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Abstract. Since in a near-ring the distributivity holds just on one side (left or right), it seems naturally to
study the behaviour and properties of the set of elements that “correct” the lack of distributivity, in other
words that elements that assure the validity of the distributivity. The normal subgroup of the additive
structure of a near-ring generated by these elements is called a defect of distributivity of the near-ring. The
purpose of this note is to initiate the study of the hypernear-rings (generalizations of near-rings, having
the additive part a quasicanonical hypergroup) with a defect of distributivity, making a comparison with
similar properties known for near-rings.

1. Introduction

The interest in near-rings and near-fields started at the beginning of the 20th century, when L. Dickson
wanted to know whether the list of axioms for skew fields is redundant or not. He found in [11] that there
do exist ”near-fields” which fulfill all axioms for skew fields except one distributive law. Since 1950, the
theory of near-rings had applications to several domains, for instance in the area of dynamical systems,
graphs, homological algebra, universal algebra, category theory, geometry, and so on. A comprehensive
review of the theory of near-rings and its applications appears in Pilz [26], Meldrun [22], Clay [1], Wähling
[31], Scott [28], Ferrero-Ferrero [12], Vuković [29], or Satyanarayana and Prasad [27].

In [7] Dašić introduced the notion of hypernear-ring as a generalization of a zero symmetric near-ring,
i.e. a near-ring in which any element x satysfies the relation x · 0 = 0 · x = 0. On the other hand, the
notion of hypernear-ring can be viewed as a generalization of a Krasner hyperring. The additive structure
(R,+) of a hypernear-ring is a quasicanonical hypergroup [21, 23] (called also polygroup, by Comer [2]),
i.e. a non commutative canonical hypergroup, while the multiplicative one is a semigroup, having 0 as an
absorbing element. In Dašić pionering definition, 0 is a bilaterally absorbing element, that is 0 · x = x · 0 = 0,
for any x ∈ R. This particular case of hypernear-ring was called, later, by Gontineac [14] a zero symmetric
hypernear-ring, and he introduced and studied the concept of hypernear-ring in a general case, where 0 is
just a right absorbing element: x · 0 = 0, for any x ∈ R, while for some y ∈ R, it takes 0 · y , 0. He called this
new hyperstructure a (right) hypernear-ring.
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The aim of this paper is to extend to the case of hypernear-rings the notion of defect of distributivity, that
was studied by Dašić [5] in 1978 for the zero-symmetric (left) near-rings. As Dašić said in his paper [5], a
defect of distributivity helps to soften the non-linearity presented in the theory of near-rings, since it can be
mathematically translated as the collection of all elements d ∈ R satisfying the relation (x+y)·s = x·s+y·s+d,
for all x, y ∈ R and s ∈ S, where (S, ·) is a subsemigroup of (R, ·) whose elements generate (R,+). More exactly,
the normal subgroup D of (R,+) generated by these elements d ∈ R is called a defect of distributivity of the
near-ring R [5]. In particular, if D = 0, then R is a distributively generated near-ring [13], while in the opposite
extremal case, when D = R, the near-ring R is zero-symmetric. In all other cases, we say that R is a near-ring
with the defect D. Following this idea, in this note we introduce the concept of hypernear-ring with a defect of
distributivity, and present several properties of this class of hypernear-rings, in connection with their direct
product, hyperhomomorphisms, or factor hypernear-rings. Since this note is the first research on the above
mentioned argument, we will present the results with all the details needed for a better understanding of
the topic.

2. Preliminaries

For the sake of completeness of the paper, we recall in this section the basic properties of the near-rings
with a defect of distibutivity and those connected with hypernear-rings.

2.1. Near-rings with a defect of distributivity

We keep the notation in Dašić [5]. Let (R,+, ·) be a left near-ring, i.e. (R,+) is a group (not necessarily
commutative) with the unit element 0, (R, ·) is a semigroup and the left distributivity holds: x · (y + z) =

x · y+x ·z, for any x, y, z ∈ R. It is clear that x ·0 = 0, for any x ∈ R, while it might exist y ∈ R such that 0 · y , 0.
If 0 is a bilaterally absorbing element, that is 0 · x = x · 0 = 0, for any x ∈ R, then R is called a zero-symmetric
near-ring. The classical example of near-ring, that suggested its definition, is represented by the set of the
functions from an additive group into itself with pointwise addition and natural composition of functions.

Throughout this section, by a near-ring we intend a zero-symmetric left near-ring.

Definition 2.1. [5] Let R be a near-ring. A set S of generators of R is a multiplicative subsemigroup (S, ·)
of the semigroup (R, ·), whose elements generate (R,+). The normal subgroup D of the group (R,+) which
is generated by the set DS = {d ∈ R | d = −(x · s + y · s) + (x + y) · s, x, y ∈ R, s ∈ S} is called the defect of
distributivity of the near-ring R.

In other words, if s ∈ S, then for all x, y ∈ R, there exists d ∈ D such that (x + y) · s = x · s + y · s + d. This
expresses the fact that the elements of S are distributive with the defect D.

When we want to stress the set S of generators, we will denote the near-ring by the couple (R,S).
The main properties of this kind of near-rings are sumarized in the following results.

Theorem 2.2. [5]

i) Every homomorphic image of a near-ring with the defect D is a near-ring with the defect f (D), when f is a
homomorphism of near-rings.

ii) Every direct sum of a family of near-rings Ri with the defects Di, respectively, is a near-ring whose defect is a
direct sum of the defects Di, for i ∈ I.

iii) Let R be a near-ring with the defect D and A be an ideal of R. The quotient near-ring R/A has the defect
D = {d + A | d ∈ D}. Moreover, R/A is distributively generated if and only if D ⊆ A.
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2.2. Hypernear-rings: terminology and basic results

At the beginning of this section, we insist on the terminology used for this topic, since along the years,
several terms have been used by different researchers in connection with the distributive property. Referring
to the history of ring-like hyperstructures, the first one who introduced them was Krasner [18], defining
what we call now Krasner hyperring as a hyperstructure R endowed with a hyperaddition ” + ” (such that
(R,+) is a canonical hypergroup) and a multiplication ” · ” operation (such that (R, ·) is a semigroup) which
is distributive over the hyperaddition, meaning that, for any x, y, z ∈ R, the following equalities are valid:

x · (y + z) = x · y + x · z,
(x + y) · z = x · z + y · z.

In 1973 Mittas [24] defined the superrings as hyperstructures having both parts additive and multiplicative
as hyperstructures. Later on, Vougiouklis [30] generalized Mittas’superrings, introducing the hyperrings in
the general sense, where again the addition and multiplication are hyperoperations (called also hyperaddition
and hypermultiplication), but only the ”weak version” of distributivity holds, i.e. for any x, y, z ∈ R, the
following inclusions are valid:

x · (y + z) ⊆ x · y + x · z,
(x + y) · z ⊆ x · z + y · z.

Moreover, if the hypermultiplication is distributive over the hyperaddition, then the hyperring is called good
(or strong) hyperring in the general sense. If only the additive part is a hypergroup, while the multiplicative one
is a semigroup, and the weak distributivity holds, then we call R a additive hyperring (in particular, Krasner
hyperrings are additive hyperrings); when the multiplication is distributive over the hyperaddition, then
we get good (or strong) additive hyperrings. The additive hyperrings (when the multiplication is weakly
distributive over the hyperoperation) are also called hyperrings with inclusive distributivity, cf. Jančić-Rašović
and Dašić [15–17]. On the other hand, the same term weak distributivity is used by Davvaz [8] (and later on
by other researchers) to define the validity of the following relations on R: for any x, y, z ∈ R,

x · (y + z) ∩ (x · y + x · z) , ∅,
(x + y) · z ∩ (x · z + y · z) , ∅.

More details about the terminology and history of hyperrings can be read in Nakasis [25], or Cristea, et al.
[3, 4].

Combining near-rings and hyperrings, Dašić [7] defined hypernear-rings, as an algebraic system (R,+, ·),
where R is a non-empty set endowed with a hyperoperation ” + ” : R × R −→ P∗(R), and an operation
” · ” : R × R −→ R, satisfying the following axioms:

I) (R,+) is a quasicanonical hypergroup, i.e. it satisfies the following axioms:

i) x + (y + z) = (x + y) + z, for any x, y, z ∈ R

ii) there exists 0 ∈ R such that, for any x ∈ R, x + 0 = 0 + x = {x}

iii) for any x ∈ R, there exists a unique element −x ∈ R, such that 0 ∈ x + (−x) ∩ (−x) + x

iv) for any x, y, z ∈ R, z ∈ x + y implies that x ∈ z + (−y), y ∈ (−x) + z.

II) (R, ·) is a semigroup endowed with a two-sided absorbing element 0, i.e. for any x ∈ R, x · 0 = 0 · x = 0.

III) The operation ” · ” is distributive with respect to the hyperoperation ” + ” from the left side: for any
x, y, z ∈ R, x · (y + z) = x · y + x · z.
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As we have already recalled in Introduction, this kind of hypernear-ring was called by Gontineac [14] a
zero-symmetric hypernear-ring.

In this paper, we want to keep the initial terminology, and therefore, a hypernear-ring is meant to be a
hyperstucture (R,+, ·) satisfying the above mentioned axioms I) and II), and the new axiom

III’) The operation ” · ” is inclusive distributive with respect to the hyperoperation ” + ” from the left side:
for any x, y, z ∈ R, x · (y + z) ⊆ x · y + x · z.

Accordingly, the Dašić’ hypernear-ring is called in this note a strongly distributive hypernear-ring.
Next we recall two examples of strongly distributive hypernear-rings, then we present a new one of

hypernear-ring, where the multiplication weakly distributes over the hyperaddition.

Example 2.3. [7, 14] Let (H,+) be a hypergroup (not necessarily commutative) and let M(H) be the set of all mappings
f : H −→ H. On the set M(H) define the following hyperoperation:

f ⊕ 1 = {h ∈M(H) | h(x) ∈ f (x) + 1(x),∀x ∈ H}.

Then (M(H),⊕, ◦) is a strongly distributive hypernear-ring, where ”◦” is the composition of mappings.

Example 2.4. [19] Consider the set R = {0, a, b, c} endowed with the hyperaddition and multiplication defined by the
tables below:

+ 0 a b c
0 {0} {a} {b} {c}
a {a} {0, a} {b} {c}
b {b} {b} {0, a, c} {b, c}
c {c} {c} {b, c} {0, a, b}

· 0 a b c
0 0 0 0 0
a 0 a b c
b 0 a b c
c 0 a b c

Then (R,+, ·) is a strongly distributive hypernear-ring. Moreover, notice that the additive part (R,+) is
a canonical hypergroup, since the hyperaddition is commutative.

In the first part of the following example, we will present a general method, from Davvaz’ book [10], to
construct a quasicanonical hypergroup (polygroup).

Example 2.5. Let (G, ·) be a group with the identity e, and set PG = G ∪ {a}, where a is an arbitrary element not
belonging to G. Defining on PG the hyperoperation ”◦” as it follows:

a ◦ a = e
e ◦ x = x ◦ e = x,∀x ∈ PG
a ◦ x = x ◦ a = x,∀x ∈ PG \ {e, a}
x ◦ y = x · y,∀(x, y) ∈ G2, y , x−1

x ◦ x−1 = {e, a},∀x ∈ PG \ {e, a},

one obtains that (PG, ◦) is a quasicanonical hypergroup [10]. It is clear that, if G is a commutative group, then PG is
a canonical hypergroup.

Take now G = (Z3,+), the additive group of integers modulo 3, and a = 3. Then we endow the set PG = R =
{0, 1, 2, 3}, where for simplicity denote Z3 = {0, 1, 2}, with the hyperoperation defined above (i.e. it is represented by
the following table):
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+ 0 1 2 3
0 {0} {1} {2} {3}
1 {1} {2} {0, 3} {1}
2 {2} {0, 3} {1} {2}
3 {3} {1} {2} {0}

Then, define on R the multiplication, as follows: for any y ∈ R, 0·y = 0, and for any x ∈ R\{0} and any y ∈ R, x·y = y.
Note this is the same multiplication used in Example 2.4. Then (R,+, ·) is a strongly distributive hypernear-ring.

Lemma 2.6. Let (R,+, ·) be a hypernear-ring. For any x, y ∈ R, the following identities are fulfilled:

i) −(x + y) = (−y) + (−x)

ii) y · (−x) = −(y · x)

Definition 2.7. [14, 21] Let (R,+, ·) be a hypernear-ring.

i) A subhypergroup A of the hypergroup (R,+) is called a normal subhypergroup if, for all x ∈ R, it holds:
x + A − x ⊆ A.

ii) A normal subhypergroup A of the hypergroup (R,+) is called a left hyperideal of R, if x · a ∈ A, for all
x ∈ R, a ∈ A.

iii) A normal subhypergroup A of the hypergroup (R,+) is called a right hyperideal of R if (x+A)·y−x·y ⊆ A,
for all x, y ∈ R.

iv) If A is a left and a right hyperideal of R, i.e. if [(x + A) · y − x · y] ∪ z ·A ⊆ A, for all x, y, z ∈ R, then we
say that A is a hyperideal of R.

Remark 2.8. i) If A is a normal subhypergroup of R, then A = x + A − x, or equivalently x + A = A + x,
for any x ∈ R.

ii) It can be easily verified that the condition (x + A) · y− x · y ⊆ A in the previous definition is equivalent
to the condition −(x · y) + (x + A) · y ⊆ A, for any x, y ∈ R.

Definition 2.9. Let (R,+, ·) and (R′,+′, ·′) be two hypernear-rings. The map f : R −→ R′ is a strong
homomorphism of the hypernear-rings R and R′ if the following relations hold, for all x, y ∈ R:

i) f (x + y) = f (x) +′ f (y)

ii) f (x · y) = f (x) ·′ f (y)

iii) f (0) = 0

Next we recall the construction and the basic properties of the quotient hypernear-ring [7, 14].
If A is a hyperideal of the hypernear-ring R, then we define the relation x � y(modA) if and only if

(x − y) ∩ A , ∅. This is an equivalence relation on R and the class represented by x is C(x) = x + A.

Theorem 2.10. Let (R,+, ·) be a hypernear-ring. If A is a hyperideal of R, then on the set of classes R/A = {C(x) |
x ∈ R} we can define a hyperoperation ” ⊕ ” and an operation ” � ” as follows:

C(x) ⊕ C(y) = {C(z) | z ∈ x′ + y′, x′ ∈ C(x), y′ ∈ C(y)}
C(x) � C(y) = C(x · y)

The structure (R/A,⊕,�) is a hypernear-ring, called the factor hypernear-ring.
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We conclude the introductory part with one result regarding the direct product of two hypernear-rings,
that can be generalised to an arbitrary family of hypernear-rings.

Theorem 2.11. Let (R1,+, ·) and (R2,+, ·) be two hypernear-rings. On the Cartesian product R1 × R2 we can define
the hyperoperation ” ⊕ ” and the operation ” � ” as follows:

(x1, x2) ⊕ (y1, y2) = (x1 + y1) × (x2 + y2) = {(x, y) | x ∈ x1 + y1, y ∈ x2 + y2}

(x1, x2) � (y1, y2) = (x1 · x2, y1 · y2)

The structure (R1 × R2,⊕,�) is a hypernear-ring, called the direct product of the hypernear-rings R1 and R2.

3. Hypernear-rings with a defect of distributivity

In this section, we first introduce the concept of hypernear-ring with a defect of distributivity, illustrating
it with some examples. Then, we characterize the defect D of a hypernear-ring and present several properties
concerning the image of a strong homomorphism, the direct product of hypernear-rings and the factor
hypernear-ring.

Definition 3.1. Let (R,+, ·) be a hypernear-ring. If (S, ·) is a multiplicative subsemigroup of the semigroup
(R, ·) such that the elements of S generate (R,+), i.e. for every r ∈ R there exists a finite sum

∑n
i=1 ±si,

where si ∈ S, for any i ∈ {1, 2, . . . ,n}, such that r ∈
∑n

i=1 ±si, then we say that S is a set of generators of the
hypernear-ring R.

Note that in the sum
∑n

i=1 ±si we could have also some terms of the type −si that are not elements is S,
even if si ∈ S.

The hypernear-ring R with the set of generators S will be denoted by (R,S).

Definition 3.2. Let (R,+, ·) be a hypernear-ring with the set of generators S and set

DS = {d | d ∈ −(x · s + y · s) + (x + y) · s, x, y ∈ R, s ∈ S} =
=

⋃
x,y∈R

s∈S

[
−(x · s + y · s) + (x + y) · s

]
.

The normal subhypergroup D of the hypergroup (R,+) generated by DS is called the defect of distributivity
of the hypernear-ring (R,S). Moreover, we say that (R,S) is a hypernear-ring with the defect D.

Example 3.3. Consider the strongly distributive hypernear-ring in Example 2.5. We take S = {2} a system of
generators of the canonical hypergroup (R,+). We determine all elements in the set DS and we get:

DS = {d ∈ R | d ∈ −(x · 2 + y · 2) + (x + y) · 2,∀x, y ∈ R}
= {d ∈ R | d ∈ (−(2 + 2) + R · 2) ∪ (0 + R · 2) ∪ (−2 + R · 2)}
= {d ∈ R | d ∈ (−1 + {0, 2}) ∪ {0, 2} ∪ (1 + {0, 2})}
= {d ∈ R | d ∈ {1, 2} ∪ {0, 2} ∪ {0, 1, 3}}
= R

It is clear now that the normal subhypergroup D of (R,+) generated by DS is the entire suppport set R, i.e. the defect
of distributivity of R is R.

Since we are more interested in hypernear-rings with the defect of distributivity not ”too big”, we
consider another example. This is only a hypernear-ring (so not strongly distributive), having the additive
part a canonical hypergroup obtained using the Davvaz’ general method, presented in Example 2.5.
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Example 3.4. Take G = (Z6,+), the additive group of integers modulo 6, and set R = PG = G ∪ {6}. Then the
additive part (R,+) can be represented by following table:

+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 {0, 6} 1
2 2 3 4 5 {0, 6} 1 2
3 3 4 5 {0, 6} 1 2 3
4 4 5 {0, 6} 1 2 3 4
5 5 {0, 6} 1 2 3 4 5
6 6 1 2 3 4 5 0

Define on R the multiplication as follows:

· 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 5 4 3 2 1 0
2 0 1 2 3 4 5 0
3 0 0 0 0 0 0 0
4 0 5 4 3 2 1 0
5 0 1 2 3 4 5 0
6 0 0 0 0 0 0 0

It is simple to check that the multiplication is associative, so (R, ·) is a semigroup, having 0 as two-sided absorbing
element. Moreover, the multiplication inclusive distributes over hyperaddition, so for any x, y, z ∈ R, we have
x · (y + z) ⊆ x · y + x · z (we let this part to the reader as a simple exercise). The distributivity (so the equality in the
above relation) is not satisfied, since, for example, 1 · (4 + 2) = 1 · {0, 6} = 0 ( {0, 6} = 2 + 4 = 1 · 4 + 1 · 2.

Take S = {0, 2, 3} a system of generators of the hypergroup (R,+). We also notice that (S, ·) is a subsemigroup of
(R, ·). Now we determine the set DS, using Definition 3.2:

DS =
⋃

x,y∈R
s∈S

[
−(x · s + y · s) + (x + y) · s

]
= {−(x · 0 + y · 0) + (x + y) · 0 | x, y ∈ R}∪
∪{−(x · 2 + y · 2) + (x + y) · 2 | x, y ∈ R}∪
∪{−(x · 3 + y · 3) + (x + y) · 3 | x, y ∈ R}
= {0} ∪ {0, 6} ∪ {0, 3, 6} = {0, 3, 6}.

Indeed, let A = −(x · 2 + y · 2) + (x + y) · 2, for any x, y ∈ R. In the following tables, the values of x are written on the
first column, while those for y in the first line. The table of the hypercomposition x · 2 + y · 2 is the following one:

0 1 2 3 4 5 6
0 0 4 2 0 4 2 0
1 4 2 {0, 6} 4 2 {0, 6} 4
2 2 {0, 6} 4 2 {0, 6} 4 2
3 0 4 2 0 4 2 0
4 4 2 {0, 6} 4 2 {0, 6} 4
5 2 {0, 6} 4 2 {0, 6} 4 2
6 0 4 2 0 4 2 0
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from which we obtain the table of −(x · 2 + y · 2):

0 1 2 3 4 5 6
0 0 2 4 0 2 4 0
1 2 4 {0, 6} 2 4 {0, 6} 2
2 4 {0, 6} 2 4 {0, 6} 2 4
3 0 2 4 0 2 4 0
4 2 4 {0, 6} 2 4 {0, 6} 2
5 4 {0, 6} 2 4 {0, 6} 2 4
6 0 2 4 0 2 4 0

Similarly, the table of the hypercomposition (x + y) · 2 is:

0 1 2 3 4 5 6
0 0 4 2 0 4 2 0
1 4 2 0 4 2 0 4
2 2 0 4 2 0 4 2
3 0 4 2 0 4 2 0
4 4 2 0 4 2 0 4
5 2 0 4 2 0 4 2
6 0 4 2 0 4 2 0

It follows that A = {0} ∪ {0, 6} = {0, 6}. Similarly, we obtain that B = −(x · 3 + y · 3) + (x + y) · 3 = {0, 3, 6}.
Thereby, DS = {0} ∪ A ∪ B = {0, 3, 6} and the hyperaddition on DS has the following table:

+ 0 3 6
0 0 3 6
3 3 {0, 6} 3
6 6 3 0

meaning that DS is a normal subhypergroup of (R,+), so DS = D. We conclude that the defect of distributivity of the
hypernear-ring R is D = {0, 3, 6}.

Lemma 3.5. Let (R,S) be a hypernear-ring with the defect D.
1. Then the defect D may be characterized as

D =
⋃

m,n∈N

 m∑
i=1

 n∑
j=1

zi j ± di −

n∑
j=1

zi j


 ,

where zi j ∈ R and di ∈ DS.
2. For all x, y ∈ R and s ∈ S, it holds:

(x + y) · s ⊆ x · s + y · s + D.

Proof. 1.First we will prove that D is a subhypergroup of (R,+). Let u, v ∈ D. Then u ∈
∑m

i=1

(∑n
j=1 zi j ± di −

∑n
j=1 zi j

)
and v ∈

∑k
i=1

(∑l
j=1 z′i j ± d′i −

∑l
j=1 z′i j

)
, for some m,n, k, l ∈N.

Thus, we can write

u + v ⊆
m∑

i=1

(zi1 + . . . + zin + 0 + . . . + 0)︸                             ︷︷                             ︸
n+l

±di − (zi1 + . . . + zin + 0 + . . . + 0)︸                             ︷︷                             ︸
n+l

+

+

k∑
i=1

(z′i1 + . . . + z′il + 0 + . . . + 0)︸                            ︷︷                            ︸
n+l

±d′i − (z′i1 + . . . + z′il + 0 + . . . + 0)︸                            ︷︷                            ︸
n+l

 ⊆ D



S. Jančić-Rašović , I. Cristea / Filomat 32:4 (2018), 1133–1149 1141

and

−u ⊆ −


m∑

i=1


n∑

j=1

zi j ± di −

n∑
j=1

zi j︸                  ︷︷                  ︸
Ai




= −

m∑
i=1

Ai =

1∑
i=m

(−Ai) =

=

1∑
i=m

 n∑
j=1

zi j ± di −

n∑
j=1

zi j

 ⊆ D.

Also, for any x ∈ R, it holds:

x + u − x ⊆ x + z11 + . . . + z1n ± d1 − (z11 + . . . + z1n)+
+z21 + . . . + z2n ± d2 − (z21 + . . . + z2n)+
...

+zm1 + . . . + zmn ± dm − (zm1 + . . . + zmn) − x ⊆
⊆ x + z11 + . . . + z1n ± d1 − (z11 + . . . + z1n) − x+

+x + z21 + . . . + z2n ± d2 − (z21 + . . . + z2n) − x+

+x + z31 + . . . + z3n ± d3 − (z31 + . . . + z3n) − x+
...

+x + zm1 + . . . + zmn ± dm − (zm1 + . . . + zmn) − x =

=

m∑
i=1

((x +

n∑
j=1

zi j) ± di −

n∑
j=1

zi j − x)) =

=

m∑
i=1

(x +

n∑
j=1

zi j) ± di − (x +

n∑
j=1

zi j) ⊆ D.

Therefore, D is a normal subhypergroup of the hypergroup (R,+). Obviously, DS ⊆ D.
If A is a normal subhypergroup of (R,+) such that DS ⊆ A, then, for arbitrary m,n ∈N and zi j ∈ R, di ∈ DS,

(where i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . ,n}), it holds:

Ai =

n∑
j=1

zi j ± di −

n∑
j=1

zi j =

= zi1 + . . . + (zin ± di − zin) − zin−1 − . . . − zi1 ⊆

⊆ zi1 + . . . + (zin−1 + A − zin−1) − zin−2 − . . . − zi1 ⊆

...

⊆ zi1 + A − zi1 ⊆ A.

Thus,
m∑

i=1

Ai ⊆ A and it follows that

D =
⋃

m,n∈N

 m∑
i=1

 n∑
j=1

zi j ± di −

n∑
j=1

zi j


 ⊆ A.

2. Let x, y ∈ R and s ∈ S. Then:

(x + y) · s = 0 + (x + y) · s ⊆ (x · s + y · s) + (−(x · s + y · s)) + (x + y) · s ⊆ x · s + y · s + D.
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Definition 3.6. If (R,S) is a hypernear-ring with the defect D = {0}, then we say that (R,S) is a distributively
generated hypernear-ring (by short, d.g. hypernear-ring).

Lemma 3.7. If (R,S) is a hypernear-ring with the defect D, then:

1. (−x) · s ∈ −(x · s) + D,
2. (x − y) · s ⊆ x · s − y · s + D,

for all x, y ∈ R and each s ∈ S.

Proof. 1. Since 0 = 0 · s ∈ (x + (−x)) · s ⊆ x · s + (−x) · s + D, then there exists d ∈ D such that 0 ∈ x · s + (−x) · s + d
and therefore −(x · s) ∈ (−x) · s + d. By the axiom I)iv) of the definition of a hypernear-ring, it follows that
(−x) · s ∈ −(x · s) − d ⊆ −(x · s) + D.

2. Based on the previous point, it is clear that (x − y) · s ⊆ x · s + (−y) · s + D ⊆ x · s − y · s + D.

Moreover, we remark that in a hypernear-ring (R,S), generally it does not hold the equality (−x) · z =

−(x · z), for all x, z ∈ R, because the right distributivity generally doesn’t hold.
Now we deal with some elementary properties of a hypernear-ring with the defect of distributivity.

Next theorems are generalisations of the similar theorems in Dašić [5].

Theorem 3.8. Let (R1,S) be a hypernear-ring with the defect D and let R2 be an arbitrary hypernear-ring. If
f : R1 −→ R2 is a strong homomorphism, then Im f is a hypernear-ring ( f (R1), f (S)) with the defect f (D).

Proof. Obviously, ( f (R1),+) is a hypergroup such that f (−x) = − f (x), for all x ∈ R1, and ( f (R1), ·) is a
semigroup with a two-sided absorbing element f (0) = 0. Moreover, for all x, y, z ∈ R1, it holds: f (x) ·
( f (y) + f (z)) = f (x) · f (y + z) = f (x · (y + z)) ⊆ f (x · y + x · z) = f (x) · f (y) + f (x) · f (z). Thus, ( f (R1),+, ·) is a
hypernear-ring.

Besides, ( f (S), ·) is a subsemigroup of the semigroup ( f (R1), ·) and if x ∈ R1, then there exists n ∈N such
that x ∈

∑n
i=1 ±si, for some s1, s2, . . . , sn ∈ S and so f (x) ∈

∑n
i=1 ± f (si). Thus, f (S) is a set of generators of the

hypernear-ring f (R1).
The defect D′ of the hypernear-ring ( f (R1), f (S) is generated by the set

D f (S) =
⋃

x,y∈R
s∈S

[
−( f (x) · f (s) + f (y) · f (s)) + ( f (x) + f (y)) · f (s)

]
=

=
⋃

x,y∈R
s∈S

[
f (−(x · s + y · s) + (x + y) · s)

]
= f (DS).

Thus,

D′ =
⋃

m,n∈N

 m∑
i=1

 n∑
j=1

f (zi j) ± f (di) −
n∑

j=1

f (zi j)


 ,

where zi j ∈ R and di ∈ DS. Thereby,

D′ =
⋃

m,n∈N

 m∑
i=1

f

 n∑
j=1

zi j ± di −

n∑
j=1

zi j


 =

=
⋃

m,n∈N

f

 m∑
i=1

 n∑
j=1

zi j ± di −

n∑
j=1

zi j


 = f (D).
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Theorem 3.9. The direct product of the hypernear-rings (R1,S1) with the defect D1 and (R2,S2) with the defect D2
is a hypernear-ring (R1 × R2,S′1 × S′2) with the defect D1 ×D2, where S′1 = S1 ∪ {0} and S′2 = S2 ∪ {0}.

Proof. Let (R1 × R2,⊕,�) be the direct product of the hypernear-rings R1 and R2. The element (−x,−y) will
be denoted by 	(x, y). Obviously, (0, 0) is the two-sided absorbing element in (R1 × R2,�). Using the fact
that, for i = 1, 2, Si is a subsemigroup of (Ri, ·), while 0 is two-sided absorbing element of (Ri, ·), we obtain
that, for arbitrary (x, y), (u, v) ∈ S′1 ×S′2, it holds: (x, y)� (u, v) = (x ·u, y · v) ∈ S′1 ×S′2, meaning that (S′1 ×S′2,�)
is a subsemigroup of (R1 × R2,�).

Next, we prove that the hypergroup (R1×R2,⊕) is generated by S′1×S′2. For any (x, y) ∈ R1×R2, it holds:
(x, y) = (x, 0) ⊕ (0, y). On the other side, there exist n ∈ N and s(1)

1 , s
(1)
2 , . . . , s

(1)
n ∈ S1 such that x ∈

∑n
i=1 ±s(1)

i .
Thus, (x, 0) ∈

∑n
i=1 ±(s(1)

i , 0). Similarly, there exist k ∈ N and s(2)
1 , s

(2)
2 , . . . , s

(2)
k ∈ S2 such that x ∈

∑k
j=1 ±s(2)

j .

Thus, (0, y) ∈
∑k

j=1 ±(0, s(2)
j ). It results that (x, y) ∈

∑n
i=1 ±(s(1)

i , 0) ⊕
∑k

j=1 ±(0, s(2)
j ). Therefore, S′1 × S′2 is a set of

generators for the hypernear-ring R1 × R2.
The defect D′ of the hypernear-ring (R1 × R2,S′1 × S′2) is generated by the set

DS′1×S′2 =

=
⋃

(x,y),(u,v)∈R1×R2
(s1,s2)∈S′1×S′2

[
−((x, y) � (s1, s2) ⊕ (u, v) � (s1, s2)) ⊕ ((x, y) ⊕ (u, v)) � (s1, s2)

]
=

=
⋃

(x,y),(u,v)∈R1×R2
(s1,s2)∈S′1×S′2

[
−((x · s1 + u · s1) × (y · s2 + v · s2)) ⊕ (((x + u) · s1) × ((y + v) · s2))

]
=

=
⋃

(x,y),(u,v)∈R1×R2
(s1,s2)∈S′1×S′2

[
((−(x · s1 + u · s1) × (−(y · s2 + v · s2))) ⊕ ((x + u) · s1 × (y + v) · s2))

]
=

=
⋃

x,u∈R1,y,v∈R2
s1∈S′1,s2∈S′2

[
(−(x · s1 + u · s1) + (x + u) · s1) × ((−(y · s2 + v · s2)) + (y + v) · s2)

]
= T

It can be easily verified that, if x,u ∈ R1 and s1 ∈ S1, then −(x · s1 + u · s1) + (x + u) · s1 ∈ DS1 and for s1 = 0,
it holds that −(x · s1 + u · s1) + (x + u) · s1 = 0. So, since 0 ∈ DS1 , it follows that −(x · s1 + u · s1) + (x + u) · s1 ⊆ DS1 ,
for all x,u ∈ R1 and each s1 ∈ S′1. Similarly, −(y · s2 + v · s2) + (y + v) · s2 ⊆ DS2 , for all y, v ∈ R2 and each s2 ∈ S′2.
Thereby, T = DS1 ×DS2 , meaning that the defect D′ of the hypernear-ring (R1 × R2,S′1 × S′2) is generated by
the set DS1 ×DS2 .

We can write now that

D′ =
⋃

m,n∈N

 m∑
i=1

 n∑
j=1

(xi j, yi j) ± (d(1)
i , d

(2)
i ) 	

n∑
j=1

(xi j, yi j)


 ,

where (xi j, yi j) ∈ R1 × R2, (d(1)
i , d

(2)
i ) ∈ DS1 ×DS2 . Using the definition of the hyperoperation ⊕, we obtain:

D′ =
⋃

m,n∈N


m∑

i=1


 n∑

j=1

xi j ± d(1)
i −

n∑
j=1

xi j

︸                       ︷︷                       ︸
A(1)

i

×

 n∑
j=1

yi j ± d(2)
i −

n∑
j=1

yi j

︸                       ︷︷                       ︸
A(2)

i




=

=
⋃
m∈N

m∑
i=1

(A(1)
i × A(2)

i ) =
⋃
m∈N

 m∑
i=1

(A(1)
i

 ×
 m∑

i=1

(A(2)
i

 .
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Since
∑m

i=1 A(1)
i ⊆ D1 and

∑m
i=1 A(2)

i ⊆ D2, it follows that D′ ⊆ D1 ×D2.
Conversely, if (x, y) ∈ D1 ×D2, then, for some m, k, p,n ∈N, it holds that x ∈

∑m
i=1(

∑k
j=1 xi j ± d(1)

i −
∑k

j=1 xi j)

and y ∈
∑p

i=1(
∑n

j=1 yi j ± d(2)
i −

∑n
j=1 yi j). Without loss of generality, we can suppose that n = k and m = p.

Indeed, if for example n > k, then
∑k

j=1 xi j =
∑n

j=1 x′i j, where x′i j = xi j, for j = 1, 2, . . . k and x′i j = 0, for
j = k + 1, k + 2, . . . ,n. Also, if for example m > p, then

p∑
i=1

(
n∑

j=1

yi j ± d(2)
i −

n∑
j=1

yi j) =

m∑
i=1

(
n∑

j=1

y′i j ± d
′(2)
i −

n∑
j=1

y′i j),

where y′i j = yi j, for i = 1, 2, . . . , p, j = 1, 2, . . . ,n, d
′(2)
i = d(2)

i , for i = 1, 2, . . . , p, and y′i j = 0, for i =

p + 1, p + 2, . . . ,m, j = 1, 2, . . . ,n and d
′(2)
i = 0, for i = p + 1, p + 2, . . . ,m. Therefore,

(x, y) ∈
[∑m

i=1(
∑n

j=1 xi j ± d(1)
i −

∑n
j=1 xi j)

]
×

[∑m
i=1(

∑n
j=1 yi j ± d(2)

i −
∑n

j=1 yi j)
]

=

=
∑m

i=1

[
(
∑n

j=1 xi j ± d(1)
i −

∑n
j=1 xi j) × (

∑n
j=1 yi j ± d(2)

i −
∑n

j=1 yi j)
]

=

=
∑m

i=1

(∑n
j=1(xi j, yi j) ± (d(1)

i , d
(2)
i ) 	

∑n
j=1(xi j, yi j)

)
⊆ D′.

Thus, D′ = D1 ×D2.

Theorem 3.10. Let (R,S) be a hypernear-ring with the defect D. If A is a normal subhypergroup of the hypergroup
(R,+) such that D ⊆ A, then A is a right hyperideal of the hypernear-ring R if and only if A · S ⊂ A.

Proof. If A is a right hyperideal of the hypernear-ring R, then (0 + a) · s − 0 · s ⊆ A, for all a ∈ A and s ∈ S.
Since 0 · s = 0, then a · s ∈ A, and therefore A · S ⊆ S.

Now suppose that A · S ⊆ A. Let x, y ∈ R and a ∈ A. There exist s1, s2, . . . , sn ∈ S such that y ∈
∑n

i=1 ±si

and thus

(x + a) · y − x · y ⊆ (x + a) ·
n∑

i=1

±si − x ·
n∑

i=1

±si =

=
⋃

u∈x+a

u ·
n∑

i=1

±si − x ·
n∑

i=1

±si ⊆

⊆

⋃
u∈x+a

n∑
i=1

±u · si −

n∑
i=1

±(x · si) = T

If u ∈ x + a, then u · si ∈ (x + a) · si ⊆ x · si + a · si + D. Since a · si ∈ A and D ⊆ A, it follows that u · si ∈ x · si + A.
Thus, T ⊆

∑n
i=1 ±(x · si +A)−

∑n
i=1 ±(x · si). Thereby, we have that −(x · si +A) = −A−x · si = A−x · si = −x · si +A

and so
∑n

i=1 ±(x · si + A) = (
∑n

i=1 ±x · si) + A. It follows that

T ⊆ ±x · s1 ± . . . ± x · sn + A ∓ x · sn ∓ x · sn−1 ∓ . . . ∓ x · s1 ⊆

⊆ ±x · s1 ± . . . ± x · sn−1 + A ∓ x · sn−1 ∓ x · sn−2 ∓ . . . ∓ x · s1 ⊆

...

⊆ ±x · s1 + A ∓ x · s1 ⊆ A.

It is clear now that A is a right hyperideal of the hypernear-ring R.

Corollary 3.11. If (R,S) is a hypernear-ring with the defect D, then:

1. R ·D ⊆ D
2. D · S ⊆ D
3. D is a hyperideal of R.
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Proof. 1. Let r ∈ R and d ∈ D. Then d ∈
∑m

i=1(
∑n

j=1 zi j ± di −
∑n

j=1 zi j), for some m,n ∈ N, zi j ∈ R and di ∈ DS.
So r · d ∈

∑m
i=1(

∑n
j=1 ±(r · zi j) ± r · di −

∑n
j=1 r · zi j). Let i ∈ {1, 2, . . . ,m}. Since di ∈ DS, then there exist x, y ∈ R

and s ∈ S, such that di ∈ −(x · s + y · s) + (x + y) · s and thus, r · di ∈ r · (−(x · s + y · s)) + r · (x + y) · s ⊆
−(r · (x · s + y · s)) + (r · x + r · y) · s ⊆ −(r · x · s + r · y · s) + (r · x + r · y) · s. So, r · di ∈ Ds and therefore r · d ∈ D.

2. Let d ∈
∑m

i=1(
∑n

j=1 zi j ± di −
∑n

j=1 zi j) and s ∈ S. Then

d · s ∈

 m∑
i=1

(
n∑

j=1

zi j ± di −

n∑
j=1

zi j) · s

 + D

⊆


m∑

i=1

(
n∑

j=1

zi j) · s ± di · s + (−
n∑

j=1

zi j) · s︸                                   ︷︷                                   ︸
Ai


+ D.

(1)

Obviously, (
∑n

j=1 zi j) · s ⊆
∑n

j=1 zi j · s + D and, by Lemma 3.7, (−
∑n

j=1 zi j) · s ⊆ −((
∑n

j=1 zi j) · s) + D ⊆

−

[
(
∑n

j=1 zi j · s) + D
]

+ D = −D −
∑n

j=1 zi j · s + D = −
∑n

j=1 zi j · s + D.
Let di ∈ −(x · si + y · si) + (x + y) · si. Then,

di · s ∈ (−y · si − x · si) · s + (x + y) · si · s + D ⊆
⊆ (−y · si) · s + (−x · si) · s + D + (x + y) · si · s + D ⊆
⊆ −(y · si · s) + D − (x · si · s) + D + D + (x + y) · si · s + D ⊆
⊆ −y · si · s − x · si · s + (x + y) · si · s + D.

Since si · s ∈ Ds, it follows that −y · si · s − x · si · s + (x + y) · si · s = −(x · si · s + y · si · s) + (x + y) · si · s ⊆ DS and
so there exists d′i ∈ DS such that di · s ∈ d′i + D. Moreover, −di · s ∈ −(d′i + D) = −D− d′i = −d′i + D, since D is a
normal subhypergroup. Therefore,

Ai ⊆

n∑
j=1

zi j · s + D ± (d′i + D) −
n∑

j=1

zi j · s + D =

n∑
j=1

zi j · s ± d′i −
n∑

j=1

zi j · s + D (2)

From (1) and (2), it follows that

d · s ∈

 m∑
i=1

(
n∑

j=1

zi j · s ± d′i −
n∑

j=1

zi j · s) + D

 + D =

=

m∑
i=1

(
n∑

j=1

zi j · s ± d′i −
n∑

j=1

zi j · s) + D ⊆ D.

3. It follows from 1. and 2., based on Theorem 3.10.

Theorem 3.12. Let (R,S) be a hypernear-ring with the defect D and let A be a hyperideal of R. Then the factor
hypernear-ring (R̄ = R/A,⊕,�) has a set of generators S̄ = {C(s) = s + A | s ∈ S} and the defect D̄ = {C(d) = d + A |
d ∈ D}.

Proof. For all s1, s2 ∈ S, it holds: C(s1) � C(s2) = C(s1 · s2) ∈ S̄. Thus, S̄ is a subsemigroup of the semigroup
(R̄,�). Moreover, C(0) is a two-sided absorbing element of the semigroup (R̄,�). The hypergroup (R̄,⊕)
is generated by the set S̄. Indeed, if x ∈ R, then x ∈

∑n
i=1 ±si, for some s1, s2, . . . , sn ∈ S. Thus, C(x) ∈

C(±s1) ⊕ . . . ⊕ C(±sn) =
∑n

i=1 ±C(si), since C(−si) = −C(si), for each i ∈ {1, 2, . . . ,n}.
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Besides,
DS̄ =

⋃
x,y∈R

s∈S

[
	(C(x) � C(s) ⊕ C(y) � C(s)) ⊕ (C(x) ⊕ C(y)) � C(s)

]
=

=
⋃

x,y∈R
s∈S

[
(	(C(x · s) ⊕ C(y · s))) ⊕ (C(x) ⊕ C(y)) � C(s)

]
=

=
⋃

x,y∈R
s∈S

{C(r) | r ∈ −(x · s + y · s) + (x + y) · s} =

= {C(r) | r ∈ DS}.

So

D̄ =
⋃

m,n∈N

m∑
i=1

(
n∑

j=1

C(zi j ± C(di) 	
n∑

j=1

C(zi j)),

where zi j ∈ R and di ∈ DS. By the definition of the hyperoperation ⊕, we obtain

D̄ = {C(d) | d ∈

 m∑
i=1

(
n∑

j=1

zi j ± di −

n∑
j=1

zi j)

 = {C(d) | d ∈ D}.

Corollary 3.13. Let (R,S) be a hypernear-ring with the defect D and let A be a hyperideal of R. Then the factor
hypernear-ring (R̄, S̄) is a d.g. hypernear-ring if and only if D ⊆ A.

Proof. The factor hypernear-ring (R̄, S̄) is a d.g. hypernear-ring if and only if its defect D̄ = {C(0)}, meaning
that C(d) = C(0) = A, for all d ∈ D. This happens if and only if d ∈ A, for all d ∈ D, thus if and only if
D ⊆ A.

In [6] Dašić proved that in a near-ring R with the defect D, the set AD(R) = {a ∈ R | a · r ∈ D, r ∈ R} is an
ideal of R. Moreover, if R is D-distributive, i.e. for any x, y, z ∈ R and any d ∈ D, it holds (x+y)·z = x·z+y·z+d,
then R/AD(R) is a ring. In the next corollary, we will present a generalisation of this result.

Corollary 3.14. Let (R,S) be a hypernear-ring with the defect D.

1. D ⊆ AD(R) = {a ∈ R | ∀r ∈ R, a · r ∈ D}.
2. The factor hypernear-ring (R̄ = R/AD(R), S̄) is a d.g. hypernear-ring.

Proof. 1. If d ∈ D, then, for all r ∈ R, it holds r ·d ∈ D, accordingly to Corollary 3.11 1. So d ∈ AD(R), meaning
that D ⊆ AD(R).

2. Let x ∈ R, a ∈ AD(R) and y ∈ x + a − x. For all r ∈ R it holds:

r · y ⊆ r · (x + a − x) ⊆ r · x + r · a − r · x ⊆ r · x + D − r · x ⊆ D.

Therefore, x + a − x ⊆ AD(R), i.e. AD(R) is a normal subhypergroup of (R,+).
Now, we will prove that (AD(R)) · S ⊆ AD(R). Let a ∈ AD(R) and s ∈ S. Then, for all r ∈ R, it holds

r · (a · s) = (r · a) · s ∈ DS ⊆ D, by Corollary 3.11 2. So a · s ∈ AD(R). Thus, (AD(R)) · S ⊆ AD(R), and accordingly
to Theorem 3.10, the set AD(R) is a right hyperideal of R. Similarly, we obtain that AD(R) is a left hyperideal
of R.

Finally, since D ⊆ AD(R), by Corollary 3.13, the factor hypernear-ring (R̄ = R/AD(R), S̄) is a d.g.
hypernear-ring.
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Theorem 3.15. If (R,S) is a strongly distributive hypernear-ring with the defect D, such that, for all x, y,u, v ∈ R,
it holds x · y + u · v ⊆ D + u · v + x · y, then:

(x + y) ·
n∑

i=1

±si ⊆ x · (
n∑

i=1

±si) + y · (
n∑

i=1

±si) + D, (3)

for all x, y ∈ R and s1, s2, . . . , sn ∈ S.

Proof. We prove the theorem by induction on n.
Let n = 1 and s1 = s ∈ S. Obviously, (x+y)·s ⊆ x·s+y·s+D. On the other hand, (x+y)·(−s) = −((x+y)·s) ⊆

−(x · s + y · s + D) = −D − y · s − x · s = −D + y · (−s) + x · (−s). Since y · (−s) + x · (−s) ⊆ D + x · (−s) + y · (−s),
it follows that (x + y) · (−s) ⊆ −D + D + x · (−s) + y · (−s), i.e. (x + y) · (−s) ⊆ x · (−s) + y · (−s) + D, as D is a
normal subhypergroup of the hypergroup (R,+).

Suppose now that inclusion (3) is valid, for all x, y ∈ R and any summ of length k < n. Let
s1, s2, . . . , sk, sk+1 ∈ S. Then, we get:

(x + y) ·
k+1∑
i=1

±si = (x + y) · (
k∑

i=1

±si ± sk+1) ⊆

⊆ (x + y) ·
k∑

i=1

±si + (x + y) · (±sk+1) ⊆

⊆ x · (
k∑

i=1

±si) + y · (
k∑

i=1

±si) + D + x · (±sk+1) + y · (±sk+1) + D =

= x · (
k∑

i=1

±si) + y · (
k∑

i=1

±si) + x · (±sk+1)︸                        ︷︷                        ︸
A

+y · (±sk+1) + D.

(4)

If z′ ∈
∑k

i=1 ±si, then y ·z′+x · (±sk+1) ⊆ D+x · (±sk+1)+ y ·z′ = x · (±sk+1)+ y ·z′+D ⊆ x · (±sk+1)+ y · (
∑k

i=1 ±si)+D.
Therefore,

A = y · (
k∑

i=1

±si) + x · (±sk+1) ⊆ x · (±sk+1) + y · (
k∑

i=1

±si) + D, (5)

and since (x + y) ·
∑k+1

i=1 ±si ⊆ x · (
∑k

i=1 ±si) + A + y · (±sk+1) + D, it follows from (4) and (5) that

(x + y) ·
k+1∑
i=1

±si ⊆ x · (
k∑

i=1

±si) + x · (±sk+1) + y · (
k∑

i=1

±si) + D + y · (±sk+1) + D

= x ·
k+1∑
i=1

±si + y ·
k+1∑
i=1

±si + D,

as D is a normal subhypergroup. Thus, condition (3) is valid for all x, y ∈ R and all s1, s2, . . . , sn ∈ S.

Remark 3.16. If (R,S) is a near-ring with the defect D, then the condition x · y + u · v ⊆ D + u · v + x · y, for
x, y,u, v ∈ R, is equivalent with with the condition x · y + u · v− x · y− u · v ⊆ D, meaning that every additive
commutator for R2 is a subset of D. Moreover, relation (3) is equivalent with the following one: for any
x, y, z ∈ R, there exists d ∈ D such that (x + y) · z = x · z + y · z + d. Thereby Theorem 3.15 is a generalisation
of Proposition 2.7 in Dašić paper [5].
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Example 3.17. Let (R,S) be a near-ring with the defect D and let A be a normal subgroup of (R, ·), i.e. A · x = x ·A,
for all x ∈ R. Let R/A = {x = x ·A | x ∈ R}. The set R/A becomes a strongly distributive hypernear-ring (R/A,⊕, ·) if
we define the hyperoperation ”⊕ ” by x⊕ y = {z | z ∈ x + y} and the operation ” · ” by x · y = x · y, for all x, y ∈ R/A
(see [14]).

Obviously, −(x · A) = (−x) · A, for all x ∈ R and 0 · A = A · 0 = 0 is the bilateraly absorbing element in
(R/A, ·). Besides, for all s1, s2 ∈ S, it holds (s1 · A) · (s2 · A) = (s1 · s2) · A and if x ∈ R, then, since x ∈

∑n
i=1 ±si,

for some s1, s2, . . . , sn ∈ S, it follows that x · A ∈ (
∑n

i=1 ±si) · A = A · (
∑n

i=1 ±si) ⊆
∑n

i=1 A · (±si) =
∑n

i=1 ±(A ·
si) =

∑n
i=1 ±(si · A). Therefore, the hypernear-ring R̄ has a set of generators S̄ = {s · A | s ∈ S}. In this case,

D̄S =
⋃[
	((x · s) ⊕ (y · s)) ⊕ (x ⊕ y) · s

]
, implying that

D̄S =
⋃

x,y∈R
s∈S

[
	(x · s · A ⊕ y · s · A)) ⊕ (x · A ⊕ y · A) · s · A

]
=

=
⋃

x,y∈R
s∈S

{(−z) · A ⊕ p · s · A | z ∈ x · s · A + y · s · A, p ∈ x · A + y · A} =

=
⋃

x,y∈R
s∈S

{δ · A | δ ∈ (−z) · A + p · s · A, z ∈ x · s · A + y · s · A, p ∈ x · A + y · A} =

=
⋃

x,y∈R
s∈S

{w · A | w ∈
[
(−(x · A · s + y · A · s)) + (x · A + y · A) · s

]
}.

Indeed, if δ ∈ (−z) · A + p · s · A, with z ∈ x · s · A + y · s · A, and p ∈ x · A + y · A, then

δ ∈
[
−(x · s · A + y · s · A)

]
· A + (x · A + y · A) · s · A =

= A · (−(x · s · A + y · s · A)) + A · (x · A + y · A) · s ⊆
⊆ −

[
A · (x · s · A + y · s · A)

]
+ (A · x · A + A · y · A) · s ⊆

⊆ −(A · x · s · A + A · y · s · A) + (x · A · A + y · A · A) · s =
= −(A · A · x · s + A · A · y · s) + (x · A + y · A) · s =
= −(A · x · s + A · y · s) + (x · A + y · A) · s =
= −(x · A · s + y · A · s) + (x · A + y · A) · s.

Conversely, if w ∈ −(x · A · s + y · A · s) + (x · A + y · A) · s, then w ∈ −(A · x · s + A · y · s) + (A · x + A · y) · s. Let
a ∈ A. Then we get:

w ∈ −(a · A · x · s + a · A · y · s) + (a · A · x + a · A · y) · s =
= −

[
a · (A · x · s + A · y · s)

]
+ a · (A · x + A · y) · s =

= a ·
[
−(A · x · s + A · y · s)

]
+ a · (A · x + A · y) · s ⊆

⊆ A · (−(A · x · s + A · y · s)) + A · (A · x + A · y) · s =
= −(x · s · A + y · s · A) · A + (x · A + y · A) · s · A.

Thus, there exist z ∈ x · s ·A + y · s ·A and p ∈ x ·A + y ·A, such that w ∈ (−z) ·A + p · s ·A. Therefore, the defect of
the hypernear-ring (R̄, S̄) is the set

D̄ =
⋃

m,n∈N

m∑
i=1

(
n∑

j=1

zi j ± w 	
n∑

j=1

zi j),

where zi j = zi j · A, w = w · A ∈ DS̄, meaning that

D̄ =
⋃

m,n∈N

{d · A | d ∈
m∑

i=1

(
n∑

j=1

zi j · A ± w · A −
n∑

j=1

zi j · A},

where zi j ∈ R and w ∈
⋃

x,y∈R
s∈S

[
(−(x · A · s + y · A · s)) + (x · A + y · A) · s

]
.
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4. Conclusions

This paper wants to open a new line of research in hypernear-ring theory, proposing the study of
hypernear-rings with a defect of distributivity. These are near-ring like hyperstructures where the mul-
tiplicity inclusively distributives over the hyperaddition on just one side. We have concentrated on the
characterisation of the set of elements that ”correct” the lack of right inclusive distributivity, called the
defect of the distributivity of the hypernear-ring. Then we have presented several properties of the defect
of distributivity of direct product of hypernear-rings, of the image of a homomorphism of hypernear-rings,
and of the factor hypernear-ring. We have supported our study with several examples, and we remark that
it was difficult to find examples of strongly distributive hypernear-rings with the defect of distributivity
less than the entire support set. This remains an open problem for our future work.
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[3] I. Cristea, S. Jančić-Rašović, Composition hyperrings, An. Univ. ”Ovidius” Constanta, Seria Mat., 21(2) (2013), 81-94.
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