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Abstract. In this paper we establish some fixed point theorems for multivalued mappings satisfying
contractive condition involving gauge function when the underlying primary structure is b-metric space.
Our proposed iterative scheme converges to the the fixed point with higher order. Moreover, we also
calculate priori and posteriori estimates for the fixed point. Our main results generalize/extend many per-
existing results in literature. Consequently, to substantiate the validity of our result we obtain an existence
result for the solution of integral inclusion.

1. Introduction

The main source of the existence of metric fixed point theory is due to the famous mathematician Banach.
Many mathematical problems can be formulated equivalently as fixed point problems, i,e., the existence of
solutions of many problems of differential, integral and integro-differential equations become equivalent
to fixed point problems of suitable mappings.
Banach contraction principle proposes an iterative method which converges to the fixed point linearly. In
order to obtain a high order of convergence, Proinov [23] extended/generalized Banach contraction theorem
by generalizing the contractive condition which involves a gauge function of order r ≥ 1. Later on his work
was extended and generalized to b-metric space by the authors in [25]. In this context, ϕ contractions
were studied without the assumptions of gauge function in the setting of b-metric space by authors in [26].
Interesting developments on the subject of b-metric can be found in [2–4, 7, 9–12, 16, 20]. Some details for
multivalued mappings and their fixed points are included in [1, 7, 8, 20].
The research in fixed point theory moved forward when Nadler generalized Banach contraction principle
for multivalued mappings [21]. In [17] authors undertook further investigations in this direction and
generalized Nadler’s result by introducing a contractive condition which involves gauge function. The
obtained results in [17] also extend and generalize main results of Proinov [23] to the multivalued mappings.
In this paper we establish some fixed point theorems for multivalued mappings satisfying contractive
condition involving a gauge function when the underlying space is endowed with b-metric. Our results
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extend/generalize main results of [17, 23, 25] and in turn many well known results in literature become
special cases of our results e.g., Rheinboldt [24], Kornstaedt [19, Satz 4.1], Hicks and Rhoades [14, Theorem
3], Park [22, Theorem 2], Gel’man [13, Theorem 3]. We also calculate priori and posteriori estimates to
approach the fixed point and the proposed iterative scheme converges to the fixed point with higher order.
Consequently, we also furnish with an application for integral inclusion where the kernel of inclusion may
not satisfy usual Lipschitz condition.
We start by recollecting some notions and preliminaries in b-metric space that are found in [5, 11]. Let R
denote the real line whereas R+ denote the set of all non-negative real numbers.
Let X be a nonempty set and s ≥ 1 be a given real number. A function d : X×X→ R+ is said to be a b-metric
on X if for all x, y, z ∈ X the following conditions are satisfied: d(x, y) = 0 ⇐⇒ x = y; d(x, y) = d(y, x);
d(x, z) ≤ s[d(x, y)+d(y, z)]. The pair (X, d) is called a b-metric space with the coefficient s ≥ 1. For convenience
we represent with the triplet (X, d, s) a b-metric space with coefficient s.

Definition 1.1. [5, 11] A sequence {xn} in a b-metric space X is:

(i) convergent if and only if there exists x ∈ X such that d(xn, x)→ 0 as n→∞ and we write limn→∞ xn = x;

(ii) Cauchy if and only if d(xn, xm)→ 0 as m,n→∞.

A b-metric space (X, d) is complete if every Cauchy sequence in X converges to an element of X.

Lemma 1.2. [12] Let (X, d, s) be a b-metric space, then a convergent sequence has a unique limit; every convergent
sequence is Cauchy; and in general the b-metric d is not a continuous functional.

Subsequently, throughout this paper let X be a nonempty set endowed with a b-metric d unless specified
otherwise. We denote by N(X) the class of all nonempty subsets of b-metric space X, CB(X) the class
of all nonempty closed and bounded subsets of X. Let J denote an interval on R+ containing 0, i.e., an
interval of the form [0,R], [0,R) or [0,∞) and ([0, 0] = {0}). Let Pn(t) denote the polynomial of the form
Pn(t) = 1 + t + ... + tn−1 and P0(t) = 0. We use ϕn to denote the nth iterate of a function ϕ : J→ J. The closed
ball centered at x ∈ X and radius r is denoted by B(x; r).

Definition 1.3. [11] Let (X, d, s) be a b-metric space. The generalized Pompeiu-Hausdorff metric H : CB(X) ×
CB(X)→ R+ is defined as

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)} for every A,B ∈ CB(X). (1)

If the b-metric space (X, d, s) is complete then the induced Hausdorff b-metric space (CB(X),H) is also complete [11].

Let T : D ⊂ X→ X and there exists x ∈ D such that the set O(x) = {x,Tx,T2x, ...} ⊂ D. The set O(x) is known
as the orbit of x ∈ D under T. We recall that a function G from D into the set of real numbers is said to be
T-orbitally lower semi-continuous at t ∈ D if {xn} ⊂ O(x) and xn → t implies G(t) ≤ lim inf G(xn) [14].

Definition 1.4. [23] Let r ≥ 1. A function ϕ : J → J is said to be a gauge function of order r on J if it satisfies the
following conditions:

1. ϕ(λt) ≤ λrϕ(t) for all λ ∈ (0, 1) and t ∈ J;
2. ϕ(t) < t for all t ∈ J − {0}.

The first condition of the Definition 1.4 infers that ϕ(0) = 0 and ϕ(t)/tr is nondecreasing on J − {0} [? ].

Definition 1.5. [6] A gauge function ϕ : J→ J is said to be a Bianchini-Grandolfi gauge function if
∑
∞

n=0 ϕ
n(t) < ∞

for all t ∈ J.

Proinov[23] proved his main results by assuming Bianchini-Grandolfi gauge function ϕ and the mapping
T : D ⊂ X → X satisfying the contractive condition d(Tx,T2x) ≤ ϕ(d(x,Tx)) when the underlying space
is endowed with a metric. But in the setting of b-metric space for some technical reasons authors in [25]
introduced the following class of gauge functions.
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Definition 1.6. [25] A gauge function ϕ : J→ J is said to be a b-Bianchini-Grandolfi gauge function if

∞∑
n=0

snϕn(t) < ∞ for all t ∈ J, (2)

where the fixed constant s ≥ 1 is the coefficient of b-metric space. Note that a b-Bianchini-Grandolfi gauge function
also satisfies the following functional equation:

σ(t) = sσ(ϕ(t)) + t. (3)

Furthermore, in order to calculate the prior and posterior estimates in the setting of b-metric space the
authors in [25] considered gauge functions of the form

ϕ(t) = t
φ(t)

s
for all t ∈ J, (4)

where s ≥ 1 is the coefficient of b-metric d and φ is nonnegative nondecreasing function on J satisfying

0 ≤ φ(t) < 1 for all t ∈ J. (5)

Remark 1.7. [25] For a given gauge function ϕ the nonnegative nondecreasing function φ on J satisfying (4) and
(5) can be obtained as follows:

φ(x) =

 sϕ(t)
t , if t ∈ J \ {0}

0, if t=0,

where s ≥ 1 is the coefficient of b-metric d.

Let s ≥ 1, be a fixed real number then:

1. ϕ(t) = ct
s , 0 < c < 1 is a gauge function of order 1 on J = [0,∞);

2. ϕ(t) = ctr

s (c > 0, r > 1) is a gauge function of order r on J = [0, h) where h = ( 1
c )

1
(r−1) ;

are b-Bianchini-Grandolfi gauge functions [25].

Lemma 1.8. [25] Let ϕ be a Gauge function of order r ≥ 1 on J. If φ is a nonnegative and nondecreasing function
on J satisfying (4) and (5) then:

1. 0 ≤
φ(t)

s
< 1 for all t ∈ J;

2. φ(µt) ≤ µr−1φ(t) for all µ ∈ (0, 1) and t ∈ J.

Lemma 1.9. [25] Let ϕ be a gauge function of order r ≥ 1 on J. If φ is a nonnegative and nondecreasing function on
J satisfying (4) and (5) then for every n ≥ 0 we have:

1. ϕn(t) ≤ t[
φ(t)

s
]Pn(r) for all t ∈ J;

2. φ(ϕn(t)) ≤ s[
φ(t)

s
]rn for all t ∈ J.

2. Main results

We start with the following intuitive lemmas.

Lemma 2.1. Let (X, d, s) be a b-metric space. Let B ∈ CB(X) and a ∈ X be a fixed element. Then for every ε > 0 there
exists b ∈ B such that

d(a, b) ≤ d(a,B) + ε.
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Lemma 2.2. Let (X, d, s) be a b-metric space. Let A,B ∈ CB(X) and a ∈ A be a fixed element. Then for every ε > 0
there exists b ∈ B such that

d(a, b) ≤ H(A,B) + ε.

It is essential to mention here that to establish the fixed point theorem we do not necessarily require the
gauge functions ϕ satisfying (4) and (5). But we consider the gauge function ϕ such that Σ∞n=0snϕn(t) < ∞
for all t ∈ J, where s is the coefficient of b-metric space.

Theorem 2.3. Let (X, d, s) be a complete b-metric space such that b-metric d is a continuous functional. Let D be a
closed subset of X, ϕ a b-Bianchini Grandolfi gauge function on an interval J. Assume that T : D→ CB(X) satisfies
Tx ∩D , φ and

H(Tx ∩D,Ty ∩D) ≤ ϕ(d(x, y)), (6)

for all x ∈ D, y ∈ Tx ∩D with d(x, y) ∈ J. Moreover, the strict inequality holds when x , y. Suppose that x0 ∈ D be
such that d(x0,w) ∈ J for some w ∈ Tx0 ∩D. Then the following assertions hold:

(i) there exists a sequence {xn} in D with xn+1 ∈ Txn; n = 0, 1, 2, · · · and ξ ∈ D so that limn→∞ xn = ξ;

(ii) ξ is a fixed point of T in D if and only if the function f (x) = d(x,Tx ∩ D) is T-orbitally lower semi-continuous
at ξ.

Proof. Setting x1 = w ∈ Tx0 ∩D we have d(x0, x1) , 0, otherwise x0 is a fixed point of T. Let ρ0 = σ(d(x0, x1)
where σ is defined by (2). From (3) we have σ(t) ≥ t so that

d(x0, x1) ≤ ρ0. (7)

Thus x1 belongs to the closed ball B(x0;ρ0). Since d(x0, x1) ∈ J so that from (6) it follows that

H(Tx0 ∩D,Tx1 ∩D) < ϕ(d(x0, x1)).

Choose an ε1 > 0 such that

H(Tx0 ∩D,Tx1 ∩D) + ε1 ≤ ϕ(d(x0, x1)). (8)

Since D is closed and Tx1 is closed and bounded, by Lemma 2.2 there exists x2 ∈ Tx1 ∩D such that

d(x1, x2) ≤ H(Tx0 ∩D,Tx1 ∩D) + ε1. (9)

We assume that d(x1, x2) , 0, otherwise x1 is a fixed point of T. From inequalities (9) and (8), we obtain

d(x1, x2) ≤ ϕ(d(x0, x1)). (10)

Further, d(x1, x2) ≤ ϕ(d(x0, x1)) < d(x0, x1) implies

d(x1, x2) ∈ J. (11)

By using triangular inequality for b-metric, we obtain

d(x0, x2) ≤ s(d(x0, x1) + sd(x1, x2))
≤ sd(x0, x1) + s2d(x1, x2)
≤ sd(x0, x1) + s2ϕ(d(x0, x1)) (using (10))
= s[d(x0, x1) + sϕ(d(x0, x1))]
≤ sσ(d(x0, x1))
≤ sσ(d(x0, x1)) + d(x0, x1)
= σ(d(x0, x1)) = ρ0. (using (3))
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Thus, x2 ∈ B(x0, ρ0). Since, d(x1, x2) ∈ J so that from (22) it follows that

H(Tx1 ∩D,Tx2 ∩D) < ϕ(d(x1, x2)).

Choose ε2 > 0 such that

H(Tx1 ∩D,Tx2 ∩D) + ε2 ≤ ϕ(d(x1, x2)). (12)

Since D is closed and Tx1 is closed and bounded, by Lemma 2.2 there exists x3 ∈ Tx2 ∩D such that

d(x2, x3) ≤ H(Tx1 ∩D,Tx2 ∩D) + ε2. (13)

We assume that d(x2, x3) , 0, otherwise x2 is a fixed point of T. From inequalities (10), (12) and (13) we
obtain

d(x2, x3) ≤ ϕ2(d(x0, x1)). (14)

Further, d(x2, x3) ≤ ϕ(d(x1, x2)) < d(x1, x2) implies

d(x2, x3) ∈ J. (15)

By using triangular inequality for b-metric, we obtain

d(x0, x3) ≤ sd(x0, x1) + s2d(x1, x2) + s3d(x2, x3)
≤ s[d(x0, x1) + sd(x1, x2) + s2d(x2, x3)]
≤ s[d(x0, x1) + sϕ(d(x1, x2)) + s2ϕ2(d(x2, x3))] (using (14))
≤ sσ(d(x0, x1))
≤ sσ(d(x0, x1)) + d(x0, x1)
= σ(d(x0, x1)) = ρ0. (using (3))

Thus x3 ∈ B(x0, ρ0). Continuing in the same way we get a sequence {xn} in B(x0, ρ0) such that xn ∈ Txn−1 ∩

D, xn−1 , xn; n = 1, 2, 3, · · · with d(xn−1, xn) ∈ J and

d(xn, xn+1) = d(xn,Txn) ≤ ϕn(d(x0, x1)). (16)

For any p ≥ 1, by using triangular inequality for b-metric we have

d(xn, xn+p) ≤ snd(xn, xn+1) + sn+1d(xn+1, xn+2) + ... + sn+p−1d(xn+p−1, xn+p)

≤ snϕn(d(x0, x1)) + sn+1ϕn+1(d(x0, x1)) + ... + sn+p−1ϕn+p−1(d(x0, x1)).
(17)

Since, ϕ is a b-Bianchini Grandolfi gauge function then
∑
∞

i=1 siϕi(d(x0, x1)) < ∞. Assume that

Sn =

n∑
i=1

siϕi(d(x0, x1)) and lim
n→∞

Sn = S. (18)

From (17) and (18), we obtain

d(xn, xn+p) ≤
[
Sn+p−1 − Sn

]
. (19)

In view of (18), relation (19) implies d(xn, xn+p)→ 0 as n→∞. Which shows that {xn} is a Cauchy sequence
in the closed ball B(x0, ρ0). Since B(x0, ρ0) is closed in X, there exists an ξ ∈ B(x0, ρ0) such that xn → ξ.
Further, observe that ξ ∈ D. Since xn ∈ Txn−1 ∩D and d(xn−1, xn) ∈ J for n = 1, 2, · · · . It follows from (22) that

d(xn,Txn ∩D) ≤ H(Txn−1 ∩D,Txn ∩D)
≤ ϕ(d(xn−1, xn)
< d(xn−1, xn). (20)
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Letting n→∞ from (20) we have

lim
n→∞

d(xn,Txn ∩D) = 0. (21)

Assume that f (x) = d(x,Tx ∩D) is T-orbitally lower continuous at ξ, then

d(ξ,Tξ ∩D) = f (ξ) ≤ lim
n

inf f (xn) = lim
n

inf d(xn,Txn ∩D) = 0.

Hence, ξ ∈ Tξ as Tξ is closed. Conversely, if ξ is a fixed point of T then f (ξ) = 0 ≤ limn inf f (xn), since
ξ ∈ D.

Now we proceed to establish another variant.

Theorem 2.4. Let (X, d, s) be a complete b-metric space such that b-metric d is a continuous functional. Let D be a
closed subset of X, ϕ a b-Bianchini Grandolfi gauge function on an interval J satisfying (4) and (5). Assume that
T : D→ CB(X) satisfies Tx ∩D , φ and

H(Tx ∩D,Ty ∩D) ≤ ϕ(d(x, y)) (22)

for all x ∈ D, y ∈ Tx ∩D with d(x, y) ∈ J. Moreover, the strict inequality holds when x , y. Suppose that x0 ∈ D be
such that d(x0,w) ∈ J for some w ∈ Tx0 ∩D. Then the following assertions hold:

(i) there exists a sequence {xn} with xn+1 ∈ Txn; n = 0, 1, · · · in B(x0, ρ0) that converges to a point ξ ∈ B(x0, ρn);

(ii) for all n ≥ 0 the following priori estimate holds,

d(xn, ξ) ≤
d(x0, x1)

sn−1

∞∑
j=n

φ(d(x0, x1))P j(r)

= d(x0,Tx0)
φ(d(x0, x1))Pn(r)

sn−1[1 − φ(d(x0, x1))rn ]
; (23)

(iii) for all n ≥ 1 the following posteriori estimate holds,

d(xn, ξ) ≤ sϕ(d(xn, xn−1))
∞∑
j=0

[φ(ϕ(d(xn, xn−1)))]P j(r)

≤
sϕ(d(xn, xn−1))

1 − φ[ϕ(d(xn, xn−1))]

≤
sϕ(d(xn, xn−1))

1 − φ(d(xn, xn−1))[φ(d(xn,xn−1))
s ]r−1

; (24)

(iv) for all n ≥ 1 we have

d(xn+1, xn) ≤ ϕ(d(xn, xn−1)) ≤ µPn(r)d(x0,Tx0), (25)

where µ =
φ(d(x0,x1))

s ;

(v) ξ is a fixed point of T if and only if the function f (x) = d(x,Tx ∩D) is T-orbitally lower semi continuous at ξ.

Proof. (i) Its proof follows from Theorem 2.3.
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(ii) For m ≥ n, using triangle inequality for b-metric we obtain

d(xn, xm) ≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + ... + sm−nd(xm−1, xm))
≤ sϕ(d(xn, xn+1)) + ... + sm−nϕm−n(d(xm−1, xm))

≤
1

sn−1

m−1∑
j=n

s jϕ j(d(x0, x1)) (using (16))

≤

m−1∑
j=n

s jd(x0, x1)[
φ(d(x0, x1))

s
]P j(r) (using Lemma 1.9)

≤
d(x0, x1)

sn−1

m−1∑
j=n

λP j(r),

where λ = φ(d(x0, x1)). Keeping n fixed and letting m→∞we get

d(xn, ξ) ≤
d(x0, x1)

sn−1

∞∑
j=n

λP j(r) =
d(x0,Tx0)

sn−1

∞∑
j=n

λP j(r). (26)

We note that

rn + rn+1
≥ 2rn, rn + rn+1 + rn+2

≥ 3rn, ...,

and we deduce that

λrn+rn+1
≤ λ2rn

, λrn+rn+1+rn+2
≤ λ3rn

, ....

Thus, we obtain

∞∑
j=n

λP j(r) = λP j(r) + λP j+1(r) + ...

= λPn(r)[1 + λrn
+ λrn+rn+1

+ λrn+rn+1+rn+2
+ ...]

≤ λP j(r)[1 + λrn
+ λ2rn

+ λ3rn
+ ...]

=
λPn(r)

1 − λrn .

Hence from (26) we have

d(xn, ξ) ≤
d(x0, x1)

sn−1

∞∑
j=n

φ(d(x0, x1))P j(r) = d(x0,Tx0)
φ(d(x0, x1))Pn(r)

sn−1[1 − φ(d(x0, x1))rn ]
.

(iii) From (26), for n ≥ 0 we have

d(xn, ξ) ≤
d(x0, x1)

sn−1

∞∑
j=n

[φ(d(x0, x1))]P j(r).

Setting n = 0, y0 = x0 and y1 = x1, we have

d(y0, ξ) ≤ sd(y0, y1)
∞∑
j=0

[φ(d(y0, y1))]P j(r).
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Setting again y0 = xn and y1 = xn+1, we obtain

d(xn, ξ) ≤ sd(xn, xn+1)
∞∑
j=0

[φ(d(xn, xn+1))]P j(r)

≤ sϕ(d(xn, xn−1))
∞∑
j=0

[φ(ϕ(d(xn, xn−1)))]P j(r)

≤ sϕ(d(xn, xn−1))
∞∑
j=0

[φ(ϕ(d(xn, xn−1)))] j

=
sϕ(d(xn, xn−1))

1 − φ(ϕ(d(xn, xn−1)))
. (27)

From Lemma 1.9(2) we obtain

φ(ϕ(d(xn, xn−1))) ≤ s[
φ(d(xn, xn−1))

s
]r

= φ(d(xn, xn−1))[
φ(d(xn, xn−1))

s
]r−1.

Which implies

1
1 − φ(ϕ(d(xn, xn−1)))

≤
1

1 − φ(ϕ(d(xn, xn−1)))[
φ(d(xn, xn−1))

s
]r−1

. (28)

Thus from (27) and (28) for n ≥ 1 we deduce

d(xn, ξ) ≤
sϕ(d(xn, xn−1))

1 − φ(ϕ(d(xn, xn−1)))

≤
sϕ(d(xn, xn−1))

1 − φ(ϕ(d(xn, xn−1)))
[
φ(d(xn, xn−1))

s
]r−1.

(iv) Since,

d(xn+1, xn) = d(xn, xn+1) ≤ ϕ(d(xn−1, xn))

= d(xn−1, xn)
φ(d(xn−1, xn))

s
≤ d(x0, x1)µPn−1(r)µrn−1

(using Lemma 1.8)

= d(x0, x1)µPn−1(r)+rn−1

= d(x0, x1)µPn(r) = µPn(r)d(x0,Tx0).

(v) Its proof is analogue to the proof of Theorem 2.3.

Remark 2.5.

1. Theorem 2.3 and 2.4 generalize [25, Theorem 3.7 & 3.10] to the case of multivalued mappings.
2. Theorem 2.3 and 2.4 generalize [18, Theorem 2.1 & 2.8] to the case of b-metric space.
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3. Theorem 2.3 and 2.4 extend/generalize [17, Theorem 2.11 & 2.15] when s = 1 and range of T is taken to be
CB(X) instead of the space of all nonempty proximinal closed subsets of X.

4. Theorem 2.3 and 2.4 extend/generalize [23, Theorem 4.1 & 4.2] when s = 1 and T is a single-valued mapping.

Corollary 2.6. Let (X, d, s) be a complete b-metric space such that b-metric d is a continuous functional. Let ϕ
be a b-Bianchini Grandolfi gauge function of order r ≥ 1 on an interval J satisfying (4) and (5). Assume that
T : X→ CB(X) satisfies

H(Tx,Ty) ≤ ϕ(d(x, y)) (29)

for all x, y ∈ X (x , y) with d(x, y) ∈ J. Suppose that x0 ∈ X is such that d(x0,w) ∈ J for some w ∈ Tx0. Then the
following assertions hold:

(i) there exists a sequence {xn} in X with xn ∈ Txn−1; n = 1, 2, · · · that converges to the fixed point ξ ∈ S = {x ∈ X :
d(x, ξ) ∈ J} of T;

(ii) the estimates (23)-(25) are valid.

Proof. From (29) we have

H(Tx,Ty) ≤ ϕ(d(x, y)) < d(x, y) for all x, y ∈ X, x , y.

Thus T is continuous. Hence the conclusions (i) and (ii) follow form Theorem 2.4.

Remark 2.7. Note that Corollary 2.6 extends [18, Corollary 2.11] to the case of b-metric. It also includes [17,
Corollary 2.18] with the exception that the range of T is CB(X) instead of nonempty proximinal subsets of X.

3. Application

In this section we shall establish the existence of solution for the integral inclusion as an important
consequence of Corollary 2.6.

Theorem 3.1. Consider the following integral inclusion

x(t) ∈ P
∫ t

t0

k(τ, x(τ))dτ + γ (30)

∈ PKx(t) + γ,

where Kx(t) =
∫ t

t0
k(τ, x(τ))dτ, P is a compact subset of real line R and k : R × R → R satisfies the following

conditions:

1. k is continuous on the rectangle R =
{
(t, x) : |t − t0| ≤

ar−2

br−1 , |x − γ| ≤ b
2a

}
,

where a = maxp∈P |p|, 0 < b < a and r ≥ 2;

2. k is bounded as |k(t, x)| < 1
2

(
b
a

)r
for all (t, x) ∈ R;

3.

|k(t, x(t)) − k(t, y(t))| ≤
b
a
|x(t) − y(t)|r. (31)

Then the integral inclusion (30) has a solution on the interval I = [t0 −
ar−2

br−1 , t0 + ar−2

br−1 ].
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Proof. Let C(I) denote the space of all continuous functions with the metric d(x, y) = supt∈I |x(t) − y(t)|.
Consider the set C̃ :=

{
x ∈ C(I) : d(x, γ) ≤ b

2a

}
. Since, C̃ is closed subset of C(I) and hence is complete. Define

T : C̃→ K(C̃) as

Tx(t) = P
∫ t

t0

k(τ, x(τ))dτ + γ = PKx(t) + γ. (32)

The problem of finding the solution of (30) becomes equivalent to the fixed point problem of the operator
T defined in (32). We show that T is well defined that is (i) T is defined for each x ∈ C̃, (ii) Tx is a compact
subset of C̃ for each x ∈ C̃.
For s ∈ I, |s− t0| ≤

ar−2

br−1 and by definition of C̃ we obtain |x(s)−γ| ≤ b
2a . Thus (s, x(s)) ∈ R. Since k is continuous

on R therefore integral in (32) exists, so that T is defined for each x ∈ C̃. Now we show that for each x ∈ C̃,
Tx is a compact subset of C̃. Let y(t) ∈ Tx(t). Then y(t) = pKx(t) + γ for some p ∈ P and

|y(t) − γ| = |pKx(t)|
= |p||Kx(t)|

≤ a
∫ t

t0

|K(τ, x(τ))dτ|

≤ a
∫ t

t0

|K(τ, x(τ))|dτ

< a
1
2

(b
a

)r
≤

b
2a
.

Which infers that d(y, γ) ≤ b
2a then y ∈ C̃. Since y ∈ Tx was arbitrary hence Tx ⊂ C̃ for each x ∈ C̃. Next

we show that Tx is compact. Consider a sequence {wn} ⊂ Tx then wn = pnKx(t) + γ for pn ∈ P; n = 1, 2, · · · .
Since P is compact, there exists a subsequence {pn j } of {pn} such that pn j → p̃ ∈ P. Let w = p̃Kx(t) + γ, then
we obtain

d(wn j ,w) = sup
t∈I

(|pn j − p̃||Kx(t)|) ≤ |pn j − p̃| sup
t∈I
|Kx(t)| → 0 as j→∞.

Further we note that

H(Tx,Ty) = H(PKx(t) + γ,PKy(t) + γ) ≤ H(PKx(t),PKy(t)). (33)

We have

H(PKx(t),PKy(t)) = max
{

max
a′∈PKx(t)

d(a′,PKy(t)), max
b′∈PKy(t)

d(b′,PKx(t))
}
.

Now,

max
a′∈PKx(t)

d(a′,PKy(t)) = max
a′∈PKx

min
b′∈PKy

d(a′, b′)

= max
p∈P

min
p∗∈P

d(pk(t, x), p∗k(t, y))

= max
p∈P

min
p∗∈P

sup
t∈I
|pk(t, x) − p∗k(t, y)|

≤ max
p∈P

min
p∗∈P

sup
t∈I

[
|pk(t, y) − p∗k(t, y)| + |pk(t, y) − pk(t, x)|

]
≤ max

p∈P
min
p∗∈P

[
|p| sup

t∈I
|k(t, y) − k(t, x)| + |p − p∗| sup

t∈I
|k(t, y)|

]
= max

p∈P
|p| sup

t∈I
|k(t, y) − k(t, x)|

= a sup
t∈I
|k(t, y) − k(t, x)|.
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And we have,

|k(t, y) − k(t, x)| ≤
∫ t

t0

|k(τ, y(τ)) − k(τ, x(τ))|dτ

≤
b
a

∫ t

t0

|y(τ) − x(τ)|rdτ

≤
b
a

sup
s∈I
|y(s) − x(s)|

∫ t

t0

dτ

=
b
a
|t − t0|[d(x, y)]r

≤
1
a

(a
b

)r−2
[d(x, y)]r.

Thus we obtain

max
a′∈PKx(t)

d(a′,PKy(t)) ≤ a
1
a

(a
b

)r−2
[d(x, y)]r =

(a
b

)r−2
[d(x, y)]r. (34)

Interchanging x and y in inequality (34) we have

max
b′∈PKy(t)

d(b′,PKx(t)) ≤
(a
b

)r−2
[d(x, y)]r. (35)

Thus (33) implies

H(Tx,Ty) ≤
(a
b

)r−2
[d(x, y)]r. (36)

We note that d(x, y) ≤ b
a for ever x, y ∈ C̃. Setting ϕ(t) =

(
a
b

)r−2
tr for t ∈ J = [0, b

a ) where 0 < b < a. Now for
0 < λ < 1 and t ∈ J we have

ϕ(λt) = λr
(a
b

)r−2
tr
≤ λrϕ(t). (37)

Moreover, for t ∈ (0, b
a ) we have t < b

a < 1. Thus

ϕt =
(a
b

)r−2
tr =

(a
b

)r−2
tr−2t2 <

(a
b

)r−2(b
a

)r−2
t2 = t2 < t. (38)

From (37) and (38) it follows that ϕ is a gauge function of order r ≥ 2. Hence we conclude that

H(Tx,Ty) ≤ ϕ(d(x, y)) for all x, y ∈ C̃ with d(x, y) ∈ J. (39)

Which from Corollary 2.6 yields that starting from initial approximate x0 = γ the iterative sequence
xn ∈ Txn−1; n = 1, 2, · · · converges to the fixed point ξ of T with the rate of convergence r ≥ 2.

Remark 3.2. Observe that in most existence theorems for the solutions of integral equations or inclusions the kernel
of equation k(t, x(t)) usually satisfies Lipschitz condition in some sense. Unlike to this, in our result the kernel satisfies
condition (31) which is not Lipschitz since r ≥ 2. Theorem 3.1 not only guarantees the existence of solution but it
also proposes an iterative scheme with higher rate of convergence.

We also include the following variant. Its proof can easily be established.
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Theorem 3.3. Consider the following integral inclusion

x(t) ∈ P
∫ t

t0

k(τ, x(τ))dτ + Q (40)

∈ PKx(t) + Q,

where Kx(t) =
∫ t

t0
k(τ, x(τ))dτ, P, Q are compact subsets of real line R and k : R ×R→ R satisfies conditions (1-3)

of Theorem 3.1.
Then for every γ ∈ Q the integral inclusion (40) has a solution on the interval I = [t0 −

ar−2

br−1 , t0 + ar−2

br−1 ].

Remark 3.4. Setting P = {1} Theorem 3.1 reduces to [25, Theorem 4.2].
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