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Abstract. We present new characterizations for the existence of the (b, c)–inverse in a ring. The set of
all (b, c)–invertible elements is described too. Necessary and sufficient conditions which ensure that the
(b, c)–inverse of a given element commutes with that element are investigated. As an application of these
results, we obtain new characterizations for the existence of the image-kernel (p, q)–inverse.

1. Introduction

Let R be an associative ring with the unit 1. The sets of all idempotents and invertible elements of R
will be denoted by R• and R−1, respectively.

An element a ∈ R is called regular if there exists x ∈ R satisfying axa = a. In this case, x is an inner
inverse of a. The set of all inner inverses of a will be denoted by a{1}.

Let p, q ∈ R•, p , q. Then pRp is a ring with the unit p and we can talk about invertibility of its elements.
Since pRq does not have a unit, we will talk about invertibility of its elements only in the following sense:
let p, q ∈ R•, an element a ∈ R is (−, p, q)–invertible if there exists a′ ∈ qRp such that

a ∈ pRq, aa′ = p and a′a = q.

If the (−, p, q)–inverse a′ of a exists, it is unique and denoted by a−(p,q). By R−(p,q) will be denoted the set of
all (−, p, q)–invertible elements of R.

Lemma 1.1. Let a ∈ R. There exist p, q ∈ R• such that a is (−, p, q)–invertible if and only if a is regular.

For a ∈ R, if xax = x holds for some x ∈ R\{0}, then x is an outer generalized inverse of a. The outer
inverse is not unique in general, but it is unique if we fix the corresponding idempotents [3]: let a ∈ R, and
let p, q ∈ R•. An element x ∈ R satisfying

xax = x, xa = p and 1 − ax = q,
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Email addresses: dijana@pmf.ni.ac.rs (Dijana Mosić), honglinzou@163.com (Honglin Zou), jlchen@seu.edu.cn (Jianlong Chen)
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will be called (p, q)–outer generalized inverse of a, written x = a(2)
p,q. If a(2)

p,q exists, it is unique. Note that,
for a ∈ R and p, q ∈ R•, a(2)

p,q exists if and only if (1 − q)a = (1 − q)ap and there exists some x ∈ R such that
px = x, xq = 0, xap = p and ax = 1 − q [3]. If a(2)

p,q satisfies aa(2)
p,qa = a, then a(2)

p,q = a(1,2)
p,q is called a (p, q)–reflexive

generalized inverse of a.
Instead of prescribing the idempotents ax and xa, we may prescribe certain kernel and image ideals

related to these idempotents [6]: let p, q ∈ R•, an element x ∈ R is the image-kernel (p, q)–inverse of a if

xax = x, xaR = pR and (1 − ax)R = qR.

The image-kernel (p, q)–inverse x is unique if it exists, and it will be denoted by a×p,q. We use R×p,q to denote
the set of all image-kernel (p, q)–invertible elements of R.

Theorem 1.2. [8, Theorem 2.1] Let p, q ∈ R• and let a ∈ R. Then the following statements are equivalent:

(i) a×p,q exists,

(ii) there exists some x ∈ R such that

x = px, xap = p, xq = 0, 1 − q = (1 − q)ax.

Observe that element x in the part (ii) of Theorem 1.2 satisfies x = a×p,q. The image-kernel (p, q)-inverse
of Kantún-Montiel [6] coincides with the (p, q, l)-outer generalized inverse of Cao and Xue [2].

Drazin [4] introduced the following class of outer generalized inverses: let b, c ∈ R, an element a ∈ R is
(b, c)–invertible if there exists y ∈ R such that

y ∈ (bRy) ∩ (yRc), yab = b and cay = c.

The (b, c)–inverse y of a satisfies yay = y, it is unique (if exists) and denoted by a||(b,c) [4]. We will use R||(b,c)

to denote the set of all (b, c)–invertible elements of R.

Lemma 1.3. [9] Let a, b, c ∈ R. If a has a (b, c)–inverse, then b, c and cab are regular.

The special type of outer inverse is a group inverse. An element a ∈ R is group invertible if there is
a#
∈ R such that

aa#a = a, a#aa# = a# and aa# = a#a.

The group inverse a# of a is uniquely determined by these equations. Denote by R# the set of all group
invertible elements of R. The spectral idempotent of a ∈ R# is the element aπ = 1 − aa#.

In this paper, we investigate some properties of the (b, c)–inverse in a ring. Precisely, some new equivalent
conditions for the existence of the (b, c)–inverse are presented. We fully characterize the set of all (b, c)–
invertible elements. Also, several characterizations for the (b, c)–inverse of a given element to commute
with that element are given. We consider too the (b, c)–inverse of a given element which is an inner inverse
of that element. As an application of our results, we get new characterizations for the existence of the
image-kernel (p, q)–inverse in a ring.

2. The (b, c)–inverse in rings

In this section, we give new characterizations of the existence of the (b, c)–inverse in a ring.

Theorem 2.1. Let a, b, c ∈ R. Then
(a) a is (b, c)–invertible if and only if b, c are regular and, for b− ∈ b{1} and c− ∈ c{1}, one of the following

equivalent statements holds:

(i) cabb− is (bb−, 1 − cc−)–reflexive generalized invertible,
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(ii) cabb− is (−, cc−, bb−)–invertible.

(b) a is (b, c)–invertible if and only if b, c are regular and, for b− ∈ b{1} and c− ∈ c{1}, one of the following
equivalent statements holds:

(i) c−cab is (b−b, 1 − c−c)–reflexive generalized invertible,

(ii) c−cab is (−, c−c, b−b)–invertible.

In addition, if one of the previous statements holds, then

a||(b,c) = (cabb−)(1,2)
bb−,1−cc−c = b(c−cab)(1,2)

b−b,1−c−c,

(cabb−)(1,2)
bb−,1−cc− = a||(b,c)c− = (cabb−)−(cc−,bb−),

(c−cab)(1,2)
b−b,1−c−c = b−a||(b,c) = (c−cab)−(c−c,b−b).

Proof. (a) Suppose that a is (b, c)–invertible and y is the (b, c)–inverse of a. Then y = bty = ysc, for some
t, s ∈ R, yab = b, cay = c and, by Lemma 1.3, b, c are regular. For b− ∈ b{1} and c− ∈ c{1}, notice that cabb− is
(bb−, 1 − cc−)–reflexive generalized invertible and (cabb−)(1,2)

bb−,1−cc− = yc−:

yc−cabb− = yscc−cabb− = yabb− = bb−,

cabb−yc− = cabb−btyc− = cayc− = cc−,

yc−cabb−yc− = bb−yc− = yc−,

cabb−yc−cabb− = cc−cabb− = cabb−.

So, the condition (i) is satisfied. Since cabb− = cc−cabb− ∈ cc−Rbb− and yc− = bb−btyscc− ∈ bb−Rcc−, we
deduce that (ii) holds and (cabb−)−(cc−,bb−) = yc−.

Let b, c be regular, b− ∈ b{1} and c− ∈ c{1}. If the statement (i) holds, that is, cabb− is (bb−, 1− cc−)–reflexive
generalized invertible and (cabb−)(1,2)

bb−,1−cc− = x, then we verify that y = xc is the (b, c)–inverse of a:

y = xc = bb−xc = bb−y ∈ bRy

y = xc = xcc−c = yc−c ∈ yRc,

yab = xcab = xcabb−b = bb−b = b,

cay = caxc = cabb−xc = cc−c = c.

In the same way, by condition (ii), we conclude that a is (b, c)–invertible.
Similarly, we check that (b) is satisfied.

As a consequence of Theorem 2.1, we obtain the next results. The first of them recovers [1, Theorem 4.1].

Corollary 2.2. Let a, b, c ∈ R. Suppose that b, c are regular, b− ∈ b{1} and c− ∈ c{1}.
(a) If bb− = cc−, then the following statements are equivalent:

(i) a is (b, c)–invertible,

(ii) cabb− ∈ R# and (cabb−)π = 1 − bb−,

(iii) cabb− ∈ (bb−Rbb−)−1.

(b) If c−c = b−b, then the following statements are equivalent:

(i) a is (b, c)–invertible,
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(ii) c−cab ∈ R# and (c−cab)π = 1 − c−c,

(iii) c−cab ∈ (c−cRc−c)−1.

Corollary 2.3. Let a, b, c ∈ R. Then a is (b, c)–invertible if and only if b, c are regular and, for b− ∈ b{1} and c− ∈ c{1},
one of the following statements holds:

(i) abb− is (b, c)–invertible,

(ii) c−ca is (b, c)–invertible,

(iii) c−cabb− is (b, c)–invertible.

In addition, if one of the previous statements holds, then

a||(b,c) = (abb−)||(b,c) = (c−ca)||(b,c) = (c−cabb−)||(b,c).

Applying Corollary 2.3, we prove the following result.

Corollary 2.4. Let a, b, c ∈ R. If a is (b, c)–invertible and x, y ∈ R, then the following statements hold for b− ∈ b{1}
and c− ∈ c{1}:

(i) a + x(1 − bb−) is (b, c)–invertible,

(ii) a + (1 − c−c)y is (b, c)–invertible,

(iii) a + x(1 − bb−) + (1 − c−c)y is (b, c)–invertible.

In addition,

a||(b,c) = (a + x(1 − bb−))||(b,c) = (a + (1 − c−c)y)||(b,c)

= (a + x(1 − bb−) + (1 − c−c)y)||(b,c).

Proof. Since a is (b, c)–invertible, by Corollary 2.3, we deduce that abb− = (a+x(1−bb−))bb− is (b, c)–invertible.
The part (ii) follows similarly. Using (i) and (ii), we get that (iii) holds.

More characterizations for the existence of the (b, c)–inverse are presented in the next result.

Theorem 2.5. Let a, b, c ∈ R. Then a is (b, c)–invertible if and only if b, c are regular and, for b− ∈ b{1} and c− ∈ c{1},
one of the following equivalent statements holds:

(i) a is (bb−, c−c)–invertible,

(ii) a is image-kernel (bb−, 1 − c−c)–invertible.

In addition, if one of the previous statements holds, then

a||(b,c) = a||(bb−,c−c) = a×bb−,1−c−c.

Proof. Let a be (b, c)–invertible and y = a||(b,c). Since y = bty = ysc, for some t, s ∈ R, yab = b, cay = c and b, c
are regular, for b− ∈ b{1} and c− ∈ c{1}, we obtain

y = bb−bty = yscc−c, yabb− = bb−, c−cay = c−c, (1)

i.e. a is (bb−, c−c)–invertible and y = a||(bb−,c−c). Hence, the statement (i) is satisfied.
By part (i), we have that y = a||(bb−,c−c) satisfies (1). Thus,

bb−y = y, yabb− = bb−, y(1 − c−c) = 0, c−cay = c−c. (2)

So, by Theorem 1.2(ii), we observe that (ii) holds, that is, a is image-kernel (bb−, 1 − c−c)–invertible and
a×(bb−,1−c−c) = y.

Suppose that b, c are regular and (ii) holds, for b− ∈ b{1} and c− ∈ c{1}. Set y = a×(bb−,1−c−c). Using (2), we
have that a is (b, c)–invertible and y = a||(b,c).
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Now, we fully describe the set R||(b,c). The following result recovers [1, Theorem 5.1].

Theorem 2.6. Let b, c ∈ R be regular, b− ∈ b{1} and c− ∈ c{1}.

(i) Then
R
||(b,c) = c−R−(cc−,bb−) + (1 − c−c)Rbb− + R(1 − bb−).

In addition, for x, y ∈ R and u ∈ R−(cc−,bb−),

(c−u)||(b,c) = (c−u + (1 − c−c)xbb− + y(1 − bb−))||(b,c) = u−(cc−,bb−)c.

(ii) Also,
R
||(b,c) = R−(c−c,b−b)b− + c−cR(1 − b−b) + (1 − c−c)R.

In addition, for x, y ∈ R and v ∈ R−(c−c,b−b),

(vb−)||(b,c) = (vb− + c−cx(1 − bb−) + (1 − c−c)y)||(b,c) = bv−(c−c,b−b).

Proof. (i) If a ∈ R||(b,c), then
a = c−cabb− + (1 − c−c)abb− + a(1 − bb−).

By Theorem 2.1, we have that cabb− ∈ R−(cc−,bb−) and so a ∈ c−R−(cc−,bb−) + (1 − c−c)Rbb− + R(1 − bb−).
Conversely, assume that u ∈ R−(cc−,bb−) and a = c−u. Since cabb− = cc−ubb− = u ∈ R−(cc−,bb−), by Theorem

2.1, we conclude that a ∈ R||(b,c) and a||(b,c) = u−(cc−,bb−). Using Corollary 2.4, notice that a + (1− c−c)xbb−+ y(1−
bb−) ∈ R||(b,c) and a||(b,c) = (a + (1 − c−c)xbb− + y(1 − bb−))||(b,c).

(ii) In the same manner as (i), we verify this part.

Necessary and sufficient conditions which involve the corresponding outer inverses of products ab, ca
or cab, for the existence and representation of a||(b,c) are given too.

Theorem 2.7. Let a, b, c ∈ R. Then

(i) a is (b, c)–invertible if and only if b is regular and, for b− ∈ b{1}, (ab) is (b−b, c)–invertible. Moreover,

(ab)||(b
−b,c) = b−a||(b,c) and a||(b,c) = b(ab)||(b

−b,c).

(ii) a is (b, c)–invertible if and only if c is regular and, for c− ∈ c{1}, (ca) is (b, cc−)–invertible. Moreover,

(ca)||(b,cc−) = a||(b,c)c− and a||(b,c) = (ca)||(b,cc−)c.

(iii) a is (b, c)–invertible if and only if b, c are regular and, for b− ∈ b{1} and c− ∈ c{1}, (cab) is (b−b, cc−)–invertible.
Moreover,

(cab)||(b
−b,cc−) = b−a||(b,c)c− and a||(b,c) = b(cab)||(b

−b,cc−)c.

Proof. (i)⇒: Because a||(b,c) = bta||(b,c) = a||(b,c)sc, for some t, s ∈ R, then

b−a||(b,c) = b−bta||(b,c) = b−btbb−a||(b,c)
∈ b−bRb−a||(b,c),

b−a||(b,c) = b−a||(b,c)sc ∈ b−a||(b,c)
Rc,

b−a||(b,c)abb−b = b−a||(b,c)ab = b−b,

cabb−a||(b,c) = caa||(b,c) = c,

that is, (ab)||(b
−b,c) = b−a||(b,c).
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⇐: Since (ab)||(b
−b,c) = b−bt1(ab)||(b

−b,c) = (ab)||(b
−b,c)s1c, for some t1, s1 ∈ R, b−b = (ab)||(b

−b,c)abb−b = (ab)||(b
−b,c)ab

and cab(ab)||(b
−b,c) = c, we get

b(ab)||(b
−b,c) = bb−bt1(ab)||(b

−b,c) = bt1b−b(ab)||(b
−b,c)
∈ bRb(ab)||(b

−b,c),

b(ab)||(b
−b,c) = b(ab)||(b

−b,c)s1c ∈ b(ab)||(b
−b,c)
Rc,

b(ab)||(b
−b,c)ab = bb−b = b,

cab(ab)||(b
−b,c) = c.

Hence, a||(b,c) = b(ab)||(b
−b,c).

Similarly as (i), we prove parts (ii) and (iii).

Now, we will see that a is (b, c)–invertible if and only if au−1 is (ub,uc)–invertible (or u−1a is (bu, cu)–
invertible).

Theorem 2.8. Let a, b, c ∈ R and u ∈ R−1. Then the following statement are equivalent:

(i) a is (b, c)–invertible,

(ii) au−1 is (ub,uc)–invertible,

(iii) u−1a is (bu, cu)–invertible.

In addition, if any of statements (i)–(iii) holds, then

a||(b,c) = u−1(au−1)||(ub,uc) = (u−1a)||(bu,cu)u−1,

(au−1)||(ub,uc) = ua||(b,c) and (u−1a)||(bu,cu) = a||(b,c)u.

Proof. (i)⇔ (ii): Observe that a is (b, c)–invertible if and only if there exists y ∈ R such that y = bty = ysc, for
some t, s ∈ R, yab = b and cay = c if and only if there exists y ∈ R such that uy = (ub)tu−1(uy) = (uy)su−1(uc),
for some t, s ∈ R, uyau−1ub = ub and ucau−1uy = uc which is equivalent to au−1 is (ub,uc)–invertible.

(i)⇔ (iii): It follows as (i)⇔ (ii).

In the cases that d is (b, b)–invertible and/or e is (c, c)–invertible, we characterize (b, c)–invertible of a by
(b, c)–invertible of abd, eca or ecabd.

Theorem 2.9. Let a, b, c, d, e ∈ R.

(i) If d is (b, b)–invertible, then a is (b, c)–invertible if and only if abd is (b, c)–invertible. Moreover, for b− ∈ b{1},

(abd)||(b,c) = d||(b,b)b−a||(b,c) and a||(b,c) = bd(abd)||(b,c).

(ii) If e is (c, c)–invertible, a is (b, c)–invertible if and only if eca is (b, c)–invertible. Moreover, for c− ∈ c{1},

(eca)||(b,c) = a||(b,c)c−e||(c,c) and a||(b,c) = (eca)||(b,c)ec.

(iii) If d is (b, b)–invertible and e is (c, c)–invertible, then a is (b, c)–invertible if and only if ecabd is (b, c)–invertible.
Moreover, for b− ∈ b{1} and c− ∈ c{1},

(ecabd)||(b,c) = d||(b,b)b−a||(b,c)c−e||(c,c) and a||(b,c) = bd(ecabd)||(b,c)ec.
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Proof. (i) Assume that d is (b, b)–invertible and a is (b, c)–invertible. For b− ∈ b{1} and c− ∈ c{1}, by

d||(b,b)b−a||(b,c) = bb−d||(b,b)b−a||(b,c)
∈ bRd||(b,b)b−a||(b,c),

d||(b,b)b−a||(b,c) = d||(b,b)b−a||(b,c)c−c ∈ d||(b,b)b−a||(b,c)
Rc,

d||(b,b)b−a||(b,c)abdb = d||(b,b)b−bdb = d||(b,b)db = b,

cabdd||(b,b)b−a||(b,c) = cabb−a||(b,c) = caa||(b,c) = c,

we deduce that abd is (b, c)–invertible and (abd)||(b,c) = d||(b,b)b−a||(b,c).
Conversely, let d be (b, b)–invertible and abd be (b, c)–invertible. Since, for b− ∈ b{1} and c− ∈ c{1},

bd(abd)||(b,c) = bb−bd(abd)||(b,c)
∈ bRbd(abd)||(b,c),

bd(abd)||(b,c) = bd(abd)||(b,c)c−c ∈ bd(abd)||(b,c)
Rc,

bd(abd)||(b,c)ab = bd(abd)||(b,c)abdd||(b,b) = bd((abd)||(b,c)abdb)b−d||(b,b)

= bdbb−d||(b,b) = bdd||(b,b) = b,

cabd(abd)||(b,c) = c,

then a is (b, c)–invertible and a||(b,c) = bd(abd)||(b,c).
We can prove parts (ii) and (iii) in the same manner.

Remark that the condition d is (b, b)–invertible in Theorem 2.9 can be replaced with d is Mary invertible
along b. For details about the Mary inverse, see [7]. Notice that Theorem 2.9 recovers [10, Theorem 3.7].

In the following theorem, we investigate when the equality aa||(b,c) = a||(b,c)a is satisfied. If a||(b,c) satisfies
aa||(b,c) = a||(b,c)a, then a||(b,c)

∈ R
# and (a||(b,c))# = a2a||(b,c).

Theorem 2.10. Let a, b, c ∈ R. If a is (b, c)–invertible, then the following statements are equivalent:

(i) aa||(b,c) = a||(b,c)a,

(ii) there exist c−(cc−,aa||(b,c)) and b−(a||(b,c)a,b−b) such that c−(cc−,aa||(b,c)) = a||(b,c)ac− and b−(a||(b,c)a,b−b) = b−aa||(b,c), for b− ∈ b{1}
and c− ∈ c{1},

(iii) there exist c(1,2)
aa||(b,c),1−cc−

and b(1,2)
b−b,1−a||(b,c)a

such that c(1,2)
aa||(b,c),1−cc−

= a||(b,c)ac− and b(1,2)
b−b,1−a||(b,c)a

= b−aa||(b,c), for b− ∈ b{1}
and c− ∈ c{1}.

Proof. (i)⇒ (ii): Set x = a||(b,c)ac−, for c− ∈ c{1}. The equality aa||(b,c) = a||(b,c)a implies

c = cc−c = cc−caa||(b,c)
∈ cc−Raa||(b,c),

x = a||(b,c)ac− = aa||(b,c)c−cc− ∈ aa||(b,c)
Rcc−,

cx = ca||(b,c)ac− = caa||(b,c)c− = cc−,

xc = a||(b,c)ac−c = aa||(b,c)c−c = aa||(b,c).

Thus, there exists c−(cc−,aa||(b,c)) = x. Similarly, we check that b−(a||(b,c)a,b−b) exists and b−(a||(b,c)a,b−b) = b−aa||(b,c), for
b− ∈ b{1}.

(ii)⇒ (i): If c−(cc−,aa||(b,c)) = a||(b,c)ac− and b−(a||(b,c)a,b−b) = b−aa||(b,c), for b− ∈ b{1} and c− ∈ c{1}, then

aa||(b,c) = a||(b,c)ac−c = bb−a||(b,c)ac−c = bb−aa||(b,c) = a||(b,c)a.

(i)⇔ (iii): In the similar way as (i)⇔ (ii).

By Theorem 2.10, we obtain the next result.
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Corollary 2.11. Let a, b, c ∈ R. If a is (b, c)–invertible, cc− = aa||(b,c) and b−b = a||(b,c)a, for b− ∈ b{1} and c− ∈ c{1},
then the following statements are equivalent:

(i) aa||(b,c) = a||(b,c)a,

(ii) there exist c# and b# such that c# = a||(b,c)ac−, cπ = 1 − cc−, b# = b−aa||(b,c) and bπ = 1 − b−b.

Now, we study equivalent conditions for the (b, c)–inverse a||(b,c) to be an inner inverse of a.

Theorem 2.12. Let a, b, c ∈ R. If a is (b, c)–invertible, then the following statements are equivalent:

(i) aa||(b,c)a = a,

(ii) R = bR ⊕ a◦,

(iii) R = Rc ⊕ ◦a.

Proof. Recall that aa||(b,c)a = a ⇔ R = a||(b,c)
R ⊕ a◦ ⇔ R = Ra||(b,c)

⊕
◦a. The rest follows by a||(b,c)

R = bR and
Ra||(b,c) = Rc.

Theorem 2.13. Let a, b, c ∈ R. Then the following statements are equivalent:

(i) a is (b, c)–invertible, and aa‖(b,c)a = a,

(ii) a ∈ abR, a ∈ Rca, b ∈ Rab and c ∈ caR.

Proof. (i)⇒ (ii): This follows by the definition of (b, c)–inverse.
(ii)⇒ (i): From the hypotheses, we have that

a = abt1 = t2ca, b = t3ab and c = cat4.

Then b = t3t2cab ∈ Rcab and c = cabt1t4 ∈ cabR, which imply a is (b, c)–invertible by [4, Theorem 2.2]. Also,
aa‖(b,c)a = aa‖(b,c)abt1 = abt1 = a.

Theorem 2.14. Let a, b, c ∈ R. If a is (b, c)–invertible, aa||(b,c)a = a, b− ∈ b{1} and c− ∈ c{1}, then a||(b,c) =

(c−cabb−)(1,2)
bb−,1−c−c. In addition, if bb− = c−c, then c−cabb− ∈ R# and a||(b,c) = (c−cabb−)#.

Proof. Since
a||(b,c)c−cabb−a||(b,c) = a||(b,c)aa||(b,c) = a||(b,c),

c−cabb−a||(b,c)c−cabb− = c−caa||(b,c)abb− = c−cabb−,

a||(b,c)c−cabb− = a||(b,c)abb− = bb−,

c−cabb−a||(b,c) = c−caa||(b,c) = c−c,

we deduce that (c−cabb−)(1,2)
bb−,1−c−c = a||(b,c).

One new representation for a||(b,c) is given now.

Theorem 2.15. Let a, b, c ∈ R. If a is (b, c)–invertible and x ∈ (cab){1}, then a||(b,c) = bxc.

Proof. By Lemma 1.3, b, c and cab are regular. Let x ∈ (cab){1}, b− ∈ b{1}, c− ∈ c{1} and y = bxc. Then y = bxc =
bb−bxc = bb−y ∈ bRy and y = bxc = bxcc−c = yc−c ∈ yRc. Since cabxcab = cab, then abxcab− ab ∈ c◦ = (a||(b,c))◦.
So, a||(b,c)abxcab = a||(b,c)ab, i.e. yab = bxcab = b. Also, by cabxca−ca ∈ ◦b = ◦(a||(b,c)), we get cabxcaa||(b,c) = caa||(b,c),
that is, cay = cabxc = c. Therefore, y = a||(b,c).

Next, we consider the reverse order law for the (b, c)-inverse.
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Theorem 2.16. Let a, b, c, d ∈ R be such that ab = ba and ac = ca. If both a and d are (b, c)–invertible, then ad is
(b, c)–invertible and (ad)||(b,c) = d||(b,c)a||(b,c).

Proof. Let y = d||(b,c)a||(b,c). Then we obtain that

y = bb−d||(b,c)a||(b,c)
∈ bRy and y = d||(b,c)a||(b,c)c−c ∈ yRc.

From the conditions ab = ba and ac = ca, it follows that aa||(b,c) = a||(b,c)a by [5, Corollary 2.4(i)]. Then

y(ad)b = d||(b,c)a||(b,c)adb = d||(b,c)aa||(b,c)db
= d||(b,c)c−(caa||(b,c))db = d||(b,c)db = b

and
c(ad)y = cadd||(b,c)a||(b,c) = acdd||(b,c)a||(b,c) = aca||(b,c) = c.

This completes the proof of the theorem.

3. The image-kernel (p, q)–inverse in rings

In this section, as an application of results proved in Section 2, we obtain new characterizations for the
existence of the image-kernel (p, q)–inverse in rings.

Applying Theorem 2.5, notice that a ∈ R is (p, q)–invertible if and only if a is image-kernel (p, 1 − q)–
invertible in the case that p, q ∈ R•.

Corollary 3.1. Let a ∈ R and p, q ∈ R•. Then the following statements are equivalent:

(i) a is (p, q)–invertible,

(ii) a is image-kernel (p, 1 − q)–invertible.

Moreover, if one of the previous statements holds, then a||(p,q) = a×p,1−q.

By Corollary 3.1 and Theorem 2.1, we get next equivalent conditions for the existence of the image-kernel
(p, q)–inverse.

Corollary 3.2. Let a ∈ R and p, q ∈ R•. Then the following statements are equivalent:

(i) a is image-kernel (p, q)–invertible,

(ii) (1 − q)ap is (p, q)–reflexive generalized invertible,

(iii) (1 − q)ap is (−, 1 − q, p)–invertible.

In addition, if one of the previous statements holds, then

a×p,q = ((1 − q)ap)(1,2)
p,q (1 − q) = p((1 − q)ap)(1,2)

p,q ,

((1 − q)ap)(1,2)
p,q = a×p,q(1 − q) = pa×p,q = ((1 − q)ap)−(1−q,p).

Using Corollary 3.2, notice that the following results hold.

Corollary 3.3. Let a ∈ R and p ∈ R•. Then the following statements are equivalent:

(i) a is image-kernel (p, 1 − p)–invertible,

(ii) pap ∈ R# and (pap)π = 1 − p,

(iii) pap ∈ (pRp)−1.
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Corollary 3.4. Let a ∈ R and p, q ∈ R•. Then the following statements are equivalent:

(i) a is (p, 1 − q)–reflexive generalized invertible,

(ii) a is (−, q, p)–invertible.

Corollary 3.5. Let a ∈ R and p, q ∈ R•. Then the following statements are equivalent:

(i) a is image-kernel (p, q)–invertible,

(i) ap is image-kernel (p, q)–invertible,

(ii) (1 − q)a is image-kernel (p, q)–invertible,

(iii) (1 − q)ap is image-kernel (p, q)–invertible.

In addition, if one of the previous statements holds, then

a×p,q = (ap)×p,q = ((1 − q)a)×p,q = ((1 − q)ap)×p,q.

Corollary 3.6. Let a ∈ R and p, q ∈ R•. If a is image-kernel (p, q)–invertible and x, y ∈ R, then the following
statements hold:

(i) a + x(1 − p) is image-kernel (p, q)–invertible,

(ii) a + qy is image-kernel (p, q)–invertible,

(iii) a + x(1 − p) + qy is image-kernel (p, q)–invertible.

The set R×p,q is fully described now.

Theorem 3.7. Let p, q ∈ R•.

(i) Then
R
×

p,q = R−(1−q,p) + qRp + R(1 − p).

(ii) Also,
R
×

p,q = R−(1−q,p) + (1 − q)R(1 − p) + qR.

We can get the next result as Theorem 2.9.

Corollary 3.8. Let a, d, e ∈ R and p, q ∈ R•.

(i) If d is image-kernel (p, 1−p)–invertible, then a is image-kernel (p, q)–invertible if and only if apd is image-kernel
(p, q)–invertible. Moreover,

(apd)×p,q = d×p,1−pa×p,q and a×p,q = pd(apd)×p,q.

(ii) If e is image-kernel (1−q, q)–invertible, a is image-kernel (p, q)–invertible if and only if e(1−q)a is image-kernel
(p, q)–invertible. Moreover,

(e(1 − q)a)×p,q = a×p,qe×1−q,q and a×p,q = (e(1 − q)a)×p,qe(1 − q).

(iii) If d is image-kernel (p, 1 − p)–invertible and e is image-kernel (1 − q, q)–invertible, then a is image-kernel
(p, q)–invertible if and only if e(1 − q)apd is image-kernel (p, q)–invertible. Moreover,

(e(1 − q)apd)×p,q = d×p,1−pa×p,qe×1−q,q and a×p,q = pd(e(1 − q)apd)×p,qe(1 − q).

As a consequence of Theorem 2.15, we have the following representation of a×p,q.

Corollary 3.9. Let a ∈ R and p, q ∈ R•. If a is image-kernel (p, q)–invertible and x ∈ ((1 − q)ap){1}, then
a×p,q = px(1 − q).
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