
Filomat 32:5 (2018), 1711–1725
https://doi.org/10.2298/FIL1805711M

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we propose Deep Extreme Feature Extraction (DEFE), a new ensemble MVA
method for searching τ+τ− channel of Higgs bosons in high energy physics. DEFE can be viewed as
a deep ensemble learning scheme that trains a strongly diverse set of neural feature learners without
explicitly encouraging diversity and penalizing correlations, which is achieved by adopting an implicit
neural controller (not involved in feedforward computation) that directly controls and distributes gradient
flows from higher level deep prediction network. Such model-independent controller results in that every
single local feature learned are used in the feature-to-output mapping stage, avoiding the blind averaging
of features. DEFE makes the ensembles ’deep’ in the sense that it allows deep post-process of these features
that try to learn to select and abstract the ensemble of neural feature learners. Based the construction and
approximation of the so-called extreme selection region, the DEFE model is able to be trained efficiently,
and extract discriminative features from multiple angles and dimensions, hence the improvement of the
selection region of searching new particles in HEP can be achieved. With the application of this model, a
selection region full of signal processes can be obtained through the training of miniature collision events
set. In comparison with the Classic Deep Neural Network, DEFE shows a state-of-the-art performance: the
error rate has decreased by about 37%, the accuracy has broken through 90% for the first time, along with the
discovery significance has reached a standard deviation of 6.0 σ. Experimental data shows that DEFE is able
to train an ensemble of discriminative feature learners that boosts the overperformance of final prediction.
Furthermore, among high-level features, there are still some important patterns that are unidentified by
DNN and are independent of low-level features, while DEFE is able to identify these significant patterns
more efficiently.

1. Introduction

Particle accelerators are among of the most important tools in high energy physics research. The collision
of proton creates a lot of particles as well as a large number of the data resource, which lays a foundation for
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the application of statistics as well as MVA techniques. The discovery of new particles is closely related to
optimization of selection zone as well as the classification of signal events and background events. Hence,
an effective model of statistics and Machine Learning is playing an increasingly significant role in high
energy physics[22, 23, 32, 33]. Likewise, the challenging data from HEP would facilitate the invention and
application of the new model of Machine Learning. The research to be conducted by is an aspect of this
two-sided promotion.

Higgs boson, whose existence was temporarily confirmed in 2013, is an elementary particle in the Stan-
dard Model of particle physics[13]. In order to affirm the coupling effect between Higgs and Fermion and
finally to verify the Standard Model, the study of decay channelτ+τ− through the large hadron collider
(LHC) is of great significance[25]. However, Higgs boson is often buried by a large number of background
events, which makes it hard to be detected. Recently, ATLAS has detected the evidence of the decay from
Higgs boson to τ+τ− channel by BDT(Boosted Decision Tree, one of the state-of-the-art machine learning
techniques). Since the signals are relatively weak and are buried in background noises. Hence, the sig-
nificance of the observed deviation from BOH (short for Background-Only Hypothesis) is only 4.1 sigma.
Hence, it is demonstrating to develop more sophisticated MVA methods which are expected to have higher
sensitivity to signal events.

Our research is based on several kinematic features(both low-level and high-level features) of final state
productions of MC simulated events. Low-level features are physical quantities of decay production can
be observed by detectors of LHC such as CMS. High-level features are derivatives of low-level features
calculated by physicists. Identifying signal events (short for collision events created by the τ+τ− decay of
Higgs boson) as well as selection region (short for the corresponding region of the decision areas of signal
events in feature space) with a relatively high statistics significance and accuracy rate from a large number of
background events(short for non-Higgs-boson events), is a difficult issue due to the high dimensionality and
imbalanced nature of the data. Therefore, the relevant analysis is often based on sophisticate MVA methods
based on machine learning, such as Boosted Decision Tree and neural networks. In fact, the requirements
of classifiers are becoming stricter in order to improve the searching efficiency of LHC searching for new
particles as well as the confidence level. The result of recent research suggests that, even with the help of
experienced physicists, traditional classifiers such as SVM, NN, Decision Tree, Ensemble Learning and so
forth, fail to detect all the significant structures hidden in data. Extracting high-level features automatically,
Deep Learning is regarded as one of the new approaches to break through this limitation and promote the
development high energy physics.

2. Deep Learning and Related Works

As a new learning algorithm of Multilayer neural network, Deep Learning[4], has become a great interest
in the field of machine learning research and achieved great success in various of tasks[7, 9, 15–17, 20, 27, 31].
Deep Learning is not only capable to automatically design more complicated, distinct and nonlinear features
(called feature learning), but also mitigate the local extremum problem of classical training algorithm.

However, the application of deep learning to high energy physics hasn’t been studied until recently.
Baldi.P et al.,2014[3] initially applies the classical Deep Learning approach to the identification of the Higgs
boson(the counter channel of bottom quark-anti bottom quark). The experiment result expresses that the
nonlinear features designed by Deep Learning algorithm possess good prediction capability. Compared
with the features designed by physicists(later referred to as ‘high-level features’), these nonlinear features
increase the performance index by eight percent and reach the expected discovery significance(EDS) with
five sigmas. The result shows that deep neural network unearths some important features ignored by
physicists without drawing support from physical expertise, which indicates that the superiority of Deep
Learning approach can be fully applied to in the data analysis of Large Hadron Collider.

It is worth noting that, though the performance of deep learning approach outperforms the hand-
designed features of physicists when using the deep neural network of low-level feature training, further
experiment result clarifies that the addition of high-level features does not improve the classification
performance of the deep neural network. This phenomenon is explained as ‘the algorithms are automatically
discovering the insight contained in the high-level features’ in the original paper of Baldi.P et al.,2014[3].
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However, in our research, we found it is not the case. In the following part we would come up with a
new model to give a different explanation to the above-mentioned phenomenon, that deep neural networks
actually fails to fully discover the insight contained in the high-level features or neither completely excavate
low-level features, hence resulted in the equivalent performances with or without high-level features. Thus,
there is still a long way to go in the aspect of feature extraction.

In addition, classical deep learning algorithm needs a large number of training samples, thus resulted
in a considerable amount of training time(it often takes days to train). In spite of using millions of training
samples, the final accuracy index of the research is still less than 0.9, which also reflects the inefficiency of
classical deep learning algorithms. Therefore, in conclusion, the research of applying deep learning to the
discovery of new particle is still in the beginning stage, it still has certain one-sidedness in the extraction of
high-level features and the optimizing of selection field.

3. DEFE: the proposed method

3.1. Introduction
Based on the analysis above, our research is focused on τ+τ− of the Higgs boson, and we propose a

new MVA method– the Deep Extreme Feature Extraction(DEFE for short) model. The idea of the model
is, instead of directly approximating the ideological selection region, we divide the sample-variable space
under a supervised setting and train multiple SDAENN[30] as well as the so-called extreme selection region,
using which as a bridge finally to approximate globally and optimize the selection region of the hadron
signal events.

More specifically, we supervisedly operate the space partition of product space between feature space
and sample space by a weak classifier and divide it into a number of overlapping subspaces(this process is
called the discriminative partition ), maintaining at the same time the ratio balance between the background
events and signal events on each subspace. Based on this, we build an SDAENN for each subspace to
process partial feature extraction. The resulting selection region is called extreme selection region. Finally,
we take the union of the features over all subspaces and approximate extreme selection region globally
by only a single terminal classifier, in order to achieve the goal of multi-perspective feature extraction
and feature appreciation as well as covering the Higgs boson’s selection region as much as possible. The
resulting selection region is called the approximated extreme selection region. In some cases, the extracted
features are further reduced by PCA to obtain linearly independent features. In a macro context, this model
embeds several unsupervised feature extraction in a large-scale framework of supervised feature extraction,
avoiding the blindness and locality of single unsupervised pre-training. Therefore, DEFE can be regarded
as a new ensemble learning method, and it is a thorough ensemble learning rather than a voting based
ensemble learning.

3.2. Problem Formulation
Let the set of simulated event to beD = {(x1, y1,w1), ..., (xn, yn,wn)}, where xi ∈ Rd, d is the dimensionality

of the input feature, yi ∈ {s, b}is the label of each event, meaning signal and background respectively. wi ∈ R+

is weight associated with each event, which is intended to adjust the bias derived from the fact that the
proportion of signal event in simulation may not be identical to the real prior class probability. Let S to be
the set containing all signal events, B be the set containing background event, ns to be the number of signal
events, and nb to be the number background events.The weight of each event should satisfy:

∑
i∈S

wi = ns,
∑
i∈B

wi = nb, (1)

Given a classifier 1 : Rd
→ {s, b}, we call Ĝ = {x ∈ Rd, 1(x) = s} the approximate selection region of

classifier 1. Let G = {xi, yi = s}, GT = G
⋂

Ĝ. Then n̂s =
∑

i∈GT
wi is an unbiased estimator of the expected

number of signal events which is selected by the classifier.
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Then, objective of the problem is now to maximize the approximate median significance (AMS)[1],
which defined as:

AMS =

√
2((ns + nb + bre1ular) ln(1 +

ns

nb + bre1ular
) − ns) (2)

To simplify the problem,in this paper weights are normalized to be uniformly distributed in S and B
respectively, i.e.:

wi =

 ns
|S|

i ∈ S,
nb
|B|

i ∈ B

3.3. Extreme Feature Extraction As Ensemble Learning With Diversity
Before introducing the idea of Extreme Feature Extraction (EFE), we first briefly recap the formulation

of ensemble learning that is closely related our proposed model here. Ensemble learning is an important
strategy for improving the performance and accuracy of machine learning algorithms.Ensemble learning
tries to learn a linear combination of base models of the following form:

f (y|x; Θ) =
1
|M|

∑
m∈M

f (y|x,Θm)

The key to the success of ensemble learning relies on the diversity of each base model f (y|x; Θm). If these
base models are trained with decorrelated errors, their predictions can be averaged to improve performance.
Thus, a set of classifiers (or experts) are trained to solve the same task under slightly modified settings (e.g.,
different batch of training examples, a different set of variables, or different random initializations). During
the test period, predictions from multiple classifiers are then averaged to a final prediction that is expected
to be more accurate and robust.

It’s natural to improve the performance of deep learning by training an ensemble of neural networks with
different initializations. Ensemble deep learning forms many state-of-the-art solutions of different large-
scale tasks[24, 29]. However, in such vanilla ensemble learning, sub-neural networks are not trained with
respect to a unified loss function (i.e., not ensemble-aware), and no efforts are made to improve diversity
[18]. To overcome this, different schemes of explicitly encouraging diversity or penalizing correlations
[2, 14, 19] are proposed. It’s then trivial to generalize these models to the task of feature learning by training
auto-encoders as base models. Nevertheless, these frameworks are not well-suited for feature learning
tasks, since model averaging are often taken over final output rather than features learned by base models.
Direct averaging over learned features might be unstable. Also, vanilla ensembles of feature learners are
generally ’shallow’ in the sense that base models are ensembled linearly, which might have an impact of
pushing each base models towards the target too aggressively, resulting in a potential reduction of diversity.

Now we introduce an alternative scheme of performing ensemble feature learning, i.e. Extreme Feature
Extraction (EFE). Let

Hm(x; Θ f
m),m = 1, ..., |M|

Be the set of neural feature mappings (which can be initialized by excatly the same initial parameters),
where Θ

f
m is the parameters of the mth feature map. Assume H be the matrix concatenating every sub

feature matrix Hm. Thus, In EFE, the model can be described by the following feature extraction - output
model:

f (y|x; Θ) = F(H(x; Θ f ); Θo)

Where F is the deep neural predictor that defines the feature-to-output mapping and Θo the corresponding
parameters, and Θ

f
m = {Θ

f
m}1≤m≤|M|. So far the structure of EFE bears no difference from classical deep



C. Ma et al. / Filomat 32:5 (2018), 1711–1725 1715

neural nets. The discriminating feature of EFE that forces each neural feature extractor to be diverse is the
implicit neural controller (gating function) that is not involved in the feedforward compuation with |M|
dimensional output defined by g := g(x; Θ1), which controls the gradient flow during learning:

∂L0(y, x; Θ)

∂Θ f
m

= gm(x; Θ1)
∂L0(y, x; Θ)

∂Hm

∂Hm(x; Θ f
m)

∂Θ f
m

When these feature mappings are parameterized by deep neural networks, EFE model becomes Deep
EFE (DEFE) model. The proposed EFE model has a number of desired properties. Firstly, the neural
controller g directly distributes the gradient flows toward different feature learners, forcing thee learned
features to be strongly diverse. Thus, EFE can be viewed as an ensemble learning scheme that only updates
a small set of base feature learners by modifying the information of gradients, thus resulting in a diverse
set of feature learners. Secondly, since EFE trains ensembles of feature learners without explicitly getting
involved in the final averaging function, every single local feature learned are used in the feature-to-output
mapping stage, avoiding the blind averaging of features. Thus, DEFE makes the ensemble ’deep’ in the
sense that it allows deep post-process of these features that try to learn to select and abstract the ensemble
of neural feature learners. Thirdly, even the feature-to-output mapping F is set to be an averaging error,
diversity is still not eliminated due to the implicit controller g.

However, these advantages come with the difficulty of training the gating function g due to the fact that
g itself is not incorporated into the loss function and network structure. In the following of the paper, we
incorporate the gating function into the loss function by simple linear combination:

LEFE(y, x; Θ) = λmin(L1(y, x; Θ1), δ) + L0(y, x; Θ)

Where L1(y, x; Θ) is the loss function of training g toward target y. Through such incorporation of gating
function into the total loss function, discriminative information from output targets are allowed to train the
gating function. We restrict |M| to be even: when the dimension of y is not equal to |M|, a binary tree of
g (i.e., the discriminative partition to be introduced in the following of the paper) is trained to match the
dimension of the target and minimize min(L1(y, x; Θ), δ). The reason that we employ min(·, δ) on L1(y, x; Θ)
is to restrict the discriminative information from the targets y, so that each feature learner are trained with
approximately equal emphasis. Since training the model by a unified manner may be numerically stable
and computationally expensive, in this paper, we introduce an algorithm in which g, H, and F are trained
sequentially and greedily to obtain a good enough estimation of DEFE’s parameters.

3.4. Constructing and Learning of the Extreme Selection Region
In this section, we introduce the formal description of the pratical algorithm that trains an DEFE

ensemble. We first give a few definitions needed to describe the DEFE algorithm:

Definition 1. Given a classifier 1 : Rd
→ {s, b}, we call Ĝ = {x ∈ Rd, 1(x) = s}the approximate selection region of

classifier1. Let G = {xi, yi = s}, then GT = G
⋂

Ĝ is called the hit selection region.

Definition 2. Given a classifier 1, the approximate rejection region is defined as Ĥ = {xi, 1(xi) = b}. Let H = {xi, yi =
b}, then HT = H

⋂
Ĥ is the hit rejection region.

Definition 3. Given the classifier 1, we call T = GT
⋃

HT the hit region, and F = X \T the anomalous region. Then,
we can define the discriminative partition of the training example space as the tuples {T,F, Ĝ, Ĥ}.

From the definition above, it’s easy to see that the hit region and anomalous region is exactly the
correctly classified and miss-classified samples, respectively. The reason that separate treatment of samples
that counts for the fictitious knowledge (i.e., {Ĝ, Ĥ}) of the weak classifier is that we want to further
characterize the decision boundary trained by a first and quick ‘glance’ at the data. We can further
perform discriminative partition over the resulting regions {T,F, Ĝ, Ĥ} respectively. By doing this procedure
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recursively for n iterations, we can obtain 4n partition of the sample space. In this paper, we consider the
case that n is sufficiently small.

Hit region and anomalous region characterize the two different regions of the sample space that exhibit
potentially different patterns and distributions of high-level features, therefore a single classifier might fail
to capture such information. To balance the number of samples of the partition, we normally set classifier
to be either a weak classifier (e.g. Decision trees) or a neural network that is not fully trained. Furthermore,
‘weak’ discriminative partition obtained via such weak classifier is, in fact, the decision boundary trained
by a first and quick ‘glance’ at the data, thus information containing the partition of {Ĝ, Ĥ} represents the
subspace with principal different the structures hidden in the data. In contradiction to cluster analysis,
discriminative partition tries to make use the information of the labels. The problems of overfitting might
exist both due to the partition itself and the random errors from the weak classifier. To avoid this, we
propose an additional procedure of random interchange, i.e. randomly select the samples from both hit
region and anomalous region according to a preset ratio and switch these selected samples. This additional
procedure will not only balance the partition but also enhance the robustness.

Now, we consider the partition against the feature space, i.e. the set containing every input attributes.
In our work, we partition the feature set according to its physical interpretations. Note that overlapping of
the partition is allowed. Given the partition S =

⋃
Si, we are now able to define the following procedures.

Definition 4. Let X =
4n⋃
i=1

Xi be a discriminative partition of the sample space, and S =
m⋃

i=1
Si a given partition of the

feature space; Then we call X ⊗ F = (
⋃

Xi) ⊗ (
⋃

Si) a partition of the sample-feature space. Every resulting subsets
forms a new set of U = {Xi} ⊗ {S j} = {(Xi,S j)}, where ⊗ is the direct product.

Definition 5. From very subset Dh ∈ U = {Xi} ⊗ {S j}, h = 1, ..., 4n
×m of the sample-feature space, we choose/train

the corresponding classifier 1h and its approximate selection region Ĝh. Then, we define ĜE =
⋃

h Ĝh, as the extreme
selection region. Similarly, we can define as the extreme hit region GET = G

⋂
ĜE. The process of generating and

constructing the extreme hit region based on the classifier chosen is called the expansion of the selection region.
Similarly we can define the process of the expansion of H.

It’s trivial to see that the process of expanding selection region always increases the number of samples
that can be possibly covered by a set of multiple classifiers, i.e. GT ⊂ GET. However, one primal concern
might be that since discriminative partition and expansion of selection region closely rely on the label of
the data, how can one guarantee that the selection region is still expanded without the prior knowledge of
labels of the testing data? The key fact to solve this question lies in the fact that apart from the training data
(including labels), the definition of selection region only depends of the resulting decision boundaries that
can be well described and parameterized by classifiers 1 and 1h(even with simple rules in the case of decision
tree based discriminative partitions). As a result, information regarding these regions are compressed by
a limited number of classifiers rather than the raw sample-feature space X ⊗ S = (

⋃
Xi) ⊗ (

⋃
Si). Thus,

although the previously described expansion of selection region technique cannot be directly used for
deriving a divide-and-conquer mixture of classifier model, with the help of the resulting selection regions
as stepping stones, ‘extreme’ information can then be unfolded and approximated by a single strong
classifier.

In conclusion, the problem of improving the performance of deep learning can now be converted to
the problem of approximating the expanded the selection region by merely a single classifier. In previous
work of ensemble learning [5, 6, 10, 11, 26] tries to unify every sub-classifier 1h by an ensemble procedure of
linear weighting, voting or winner-take-all, and achieves a fairly good result compared to a single classifier.
As stated above, nevertheless, in the task of recognition of Higgs Bosons, this class of ensemble algorithms
(Boosted Decision Tree for example) failed to significantly improve the performance of classification. The
reason might be two folds: firstly, when applying the divide-and-conquer principle to the sample-feature
space, only the shallow and presentational are exploited, thus missing local high-level information; sec-
ondly, only the weak classifiers’ final output is considered, therefore in intrinsic structures and learned
representational features are ignored. Also, it’s too computationally expensive to apply directly ensemble
learning algorithms to deep learning algorithms.
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3.5. Greedy Training Algorithm for DEFE
To contribute to overcoming these difficulties, we have introduced the idea of feature learning from

Deep Learning framework, and propose a new algorithm, the Deep Extreme Feature Extraction (DEFE).
Now, we introduce a greedy training algorithm for DEFE. As depicted in Figure 1, in our prototype DEFE
algorithm, the initial controller 1 is chosen to be a neural network or decision tree, and Hh to be the Stacked
Denoising Autoencoder Neural Networks (SDANN). In this setting, DEFE is not allowed to utilize the
output of each classifier; instead, the union of all the high-level features (the output of the final hidden
layer) learned by each SDANN (i.e., the feature set of ĜE). Based on this feature set, a final deep neural
predictor is employed to reorganize the extreme feature set, and learn to approximate the extreme selection
region ĜE. By establishing this framework, both advantages of prior experiences of extreme selection region
and the feature extraction power of deep learning techniques are combined. The local features on ĜE are
thus reorganized into high-level features learned by the final deep classifier. With the existing mature
training algorithms of deep learning to train the final deep classifier, the expensive computational cost of
apply ensemble learning directly to learning the gating weights of each classifier 1h can be also avoided.
The DEFE algorithm applied to the optimization of recognizing Higgs Bosons are described as follows:

Input: the sample-feature space X ⊗ S, labels {yi}, and interchange rate α. We assume n = 1 and m = 1.

Step 1. (Discriminative Partition): Train a neural controller on X, and obtain a partition of {T,F, Ĝ, Ĥ}.

Step 2. (Random Interchange) According to an interchange rate α, randomly exchange the elements between F and
T, Ĝ and Ĥ, respectively.

Step 3. (Partition of feature set): Given the feature set S, we deploy an overlapping partition. In the task of LHC
hadron collisions, feature sets are partitioned as S = S1

⋃
S2
⋃

S3, where S1 is the momentum features, S2 is the
derivative of physical attributes, and S3 = S is the entire feature set.

Step 4. (The construction of extreme selection region): So far we obtained a partition U of the sample-feature space
X ⊗ S. For every Uh,h = 1, 2, ..., 4n

× m, we train an SDAENN, denoted as Hh. Note that the number of units in
the first layer far outnumbers the length of the input vector, and the number of hidden units at each layer decreases
gradually to a fix number K as depth increases to compress the information. In order to make every SDAENN
equally important,K is fixed as 50. All SDAENNs are trained unsupervised in order to learn non-trivial features (or
optionally followed by supervised finetuning step with very few epochs). By training these 4n

× m SDAENNs, we
obtained implicitly the extreme selection region ĜE.

Step 5. (Combining extreme feature set): For every Hh, we take their output Sh = {Sh1,Sh2, ...,ShK, } of the last hidden
layers. Then, the extreme feature set can be constructed as SE =

⋃
h Sh, and the new sample-feature space becomes

X ⊗ SE.

Step 6. (Learning and approximating ĜE): Finally, we train an deep neural network F on X ⊗ SE as a final classifier
with stochastic gradient descent. The resulting decision boundary will be a improved estimation of ĜE.

4. Experiment

4.1. Methodology
Based on the simulated data, the proposed Deep Extreme Feature Extraction (DEFE) is used to learn the

selection region (or extreme selection region ĜE). The goodness of such approximation is usually measured
by various metrics. In this paper, The metric used for the goodness of fit comparison is the total area under
the Receiver Operating Characteristic curve (ROC), i.e. The AUC metric. In general, a higher value of AUC
represents higher classification accuracy averaged across a wide range of different choices of thresholds.
The expected significance of a discovery (in units of sigmas) is also calculated for 100 signal events and
1,000 background events. It denotes the significance of null selection region hypothesis (or the discovery
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Figure 1: How greedy DEFE algorithm is constructed. Two dashed lines with different colors illustrate one possible partition defined
by decision boundary of the controller 1. Deep feature extractors are then built, receiving gradient flows from each interior of
decision boundary. Note that this is not a divide-and-conquer algorithm: 1 is model-independent in the sense that it is not involved
in feedforward computation. For every new test example, features from all deep feature extractors are computed simultaneously,
weighted equally, and forwarded to a final deep neural network that tries to learn to select useful locally significant features by
approximating the extreme selection region, ĜE.

significance)[8]. If the resulting P-value of null selection hypothesis is below a certain value (normally
required to be one millionth or lower, corresponding to discovery significance greater than 5-sigma), then
the declaration of a new physics can be made. Once the selection region been trained, the model is ready
for analyzing real experimental data.

4.2. Data

The data we use in our experiment is obtained from the Higgs Boson Machine Learning Challenge(data
can be downloaded at http://www.kaggle.com/c/higgs-boson). Data is generated by an official simulator of
ATLAS, with Higgs to Tau-Tau events mixed with different backgrounds. Based on current knowledge of
particle physics, random collisions are simulated, tracked and detected by a simulated detector. The mass
of the Higgs Boson is fixed at 125GeV, considering the following collision event:

1. Signal Event: The Higgs boson decays into τ+τ−.
2. Background Event 1: The Z bosons (91.2 GeV) decay into τ+τ−, which is similar to the signal event

and becoming the difficult point in classification.
3. Background Event 2: A pair of top quarks is involved, accompany with a lepton and hadronic decayed
τ.

4. Background Event 3: W bosons decay into an electron or a muon and a hadronic decayed tau.

The total number of events is 250,000. For any given collision event, the following 30 input attributes
are obtained, with 17 low-level features measured by the detector and 13 additional high-level features
calculated from low-level features, see Table 1.

4.3. Parameters and Training Strategy

We use a hundred thousand samples to train the DEFE model, and use about eighty thousand samples to
test the DEFE model. ROC (Receiver Operating Characteristic Curve) is used to visualize the performance
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Categories High-level Leptons Hadronic Tau Jets Neutrinos

Variables

13 high-level features
in total.

1,Transverse mo-
mentum
2,Azimuth angle
3,Pseudorapidity

1,Transverse mo-
mentum
2,Azimuth angle
3,Pseudorapidity

1,Number of jets
2,Transverse mo-
mentum of the
leading jet
3,Azimuth angle of
the leading jet
4,Corresponding
features of the sub-
leading jet;
5,Total transverse
energy
6,And more, see
Appendix B

1,Missing
transverse mo-
mentum
2,Azimuth an-
gle
3,Total trans-
verse energy

Table 1: Kinematic Features

and. The AUC (Area under the Curve of ROC) and Expected Discovery Significance are used to quantify
the performance.

All data are normalized. Afterwards, we do an n = 1 discriminative partition, on each subset, with
random swap ratio α=0.05. In other words, we partition the original dataset into four overlapped subsets.
Finally, we employ SDAENN to gain the high-level feature on a m = 3 partitioned feature space, on each of
the data subset, gaining altogether twelve high-level feature sets. The SDAENNs are chosen to have fifty
output unit, so by complying the steps above, we can ultimately obtain the so-called “extreme features”
with 12×50=600 dimensions. And then, before inputting into the DNN classifier, we reduce the dimension
to 300 by PCA.

In our model, each of the SDAENN on their corresponding sample-feature partition is set to have
the following parameters: For all SDAENN: Totally five hidden layers, the output layer has fifty neural
units. For each feature space, the structure of each hidden layer is given as S1 : {250,200,150,100,50}; S2:
{200,200,150,100,50}; S3: {300,250,200,200,50}.

Among our experiments, the activation function is set to be a sigmoid function. One can also implement
Rectified Linear Units (ReLU) [21] instead of sigmoid function. In our case, however, since we will be
interested in visualizing features (i.e., outputs of nonlinear activation function) learned by our algorithm,
it is more convenient to use a sigmoid function that can automatically squash their outputs between 0
and 1. Therefore, we avoid using ReLU activation function due to the fact that they tend to blow up
their activations (i.e. the range of output is not constrained for ReLU). The training algorithm is plain
stochastic gradient descent (SGD) with batch training and momentum. Batch size of SGD is one hundred,
the momentum is 0.5, and learning ratio is 0.1 in the beginning and decrease in the training process, the
descending ratio is 0.997. Under the fine-tuning phase, we adopt the following early-stop strategy: Stop
training if cross-validation error of SDAENN increase to 0.002 above the minimum, or the change of cost
is lower than 0.0001 after 10 iterations. Under this strategy, the fine-tuning normally stop after 70 120
iteration. This effectively deterred over-fitting. For each neural feature learner, we adopt an additional
supervised fine-tuning step with only 10 epochs. The parameters stated above are also used in the terminal
classifier (DNN). The popular drop-out training technique [28] is not used because of their deterioration
on accuracy was found in our preliminary experiments, possibly due to its side effect of introducing noise
[12] outweighs its positive effect of automatically implementing variational Bayesian inference in our case.

5. Results

Table 1 demonstrates the collection of the thirty-dimensional feature used in our model. In Table 2 we
observe the comparison of AUC accuracy rate between DEFE model and other baseline models. Among
which, the training sets contain 80,000 samples, and if not specially addressed, low-level features and high-
level features are all adopted( if not adopt high-level features, then the performance of DEFE and DNN are
much equivalent ). The expected significance of a discovery (in units of Gaussians) for 100 signal events
and 1,000 background events. The calculation of expected statistical significance is referred to the method
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Model AUC Discovery
Significance:Z

DEFE 0.916 6.0σ
DEFE(low features only) 0.898 5.6σ
DNN(low features only) 0.880 4.9σ
DNN 0.885 5.0σ
SVM 0.76 3.5σ
NN 0.81 3.7σ
Boosted Decision Tree 0.816 3.7σ
Random Forests(RF) 0.84 3.9σ

Table 2: Algorithm Comparison

presented in document [3]. In[3], a slightly different task that the case of a pair of leptonic decay of Taus is
considered. Due to the similarities of both events and features, their results are also listed for comparison.

Compared with classic Deep Neural Network (DNN) under the restriction of 90% background rejection
rate, the error rate of DEFE drops by approximately 37%, and the precision indicator of AUC breaks through
90% for the first time, with statistical significance reaching as high as 6.0 σ. It is also worth noting that,
unlike DNN, the additional high-level features promote the accuracy of DEFE significantly. In other words,
DEFE can learn essential features more effectively from additional high-level features.

Finally, it’s worth mentioning that DEFE does capture some important features of Hi11s→ τ+τ− channel.
Appendix I illustrates first 30 of the features extracted by DEFE. Obviously, automatically learned features
by DEFE exploit to the full the discriminative power hidden under raw input features. Note the great
diversity among different feature learners trained by DEFE algorithm. Among high-level features, there
are still some important patterns that are unidentified by DNN and are independent of low-level features,
therefore the DNN’s treatment of high-level and low-level features are insufficient, while DEFE is able to
identify these significant patterns more efficiently. With the state-of-the-art performances of the proposed
method, we hope to improve the analyzing quality of HEP data and the statistical significance of confirming
the physical facts.

6. Conclusion

In this paper, we proposed a novel ensemble deep learning technique, Deep Extreme Feature Extraction
(DEFE), to the task of identifying Higgs Bosons(Tau-Tau channel) from background signal. Based the con-
struction and approximation of the so-called extreme selection region, the model is able to efficiently extract
discriminative features from multiple angles and dimensions and therefore boost the overall performance.
The result is improved in approximately one σ compared to DNN. In comparison with the traditional deep
learning algorithm, we discover that performance of DEFE is significantly boosted with high-level feature
inputs, avoiding the equivalent performances with or without high-level features. This result indicates that
unlike the vanilla deep neural network, DEFE successfully trains a diverse set of neural feature learners, and
discover the excess discriminative information contained in the high-level features. In the future, it’s still
an open question to propose further training algorithms to train an EFE model universally and efficiently.
[12, 21, 28]
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Appendix A: Visualization of Base Neural Feature Learners:

We present selected first 30 of the 600 features learned by 12 base feature learners. Note the great
diversity among different feature learners trained by DEFE algorithm.
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Figure 2: Relative fequency of features learned by feature learners, 1-15. Shimmering blue lines refer to signal events, while pink lines
represent background signals.
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Figure 3: Relative fequency of features learned by feature learners, 16-30. Shimmering blue lines refer to signal events, while pink
lines represent background signals.
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Appendix B: Definition of Input variables[1]:

1. DER mass MMC: The estimated mass mH of the Higgs boson candidate, obtained through a proba-
bilistic phase space integration.

2. DER mass transverse met lep: The transverse mass between the missing transverse energy and the
lepton.

3. DER mass vis: The invariant mass of the hadronic tau and the lepton.
4. DER pt h: The modulus of the vector sum of the transverse momentum of the hadronic tau, the

lepton, and the missing transverse energy vector.
5. DER deltaeta jet jet: The absolute value of the pseudorapidity separation between the two jets

(undefined if PRI jet num ≤ 1).
6. DER mass jet jet: The invariant mass of the two jets (undefined if PRI jet num ≤ 1).
7. DER prodeta jet jet: The product of the pseudorapidities of the two jets (undefined if PRI jet num
≤ 1).

8. DER deltar tau lep: The R separation between the hadronic tau and the lepton.
9. DER pt tot: The modulus of the vector sum of the missing transverse momenta and the transverse

momenta of the hadronic tau, the lepton, the leading jet and the subleading jet (if PRI jet num = 2)
(but not of any additional jets).

10. DER sum pt: The sum of the moduli of the transverse momenta of the hadronic tau, the lepton, the
leading jet and the subleading jet (if PRI jet num = 2) and the other jets (if PRI jet num = 3).

11. DER pt ratio lep tau: The ratio of the transverse momenta of the lepton and the hadronic tau.
12. DER met phi centrality: The centrality of the azimuthal angle of the missing transverse energy

vector w.r.t. the hadronic tau and the lepton.
13. DER lep eta centrality: The centrality of the pseudorapidity of the lepton w.r.t. the two jets (unde-

fined if PRI jet num ≤ 1).
14. PRI tau pt: The transverse momentum of the hadronic tau.
15. PRI tau eta: The pseudorapidity of the hadronic tau.
16. PRI tau phi: The azimuth angle of the hadronic tau.
17. PRI lep pt: The transverse momentum of the lepton (electron or muon).
18. PRI lep eta: The pseudorapidity of the lepton.
19. PRI lep phi: The azimuth angle of the lepton.
20. PRI met: The missing transverse energy.
21. PRI met phi: The azimuth angle of the missing transverse energy
22. PRI met sumet: The total transverse energy in the detector.
23. PRI jet num: The number of jets (integer with the value of 0, 1, 2 or 3; possible larger values have

been capped at 3).
24. PRI jet leading pt: The transverse momentum of the leading jet, that is the jet with largest transverse

momentum (undefined if PRI jet num = 0).
25. PRI jet leading eta: The pseudorapidity of the leading jet (undefined if PRI jet num = 0).
26. PRI jet leading phi: The azimuth angle of the leading jet (undefined if PRI jet num = 0).
27. PRI jet subleading pt: The transverse momentum of the leading jet, that is, the jet with second

largest transverse momentum (undefined if PRI jet num ≤ 1).
28. PRI jet subleading eta: The pseudorapidity of the subleading jet (undefined if PRI jet num ≤ 1).
29. PRI jet subleading phi: The azimuth angle of the subleading jet (undefined if PRI jet num ≤ 1).
30. PRI jet all pt: The scalar sum of the transverse momentum of all the jets of the events.


