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Abstract. In this article, we introduce a kind of binary relation on a nonempty set with name of orthogonally
relation which we develop for sequences, continuous maps, metric spaces, contraction maps, preserving
maps and etc. All of the above concepts are generalized forms of ordinary case, so they are very important
for extension and finding new results. we expect some of the concepts in the mathematics can be changed
by orthogonally relation, such as functional equations and some of the theorem in the fixed point theorem
method. In this research we illustrate one of the applications of orthogonally relation on ternary cubic
homomorphism and ternary cubic derivations, so we prove the stability of orthogonally ternary cubic
homomorphisms and orthogonally ternary cubic derivations on C∗-ternary algebras for the functional
equation by using fixed point method. Also to create the stability, we choose a suitable control function
and we show ability and validity of the proposed method for the functional analysis.

1. Introduction

The stability problem functional equations first had been raised by Ulam [27]. This problem solved by
Hyers [14] in the framework of Banach spaces. In 1978, Th. M. Rassias [23] provided a generalization of
the Heyrs theorem by proving the existence of unique linear mapping near approximate additive mapping.
Lastly, Gajda [11] answered the question for another case of linear mapping, which was raised by Rassias.
In 1982, J.M. Rassias [24] followed the innovative approach of the Rassias Theorem [23] in which he replaced
the factor ‖x‖p + ‖y‖p by ‖x‖p.‖y‖q for p, q ∈ Rwith p+q , 1. Gǎvruta [12] obtained a generalized result of Th.
M. Rassias theorem which allows the Cauchy difference to be controlled by a general unbounded function.
For more details about the result concerning such problems, the reader to ([1–3, 8, 9, 25, 26]).

Park et al. proved stability homomorphisms and derivations in Banach algebras, Banach ternary
algebras, C∗-algebras, Lie C∗-algebras, C∗-ternary algebras (see [7, 19–21]). Consider the functional equation

f (x + y + 2z) + f (x + y − 2z) + f (2x) + f (2y) =

2[ f (x + y) + 2 f (x + z) + 2 f (x − z) + 2 f (y + z) + 2 f (y − z)].
(1)

The cubic function f (x) = cx3 is a solution of this functional equation, and so one usually is said the above
functional equation to be cubic [17]. Let A,B are two ternary algebras. A mapping f : A → B is called a
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ternary cubic homomorphism if it is a cubic mapping (1) and satisfies
f ([x, y, z]) = [ f (x), f (y), f (z)] for all x, y, z ∈ A.

A mapping f : A→A is called a ternary cubic derivation if f is a cubic mapping (1) satisfies
f ([x, y, z]) = [ f (x), y3, z3] + [x3, f (y), z3] + [x3, y3, f (z)] for all x, y.z ∈ A.

In 2003, Cădariu and Radu applied the fixed point methods to the investigation of Jensen functional
equations [4] (see also [5, 6, 13, 15, 16, 18, 22]).

We start our work with the following definitions, which can be considered as the main definition of our
paper.

Definition 1.1. Let X , ∅ and ⊥ ⊆ X × X be an binary relation. If ⊥ satisfies the following condition

∃x0; (∀y; y⊥x0) or (∀y; x0⊥y),

it is called an orthogonally set (briefly O-set). We denote this O-set by (X,⊥).

Definition 1.2. Let (X,⊥) be an O-set. A sequence {xn}n∈N is called orthogonally sequence (briefly O-sequence) if

(∀n; xn⊥xn+1) or (∀n; xn+1⊥xn).

Definition 1.3. Let (X,⊥) be an O-set. Then f : X→ X is ⊥− preserving if for each x, y ∈ X, x⊥y then f (x)⊥ f (y).

Definition 1.4. Let (X,⊥, d) be an orthogonally metric space ((X,⊥) is an O-set and (X, d) is a metric space). Then
f : X → X is ⊥−continuous in a ∈ X if for each O-sequence {an}n∈N in X if an → a, then f (an) → f (a). Also f is
⊥−continuous on X if f is ⊥−continuous on each a ∈ X.

It is easy to see that every continuous mapping is ⊥−continuous.

Definition 1.5. Let (X,⊥, d) be an orthogonally metric space, then X is orthogonally complete (briefly O-complete)
if every Cauchy O-sequence is convergent.

It is easy to see that every complete metric space is O-complete and the converse is not true.

Definition 1.6. Let (X,⊥, d) be an orthogonally metric space and 0 < λ < 1. A mapping f : X → X is an
orthogonality contraction with Lipschitz constant λ if

d( f x, f y) ≤ λd(x, y) i f x⊥y.

Let H be a Hilbert space. Suppose that f : H→ C is a mapping satisfying

f (x) = ‖x‖2 (2)

for all x ∈ X. It is natural that this equation is a quadratic functional equation. On the other hand by
considering x⊥y with < x, y >= 0 for x, y ∈ H, it is easy to see that the above function f : H → C is an
orthogonally additive functional equation, that is f (x+y) = f (x)+ f (y) if x⊥y. This means that orthogonality
may change a functional equation.

Recently, Eshaghi and Ramezani in [10] proved a fixed point theorem in O-sets as follows:

Theorem 1.7. Let (X, d,⊥) be an O-complete metric space (not necessarily complete metric space) and 0 < λ < 1,
Let T : X → X be a ⊥-preserving, ⊥-contraction with Lipschitz constant λ and ⊥-continuous, then T has a unique
fixed point x∗ in X. Also, T is a Picard operator such that, limn→∞ Tn(x) = x∗ for all x ∈ X.
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Example 1.8. Let X = [0, 1) and let the metric on X be the Euclidian metric. Define x⊥y if xy ∈ {x, y} for all
x, y ∈ X. Let f : X→ X be a mapping defined by

f (x) =

{
x
2 i f x ∈ Q ∩ X

0 i f x ∈ Qc
∩ X.

It is easy to see that X is O-complete (not complete), f is ⊥-continuous (not continuous on X), ⊥-λ-contraction
for λ = 1

2 (not contraction on X) and ⊥-preserving on X. By our theorem, f has a unique fixed point. However, f is
not a contraction on X and so by theorem Diaz and Margolis we cannot find any fixed point for f .

2. Main Results

Throughout this section, we suppose that (A, ‖.‖1,⊥1) with a⊥1b if ab∗ = b∗a = 0 and (B, ‖.‖2,⊥2) with
a⊥2b if ab∗ = b∗a = 0 are two C∗-ternary algebras. Given a mapping f : A→ B, we set

∆ f (x, y, z) = f (x + y + 2z) + f (x + y − 2z) + f (2x) + f (2y)
− 2[ f (x + y) + 2 f (x + z) + 2 f (x − z) + 2 f (y + z) + 2 f (y − z)]

for all x, y, z ∈ A.

Theorem 2.1. Let f : A → B be a mapping for which there exists a control function ϕ : A3
→ [0,∞) such that

ϕ(0, 0, 0) = 0 and

‖∆ f (x, y, z)‖2 ≤ ϕ(x, y, z), (3)

‖ f ([x, y, z]) − [ f (x), f (y), f (z)]‖2 ≤ ϕ(x, y, z) (4)

for all x, y, z ∈ A that are mutually orthogonal. If there exists L < 1 such that

ϕ(x, y, z) ≤ 8Lϕ(
x
2
,

y
2
,

z
2

) (5)

for all x, y, z ∈ A that are mutually orthogonal. Then there exists a unique orthogonally C∗-ternary cubic homomor-
phism H : A→ B such that

‖H(x) − f (x)‖2 ≤
1

8(1 − L)
ϕ(0, x, 0) (6)

Proof. Putting x = z = 0 in (3) and by using of the ϕ(0, 0, 0) = 0 , we get

‖ f (2y) − 8 f (y)‖2 ≤ ϕ(0, y, 0)

for all y ∈ A. Hence we have

‖
1
8

f (2y) − f (y)‖2 ≤
1
8
ϕ(0, y, 0) (7)

for all y ∈ A.
Consider the set

Ω := {1 : 1 : A→ B, 1(x) ⊥2 2−31(2x) or 2−31(2x) ⊥2 1(x),∀x ∈ A, 1(0) = 0}. (8)

For every 1, h ∈ Ω, define

d(1, h) = in f {K ∈ (0,∞) : ‖1(x) − h(x)‖2 ≤ Kϕ(0, x, 0), ∀x ∈ A}. (9)
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Now, we put the orthogonality relation ⊥ on Ω as follows: for all 1, h ∈ Ω

h ⊥ 1 ⇔ (h(x) ⊥2 1(x) or 1(x) ⊥2 h(x) ∀x ∈ A). (10)

Because A and B are C∗-ternary algebras so, we conclude that 10(x) = 0 ∈ Ω and ∀ 1(x) ∈ Ω then 1(x) ⊥
10(x) so, (Ω,⊥) is an O-set. By Definition of (9) we find (Ω, d) is an orthogonally metric space. Also, if
{1n}n∈N be a Cauchy O-sequence, for ε > 0 and enough small by concept of Cauchy sequence, we obtain
‖1m(x)−1n(x)‖2 = 0 ∀m,n > n0,n0 ∈N so, {1n}n∈N is convergent. Thus (Ω, d,⊥) is an O-complete generalized
metric space.

Now, we consider the mapping T : Ω → Ω defined by T1(x) = 2−3 1(2x) for all x ∈ A and 1 ∈ Ω. Let
1, h ∈ Ω and 1 ⊥ h by definition Ω in (8), we can write

1 ⊥ h ⇔ 1(x) ⊥2 h(x) or h(x) ⊥2 1(x),∀x ∈ A
=⇒ 1(2x) ⊥2 h(2x) or h(2x) ⊥2 1(2x),∀x ∈ A

=⇒ 2−31(2x) ⊥2 2−3h(2x) or 2−3h(2x) ⊥2 2−31(2x),∀x ∈ A
=⇒ T1(x) ⊥2 Th(x) or Th(x) ⊥2 T1(x),∀x ∈ A
=⇒ T1 ⊥ Th.

Thus T is a ⊥-preserving.
For all 1, h ∈ Ω with 1 ⊥ h and x ∈ A,

d(1, h) < K ⇒ ‖1(x) − h(x)‖2 ≤ Kϕ(0, x, 0)

⇒ ‖2−31(2x) − 2−3h(2x)‖2 ≤ 2−3 K ϕ(0, 2x, 0)

⇒ ‖2−31(2x) − 2−3h(2x)‖2 ≤ L K ϕ(0, x, 0)
⇒ d(T1,Th) ≤ L K.

Hence we see that

d(T1,Th) ≤ L d(1, h) (11)

for all 1, h ∈ Ω, that is, T is a strictly contractive self-mapping of Ω with the Lipschitz constant L. Now, we
show that T is a ⊥-continuous. To this end, let {1n}n∈N be an O-sequence with 1n ⊥ 1n+1 or 1n+1 ⊥ 1n for all
n ∈ N in (Ω, d,⊥) which convergent to 1 ∈ Ω and let ε > 0 be given. Then there exists N ∈ N and K ∈ R+

with K < ε such that

‖1n(x) − 1(x)‖2 ≤ Kϕ(0, x, 0)

for all x ∈ A and n ≥ N and so

‖2−31n(2x) − 2−31(2x)‖2 ≤ 2−3 K ϕ(0, 2x, 0)

for all x ∈ A and n ≥ N. By inequality (5) and the definition of T, we get

‖T1n(x) − T1(x)‖2 ≤ L K ϕ(0, x, 0)

for all x ∈ A and n ≥ N. Hence

d(T(1n),T(1)) ≤ LK < K < ε

for all n ≥ N. It follows that T is ⊥-continuous. So according to the Theorem 1.7, T has a unique fixed point
and Tn( f ) is convergent to unique fixed point of T, such as H : A→ B that it can be defined by

H(x) = lim
n→∞

f (2nx)
8n (12)
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for all x ∈ A. It’s easy to show that T(H) = H. In the follow by (12) and (7) we have,

‖H(x) − f (x)‖2 = ‖ lim
n→∞

f (2nx)
8n − f (x)‖2,∀x ∈ A

≤ lim
n→∞
‖

f (2nx)
8n −

f (2n−1x)
8n−1 ‖2 + lim

n→∞
‖

f (2n−1x)
8n−1 −

f (2n−2x)
8n−2 ‖2 + · · · + lim

n→∞
‖

f (2x)
8
− f (x)‖2

≤ lim
n→∞

1
8n−1

1
8
ϕ(0, 2n−1x, 0) + lim

n→∞

1
8n−2

1
8
ϕ(0, 2n−2x, 0) + · · · + lim

n→∞

1
8
ϕ(0, 20x, 0)

= lim
n→∞

1
8

n−1∑
j=0

1
8 jϕ(0, 2 jx, 0)

by using (5) rapidly we obtain,

6 lim
n→∞

1
8

n−1∑
j=0

L jϕ(0, x, 0)

=
1

8(1 − L)
ϕ(0, x, 0).

Now, we show that H is an orthogonally cubic. From (5) we get

lim
n→∞

1
8nϕ(2nx, 2ny, 2nz) = 0. (13)

Then it follows from (12) and (3) that

‖∆H(x, y, z)‖2 = lim
n→∞
‖
∆ f (2nx, 2ny, 2nz)

8n ‖2 ≤ lim
n→∞

ϕ(2nx, 2ny, 2nz)
8n = 0.

for all x, y, z ∈ A that are mutually orthogonal. This shows that H is orthogonally cubic. Also from (12) and
(4) we have

‖H([x, y, z]) − [H(x),H(y),H(z)]‖2

= lim
n→∞

1
83n ‖ f ([2nx, 2ny, 2nz]) − [ f (2nx), f (2ny), f (2nz)]‖2

≤ lim
n→∞

1
8nϕ(2nx, 2ny, 2nz) = 0

for all x, y, z ∈ A that are mutually orthogonal. This shows that H is orthogonally cubic C∗-ternary homo-
morphism.

Corollary 2.2. Let p ∈ (0, 3) and ε ∈ [0,∞). Suppose that f : A→ B is a mapping such that

‖∆ f (x, y, z)‖2 ≤ ε(‖x‖
p
1 + ‖y‖p1 + ‖z‖p1), (14)

‖ f ([x, y, z]) − [ f (x), f (y), f (z)]‖2 ≤ ε(‖x‖
p
1 + ‖y‖p1 + ‖z‖p1) (15)

for all x, y, z ∈ A that are mutually orthogonal. Then there exists a unique orthogonally C∗-ternary cubic homomor-
phism H : A→ B such that

‖H(x) − f (x)‖2 ≤
ε

8 − 2p ‖x‖
p
1

for all x ∈ X.



M. Rabbani, M. Eshaghi / Filomat 32:4 (2018), 1439–1445 1444

Proof. According to the Theorem 2.1 we Set ϕ : A3
→ [0,∞) such that

ϕ(x, y, z) = ε(‖x‖p1+‖y‖p1+‖z‖p1) for all x, y, z ∈ A that are mutually orthogonal. Then it follows thatϕ(0, 0, 0) = 0
and

∃L < 1; ϕ(x, y, z) = ε(‖x‖p1 + ‖y‖p1 + ‖z‖p1)

= 2pε(‖
x
2
‖

p
1 + ‖

y
2
‖

p
1 + ‖

z
2
‖

p
1)

= 8(2p−3)ε(‖
x
2
‖

p
1 + ‖

y
2
‖

p
1 + ‖

z
2
‖

p
1)

= 8(2p−3)ϕ(
x
2
,

y
2
,

z
2

)

= 8Lϕ(
x
2
,

y
2
,

z
2

); L = 2p−3 < 1.

Also,

lim
n→∞

1
8nϕ(2nx, 2ny, 2nz) = lim

n→∞

ε
8n (‖2nx‖p1 + ‖2ny‖p1 + ‖2nz‖p1)

= lim
n→∞

(2p−3)nε(‖x‖p1 + ‖y‖p1 + ‖z‖p1)

= lim
n→∞

Lnε(‖x‖p1 + ‖y‖p1 + ‖z‖p1)→ 0; L = 2p−3 < 1.

Thus, conditions of Theorem 2.1 are held so, there exists a unique orthogonally C∗-ternary cubic homomor-
phism H : A→ B such that from (6) we have

‖H(x) − f (x)‖2 ≤
1

8(1 − L)
ϕ(0, x, 0) =

ε
8 − 2p ‖x‖

p
1.

Theorem 2.3. Let f : A→ A be a mapping for which there exists a function ϕ : A3
→ [0,∞) such that

‖∆ f (x, y, z)‖2 ≤ ϕ(x, y, z), (16)

‖ f ([x, y, z]) − [ f (x), y3, z3] − [x3, f (y), z3] − [x3, y3, f (z)]‖2 ≤ ϕ(x, y, z) (17)

for all x, y, z ∈ A that are mutually orthogonal. If there exists L < 1 such that

ϕ(x, y, z) ≤ 8Lϕ(
x
2
,

y
2
,

z
2

) (18)

for all x, y, z ∈ A that are mutually orthogonal. Then there exists a unique orthogonally C∗-ternary cubic derivation
mapping D : A→ A such that

‖D(x) − f (x)‖2 ≤
1

8(1 − L)
ϕ(0, x, 0) (19)

for all x ∈ X.

Proof. By the reasoning as that in the proof Theorem 2.1, there exists a unique orthogonally cubic ternary
derivation mapping D : A→ A satisfying (19). The mapping D : A→ A is given by D(x) := limn→∞ 2−3n f (2nx)
for all x ∈ A. It follows from (16),

‖D([x, y, z]) − [D(x), y3, z3] − [x3,D(y), z3] − [x3, y3,D(z)]‖2

= lim
n→∞

1
83n ‖ f (2n[x, y, z]) − [ f (2nx), y3, z3] − [x3, f (2ny), z3] − [x3, y3, f (2nz)]‖2

≤ lim
n→∞

1
8nϕ(2nx, 2ny, 2nz) = 0

for all x, y, z ∈ A that are mutually orthogonal. This show that D is orthogonally C∗-ternary cubic deriva-
tion.
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Theorem 2.4. Let p ∈ (0, 3) and ε ∈ [0,∞). Suppose that f : A→ A is a mapping such that

‖∆ f (x, y, z)‖2 ≤ ε(‖x‖
p
1 + ‖y‖p1 + ‖z‖p1),

‖ f ([x, y, z]) − [ f (x), y3, z3] − [x3, f (y), z3] − [x3, y3, f (z)]‖2 ≤ ε(‖x‖
p
1 + ‖y‖p1 + ‖z‖p1)

for all x, y, z ∈ A that are mutually orthogonal. Then there exists a unique orthogonally C∗-ternary cubic derivation
D : A→ A such that

‖D(x) − f (x)‖2 ≤
ε

8 − 2p ‖x‖
p
1

for all x ∈ X.

Proof. Set ϕ(x, y, z) = ε(‖x‖p1 + ‖y‖p1 + ‖z‖p1) for all x, y, z ∈ A Then it follows that ϕ(0, 0, 0) = 0 and

ϕ(2nx, 2ny, 2nz)
8

= (2n)p−3ε(‖x‖p1 + ‖y‖p1 + ‖z‖p1)→ 0

as n→∞. Let L = 2p−3 in Theorem 2.3. Then we get the desired result.
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