(\beta)$. Then C^d_{ϕ} has closed range if and only if there exists $\epsilon > 0$ such that $n ||\phi^{n-1}|| \ge \epsilon \beta_n$ for all $n \in \mathbb{N}$.

Proof. We first assume that C_{ϕ}^{d} has closed range. Then C_{ϕ}^{d} is bounded away from zero on $(kerC_{\phi}^{d})^{\perp}$, therefore there exists $\epsilon > 0$ such that

 $||C_{\phi}^{d}e_{n}|| \ge \epsilon ||e_{n}||$ for all $n \in \mathbb{N}$

which implies that

$$n \| \phi^{n-1} \| \ge \epsilon \beta_n$$
 for all $n \in \mathbb{N}$

Conversely suppose that the conditions is true. Then for $f \in (kerC_{\phi}^d)^{\perp}$ we have

$$\|C_{\phi}^{d}f\|^{2} = \|\sum_{n=1}^{\infty} f_{n}C_{\phi}^{d}e_{n}\|^{2} = \sum_{n=1}^{\infty} |f_{n}|^{2}n^{2}\|\phi^{n-1}\|^{2} \ge \epsilon^{2}\sum_{n=1}^{\infty} |f_{n}|^{2}\beta_{n}^{2} = \epsilon^{2}\|f\|^{2} \text{ for every } f \in (kerC_{\phi}^{d})^{\perp}$$

Then C_{ϕ}^{d} is bounded away from zero on $(kerC_{\phi}^{d})^{\perp}$. Consequently C_{ϕ}^{d} has closed range. \Box

Theorem 2.3. Let $\phi : \Omega \to \Omega$ be such that $\{\phi^n : n \in N_0\}$ is an orthogonal family in $H^2(\beta)$. Then C^d_{ϕ} is Fredholm if and only if there exists $\epsilon > 0$ such that

$$\frac{n\|\phi^{n-1}\|}{\beta_n} \ge \in \text{ for every } n \in \mathbb{N}.$$

Proof. Suppose the condition is true. Then in view of the theorem (2.2) C_{ϕ}^{d} has closed range. Also in view of theorem (2.1), $kerC_{\phi}^{d}$ is a finite dimensional.

We show that $kerC_{\phi}^{d^*}$ is zero dimensional. Let $g \in kerC_{\phi}^{d^*}$, then $C_{\phi}^{d^*}g = 0$. Therefore, for $n \in N_0$ we have

$$0 = \langle C_{\phi}^{d^*}g, e_n \rangle = \langle g, C_{\phi}^{d}e_n \rangle$$
$$= n \langle g, \phi^{n-1} \rangle.$$

Hence g = 0, thus $kerC_{\phi}^{d^*} = \{0\}$. Hence C_{ϕ}^d is Fredholm. The converse is easy to prove in view of theorem (2.1) and theorem (2.2).

Example 2.4. Let $\phi : \Omega \to \Omega$ be defined by $\phi(z) = z$, let $\beta_n = n!$, then $\frac{n \|\phi^{n-1}\|}{\beta_n} = \frac{n\beta_{n-1}}{\beta_n} = 1$. Therefore C_{ϕ}^d has closed range. Now $\ker C_{\phi}^d = \operatorname{span}\{e_0\}$ and $\ker C_{\phi}^{d^*} = \{0\}$. Hence C_{ϕ}^d is Fredholm.

3. Fredholm Differential and Anti-Differential operators on weighted Hardy spaces

In this section we obtain adjoint of anti-differential operator on weighted Hardy spaces. The condition for anti-differential operator to be Fredholm is also investigated in this section.

Theorem 3.1. Let $f \in H^2(\beta)$. Then

$$D_a^* f = \sum_{n=0}^{\infty} \frac{f_{n+1}}{(n+1)} \left(\frac{\beta_{n+1}}{\beta_n}\right)^2 z^n$$

where D_a^* is the adjoint of D_a .

Proof. For any $n \in N_0$ Consider

$$\langle D_a^* e_{n+1}, f \rangle = \langle e_{n+1}, D_a f \rangle = \frac{1}{n+1} \left(\frac{\beta_{n+1}}{\beta_n} \right)^2 \langle e_n, f \rangle \text{ for every } f \in H^2(\beta).$$

Therefore,

$$D_a^* e_{n+1} = \frac{1}{n+1} \left(\frac{\beta_{n+1}}{\beta_n}\right)^2 e_n \text{ and } D_a^* e_0 = 0.$$

2031

Now for $f = \sum_{n=0}^{\infty} f_n e_n$

$$D_a^* f = \sum_{n=0}^{\infty} f_n D_a^* e_n = \sum_{n=0}^{\infty} f_{n+1} \frac{1}{n+1} \left(\frac{\beta_{n+1}}{\beta_n}\right)^2 e_n$$

Theorem 3.2. Let $D_a \in B(H^2(\beta))$. Then D_a is Fredholm operator if and only if $\frac{\beta_n}{n\beta_{n-1}} \ge \in \forall n \ge 1$.

Proof. Clearly, for $n \ge 1$, $D_a^* e_n = \frac{1}{n} (\frac{\beta_n}{\beta_{n-1}})^2 e_{n-1}$. Since

$$D_a^* e_0 = 0$$
, so $e_0 \in ker D_a^*$.

We shall show that $kerD_a^* = span\{e_0\}$ Let $f \in kerD_a^*$, then

$$D_a^* f = D_a^* \sum_{n=0}^{\infty} f_n e_n = \sum_{n=1}^{\infty} f_n \frac{1}{n} \left(\frac{\beta_n}{\beta_{n-1}}\right)^2 e_{n-1} = 0$$

which implies that $f_n = 0, \forall n \ge 1$. $f = f_0 e_0$ ker $D_a^* = span\{e_0\} = M$ Hence

Thus

Next we will see that D_a^* is bounded away from zero on $(kerD_a^*)^{\perp}$ if and only if $\frac{\beta_n}{n\beta_{n-1}} \ge \epsilon \quad \forall n \ge 1$ Let $f \in (kerD_a^*)^{\perp} = M^{\perp}$ Consider

$$||D_a^*f||^2 = ||\sum_{n=1}^{\infty} f_n D_a^* e_n||^2 = \sum_{n=1}^{\infty} (\frac{1}{n} \frac{\beta_n}{\beta_{n-1}})^2 |f_n|^2 \beta_n^2 \ge \epsilon^2 \sum_{n=1}^{\infty} |f_n|^2 \beta_n^2 = \epsilon^2 ||f||^2$$

This is true for every $f \in (kerD_a^*)^{\perp}$ Hence D_a^* has closed range. Also $kerD_a = \{0\}$. For if we have $D_a f = 0$, then $\sum_{n=0}^{\infty} f_n D_a e_n = 0$ implies that $\sum_{n=0}^{\infty} f_n \frac{e_{n+1}}{n+1} = 0$ or $\frac{f_n}{n+1} = 0$ for all $n \in N_0$ This implies that f = 0. Thus $kerD_a = \{0\}$. Hence D_a is Fredholm. The converse follows by reversing the arguments. \Box

In the next theorem we characterize Fredholm differential operator.

Theorem 3.3. Let $D \in B(H^2(\beta))$. Then D is Fredholm operator if and only if $\frac{n\beta_{n-1}}{\beta_n} \ge \epsilon$ for every $n \ge 1$.

Proof. We first note that $kerD = span\{e_0\}$. For if we suppose that Df = 0 for $f \in H^2(\beta)$, then for $f = \sum_{n=0}^{\infty} f_n e_n$ we have

$$Df = \sum_{n=1}^{\infty} f_n n e_{n-1} = 0$$

which implies that

$$\sum_{n=1}^{\infty} n^2 |f_n|^2 \beta_{n-1}^2 = 0$$

which further implies that $f_n = 0$ for all n = 1, 2, Hence $f = f_0e_0$ so that $f \in span\{e_0\}$. Next we shall see that $kerD^* = \{0\}$. Suppose $f \in kerD^*$. Then $D^*f = 0$ or

$$D^*(\sum_{n=0}^{\infty} f_n e_n) = \sum_{n=0}^{\infty} f_n(n+1)(\frac{\beta_n}{\beta_{n+1}})^2 e_{n+1} = 0$$

which implies that $f_n = 0$ for all n = 0,1,.... Thus f = 0. Finally we can show that if the given condition is satisfied, then D has closed range.

Let
$$f \in (kerD)^{\perp}$$
 and $f = \sum_{n=1}^{\infty} f_n e_n$
Then

Then

$$\|Df\|^{2} = \|\sum_{n=1}^{\infty} f_{n} n e_{n-1}\|^{2} = \sum_{n=0}^{\infty} |f_{n+1}|^{2} (n+1)^{2} \beta_{n}^{2} = \sum_{n=0}^{\infty} |f_{n+1}|^{2} (n+1)^{2} \frac{\beta_{n}^{2}}{\beta_{n+1}^{2}} \cdot \beta_{n+1}^{2} \ge \epsilon^{2} \sum_{n=0}^{\infty} |f_{n+1}|^{2} \beta_{n+1}^{2} = \epsilon^{2} ||f||^{2}$$

Thus D is bounded away from zero on $(kerD)^{\perp}$ which proves that D has closed range. We can conclude that D is Fredholm.

Conversely suppose D is Fredholm. Then D has closed range. Therefore D is bounded away from zero on $(kerD)^{\perp}$.

We can find $\epsilon > 0$ such that

$$||De_n|| \ge \epsilon ||e_n|| \quad \forall \ n = 1, 2, ..$$

or

$$\frac{n \beta_{n-1}}{\beta_n} \ge \epsilon \quad \forall \ n = 1, 2, \dots$$

This complete the proof of the theorem. \Box

References

- [1] Cowen, C.C. and MacCluer, B.D.: Compositon operators on spaces of analytic functions, CRC Press, Boca Raton, (1995).
- [2] Kumar, A.: Fredholm composition operators, Proc. of Amer. Math. Soc., Vol.79(1980), No.2, 233-236.
- [3] Maccluer, B.D. : Fredholm composition operators, Proc. of Amer. Math. Soc., Vol.125(1997), No.1, 163-166.
- [4] Ryff, J.V.: Subordinate *H^p*-functions, Duke Math J., Vol.33(1966), 347-354.
- [5] Schwartz, H.J.: Composition operators on *H^p*, Thesis, University of Toledo,(1969).
- [6] Sharma, S. K. and Komal, B. S.: Generalized composition operators on weighted Hardy spaces, Int. Journal of Math Analysis, Vol.5(2011), No.12, 1067-1074.
- [7] Sharma, S. K. and Komal, B. S. : Generalized multiplication operators on weighted Hardy spaces, Lobachevskii Journal of Mathematics, Vol.32(2011), No.4, 289-294.
- [8] Singh, R.K. and Komal, B.S. : Composition operators, Bull. Austral. Math. Soc., Vol. 18(1978), 439-446.
- [9] Takagi, H.: Fredholm weighted composition operators, Integr. Equat. Oper. Th., Vol.16(1993), 267-276.

2033